【引用本文】 孟庆国, 刘昌岭, 李承峰, 等. X射线粉晶衍射-拉曼光谱法研究含甲烷双组分水合物结构及谱学特征[J]. 岩矿测试, 2021, 40(1): 93-102. doi: 10.15898/j.cnki.11-2131/td.202005290077
MENG Qing-guo , LIU Chang-ling , LI Cheng-feng , et al. Characterization of Binary Hydrates Containing Methane by X-ray Diffraction and Microscopic Laser Raman Spectroscopy[J]. Rock and Mineral Analysis, 2021, 40(1): 93-102. doi: 10.15898/j.cnki.11-2131/td.202005290077

X射线粉晶衍射-拉曼光谱法研究含甲烷双组分水合物结构及谱学特征

1. 自然资源部天然气水合物重点实验室, 青岛海洋地质研究所, 山东 青岛 266071;

2. 青岛海洋科学与技术试点国家实验室海洋矿产资源评价与探测技术功能实验室, 山东 青岛 266237

收稿日期: 2020-05-29  修回日期: 2020-08-18 

基金项目: 国家海洋地质调查项目(DD20190221);国家自然科学基金项目(41876051,41976074,41302034)

作者简介: 孟庆国,博士,高级工程师,从事天然气水合物实验测试技术应用研究工作。E-mail:mengqimg@126.com。。

Characterization of Binary Hydrates Containing Methane by X-ray Diffraction and Microscopic Laser Raman Spectroscopy

1. The Key Laboratory of Gas Hydrate, Ministry of Natural Resources, Qingdao Institute of Marine Geology, Qingdao 266071, China;

2. Laboratory for Marine Mineral Resources, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China

Received Date: 2020-05-29
Revised Date: 2020-08-18

摘要:天然气水合物的晶体结构主要取决于客体分子种类与组成,目前单组分水合物的结构和谱学特征较为明确,但多组分水合物相关研究较少。为解决多组分水合物的结构识别问题,探讨其谱学特征,本文实验合成了甲烷-丙烷(CH4-C3H8)和甲烷-四氢呋喃(CH4-THF)两种含CH4双组分水合物以及CH4、C3H8和THF等三种单组分水合物,并采用低温X射线粉晶衍射(PXRD)和显微激光拉曼光谱进行了表征。结果表明:CH4-C3H8和CH4-THF双组分水合物的晶格常数a分别为17.2312×10-10m和17.2241×10-10m,为典型的Ⅱ型结构水合物,与相应C3H8和THF单组分水合物结构相同。在CH4-C3H8水合物中,CH4在大、小笼中均有分布,呈现两个特征拉曼峰(2900cm-1和2911cm-1);C3H8仅分布在大笼,与单组分水合物相比,其C-H伸缩振动峰峰位几无变化,而C-C伸缩振动峰(873cm-1)向低频迁移约3cm-1。在CH4-THF水合物中,大笼被THF占据,CH4仅填充在小笼中(2910cm-1);双组分水合物中,THF分子C-C和C-H伸缩振动峰峰位均与单组分水合物基本一致。分析认为,含CH4双组分水合物的结构类型与其相应的大分子水合物一致,大分子对双组分水合物的晶体结构特征具有决定作用。同时,大分子影响了CH4分子在笼型结构中的分布,致使双组分水合物的拉曼光谱特征存在显著差异。研究结论对基于谱学特征识别多组分水合物微观结构具有重要的指导意义。

关键词: 含甲烷双组分水合物, 晶体结构, 谱学特征, 客体分子, X射线粉晶衍射, 显微激光拉曼光谱

Characterization of Binary Hydrates Containing Methane by X-ray Diffraction and Microscopic Laser Raman Spectroscopy

KEY WORDS: binary hydrate containing methane, crystal structure, spectrum characteristics, guest molecule, powder X-ray diffraction, microscopic laser Raman spectroscopy

本文参考文献

[1]

Li J,Ye J,Qin X,et al.The first offshore natural gas hydrate production test in South China Sea[J].China Geology,2018,1(1):5-16.

[2]

叶建良,秦绪文,谢文卫,等.中国南海天然气水合物第二次试采主要进展[J].中国地质, 2020, 47(3):557-568.

Ye J L,Qin X W,Xie W W,et al.Main progress of the second gas hydrate trial production in the South China Sea[J].Geology in China,2020,47(3):557-568.

[3]

Sloan E D.Fundamental principles and applications of natural gas hydrates[J].Nature,2003, 426(6964):353-359.

[4]

Liu C,Meng Q,He X,et al.Characterization of natural gas hydrate recovered from Pearl River Mouth basin in South China Sea[J].Marine and Petroleum Geology,2015,61:14-21.

[5]

Liu C,Meng Q,Hu G,et al.Characterization of hydrate-bearing sediments recovered from the Shenhu area of the South China Sea[J].Interpretation,2017,5(3):SM13-SM23.

[6]

孟庆国,刘昌岭,李承峰,等.青海聚乎更钻探区天然气水合物拉曼光谱特征[J].现代地质,2015,29(5):200-208.

Meng Q G,Liu C L,Li C F,et al.Raman spectroscopic characteristics of natural gas hydrates from Juhugeng drilling area,Qinghai[J].Geoscience,2015,29(5):200-208.

[7]

Wei J,Fang Y,Lu H,et al.Distribution and characteristics of natural gas hydrates in the Shenhu Sea Area, South China Sea[J].Marine and Petroleum Geology,2018,98:622-628.

[8]

Yu Y S,Zhang Q Z,Li X S,et al.Kinetics,compositions and structures of carbon dioxide/hydrogen hydrate formation in the presence of cyclopentane[J].Applied Energy,2020,265:114808.

[9]

夏宁,刘昌岭,业渝光,等.显微激光拉曼光谱测定天然气水合物的方法研究[J].岩矿测试,2011,30(4):416-422.

Xia N,Liu C L,Ye Y G,et al.Study on determination method of natural gas hydrates by micro-laser Raman spectroscopy[J].Rock and Mineral Analysis,2011,30(4):416-422.

[10]

Cho S J,Hai T L S,Lee J D.In-situ Raman and kinetic study on the methane hydrate formation and decomposition[J].Energy Procedia,2019,158:5615-5621.

[11]

孟庆国,刘昌岭,业渝光,等.甲烷水合物分解过程原位激光拉曼光谱观测[J].天然气工业,2010,30(6):117-120.

Meng Q G,Liu C L,Ye Y G,et al.In situ Raman spectroscopic observation on methane hydrate dissociation[J].Natural Gas Industry,2010,30(6):117-120.

[12]

张保勇,周泓吉,吴强,等.不同驱动力下瓦斯水合物生长过程Raman光谱特征[J].光谱学与光谱分析,2017,37(9):118-123.

Zhang B Y,Zhou H J,Wu Q,et al.Raman spectra characteristics of gas hydrate growth with different driving forces[J].Spectroscopy and Spectral Analysis,2017,37(9):118-123.

[13]

Guo D,Ou W,Ning F,et al.The effects of hydrate formation and dissociation on the water-oil interface:Insight into the stability of an emulsion[J].Fuel,2020,266:116980.

[14]

Li Z,Holzammer C C,Braeuer A S.Analysis of the dissolution of CH4/CO2 mixtures into liquid water and the subsequent hydrate formation via in situ Raman spectroscopy[J].Energies,2020,13(4):793.

[15]

Lee Y,Choi W,Seo Y J,et al.Structural transition induced by cage-dependent guest exchange in CH4+C3H8 hydrates with CO2 injection for energy recovery and CO2 sequestration[J].Applied Energy,2018,228:229-239.

[16]

Tang C,Zhou X,Li D,et al.In situ Raman investigation on mixed CH4-C3H8 hydrate dissociation in the presence of polyvinylpyrrolidone[J].Fuel,2018,214:505-511.

[17]

Fang B,Ning F,Cao P,et al.Modeling thermodynamic properties of propane or tetrahydrofuran mixed with carbon dioxide or methane in structure-Ⅱ clathrate hydrates[J].The Journal of Physical Chemistry C,2017,121(43):23911-23925.

[18]

Shi L,Ding J,Liang D.Enhanced CH4 storage in hydrates with the presence of sucrose stearate[J]. Energy,2019,180:978-988.

[19]

Kumar A,Veluswamy H P,Kumar R,et al.Direct use of seawater for rapid methane storage via clathrate (sⅡ) hydrates[J].Applied Energy,2019,235:21-30.

[20]

Khurana M,Veluswamy H P,Daraboina N,et al.Thermodynamic and kinetic modelling of mixed CH4-THF hydrate for methane storage application[J].Chemical Engineering Journal,2019,370:760-771.

[21]

Kumar A,Veluswamy H P,Linga P,et al.Molecular level investigations and stability analysis of mixed methane-tetrahydrofuran hydrates:Implications to energy storage[J].Fuel,2019,236:1505-1511.

[22]

Castillo-Borja F,Bravo-Sánchez U I,Vázquez-Román R, et al.Biogas purification via sⅡ hydrates in the presence of THF and DMSO solutions using MD simulations[J].Journal of Molecular Liquids,2020,297:111904.

[23]

Dong Q B,Su W,Liu X W,et al.Separation of the N2/CH4 mixture through hydrate formation in ordered mesoporous carbon[J].Adsorption Science & Technology,2014,32(10):821-832.

[24]

孟庆国.多组分气体水合物结构特征及生成分解过程研究[D].北京:中国地质科学院,2019. Meng Q G.Research on the multi-component gas hydrates:Structure characteristics,formation and dissociation process[D].Beijing:Chinese Academy of Geological Sciences,2019.

[25]

刘昌岭,孟庆国.X射线衍射法在天然气水合物研究中的应用[J].岩矿测试,2014,33(4):468-479.

Liu C L,Meng Q G.Applications of X-ray diffraction in natural gas hydrate research[J].Rock and Mineral Analysis,2014,33(4):468-479.

[26]

孟庆国,刘昌岭,李承峰,等.常见客体分子对笼型水合物晶格常数的影响[J].物理化学学报,2020,36.doi:10.3866/PKU.WHXB201910010

Meng Q G,Liu C L,Li C F,et al.Effect of common guest molecules on the lattice constants of clathrate hydrates[J].Acta Physico-Chimica Sinica,2020,36.doi:10.3866/PKU.WHXB201910010.

[27]

田苗,孟庆国,刘昌岭,等.天然气水合物粉晶X射线衍射测试参数优化及分析方法[J].岩矿测试,2017,36(5):481-488.

Tian M,Meng Q G,Liu C L,et al.Parameter optimization and analysis method for determination of natural gas hydrate by powder X-ray diffraction[J].Rock and Mineral Analysis,2017,36(5):481-488.

[28]

Kim E,Seo Y.A novel discovery of a gaseoussH clath-rate hydrate former[J].Chemical Engineering Journal,2019,359:775-778.

[29]

Xu C G,Yan R,Fu J,et al.Insight into micro-mechanism of hydrate-based methane recovery and carbon dioxide capture from methane-carbon dioxide gas mixtures with thermal characterization[J].Applied Energy,2019,239:57-69.

[30]

Takeya S,Kamata Y,Uchida T,et al.Coexistence of structureⅠand Ⅱ hydrates formed from a mixture of methane and ethane gases[J].Canadian Journal of Physics,2003,81(1-2):479-484.

[31]

Menezes D E S D,Sum A K,Desmedt A,et al.Coexi-stence of sⅠand sⅡin methane-propane hydrate former systems at high pressures[J].Chemical Engineering Science,2019,208:115149.

[32]

Yu C,Chen L,Sun B.Experimental characterization of guest molecular occupancy in clathrate hydrate cages:A review[J].Chinese Journal of Chemical Engineering,2019,27:2189-2206.

[33]

Hiraga Y,Sasagawa T,Yamamoto S,et al.A precise deconvolution method to derive methane hydrate cage occupancy ratios using Raman spectroscopy[J].Chemical Engineering Science,2019,214:115361.

[34]

Prasad P S R,Sowjanya Y,Prasad K S.Micro-Raman investigations of mixed gas hydrates[J].Vibrational Spectroscopy,2009,50(2):319-323.

[35]

孟庆国,刘昌岭,贺行良,等.祁连山冻土区天然气水合物激光拉曼光谱特征[J].地质通报,2011,30(12):1863-1867.

Meng Q G,Liu C L,He X L,et al.Laser-Raman spectroscopy characteristics of natural gas hydrates from Qilian Mountain permafrost[J].Geological Bulletin of China,2011,30(12):1863-1867.

[36]

Prasad P S R,Chari V D.Preservation of methane gas in the form of hydrates:Use of mixed hydrates[J].Journal of Natural Gas Science & Engineering,2015,25:10-14.

[37]

Truong-Lam H S,Seo S D,Kim S,et al.In situ Raman study of the formation and dissociation kinetics of methane and methane/propane hydrates[J].Energy & Fuels,2020,34(5):6288-6297.

[38]

孟庆国,刘昌岭,业渝光,等.13C固体核磁共振法测定CH4-THF二元水合物的微观结构特征[J].天然气工业,2015,35(3):135-140.

Meng Q G,Liu C L,Ye Y G,et al.Measurement of micro-structure features of binary CH4-THF clathrate hydrate based on the 13C solid state NMR[J].Natural Gas Industry,2015,35(3):135-140.

[39]

Tulk C A,Klug D D,Ripmeester J A.Raman spectro-scopic studies of THF clathrate hydrate[J].Journal of Physical Chemistry A,1998,102(45):8734-8739.

相似文献(共20条)

[1]

宋党育, 张军营, 郑楚光, 李建欣. X射线衍射数据分析系统评价. 岩矿测试, 2008, 27(3): 189-193.

[2]

闵红, 刘倩, 张金阳, 周海明, 严德天, 邢彦军, 李晨, 刘曙. X射线荧光光谱-X射线粉晶衍射-偏光显微镜分析12种产地铜精矿矿物学特征. 岩矿测试, 2021, 40(1): 74-84. doi: 10.15898/j.cnki.11-2131/td.202004020038

[3]

宁珮莹, 张天阳, 马泓, 谢俊, 丁汀, 黎辉煌, 梁榕. 红外光谱-显微共焦激光拉曼光谱研究天然红宝石和蓝宝石中含水矿物包裹体特征. 岩矿测试, 2019, 38(6): 640-648. doi: 10.15898/j.cnki.11-2131/td.201903050033

[4]

张志坚, 何谋春. 显微激光拉曼光谱在矿床学中的应用. 岩矿测试, 2001, (1): 43-47.

[5]

田苗, 孟庆国, 刘昌岭, 李承峰, 胡高伟, 冯娟, 赵全升. 天然气水合物粉晶X射线衍射测试参数优化及分析方法. 岩矿测试, 2017, 36(5): 481-488. doi: 10.15898/j.cnki.11-2131/td.201703160033

[6]

王含, 周征宇, 钟倩, 刘瑞婷, 刘琦, 李英博. 电子微探针-X射线衍射-扫描电镜研究老挝石岩石矿物学特征. 岩矿测试, 2016, 35(1): 56-61. doi: 10.15898/j.cnki.11-2131/td.2016.01.010

[7]

任叶叶, 张俭, 严俊, 林剑, 陈思杭, 盛嘉伟. 应用X射线衍射-红外光谱等技术研究滑石在机械力研磨中的形貌和晶体结构变化及影响机制. 岩矿测试, 2015, 34(2): 181-186. doi: 10.15898/j.cnki.11-2131/td.2015.02.005

[8]

夏宁, 刘昌岭, 业渝光, 孟庆国, 林学辉, 贺行良. 显微激光拉曼光谱测定天然气水合物的方法研究. 岩矿测试, 2011, 30(4): 416-422.

[9]

张妮, 林春明. X射线衍射技术应用于宝石鉴定-合成及晶体结构研究进展. 岩矿测试, 2016, 35(3): 217-228. doi: 10.15898/j.cnki.11-2131/td.2016.03.002

[10]

李志明, 施伟军, SHERWOOD Neil, 刘文斌, 蒋宏. 激光拉曼光谱法分析多种显微组分荧光变化及其应用. 岩矿测试, 2008, 27(5): 341-345.

[11]

王轶, 常娜, 刘亚非, 赵慧博, 刘三. 应用X射线衍射-激光拉曼-电子探针等分析测试技术研究旬阳朱砂玉的矿物学特征. 岩矿测试, 2014, 33(6): 802-807. doi: 10.15898/j.cnki.11-2131/td.2014.06.007

[12]

鲁麟, 梁婷, 陈郑辉, 王勇, 黑欢, 谢星. 利用X射线粉晶衍射和电感耦合等离子体质谱法研究江西西华山钨矿床中黑钨矿的矿物学特征及指示意义. 岩矿测试, 2015, 34(1): 150-160. doi: 10.15898/j.cnki.11-2131/td.2015.01.019

[13]

刘亚非, 王立社, 魏小燕, 周宁超, 来志庆, 杨文强, 李智明, 赵慧博. 应用电子微探针-扫描电镜-拉曼光谱-电子背散射衍射研究一种未知Ti-Zr-U氧化物的矿物学特征. 岩矿测试, 2016, 35(1): 48-55. doi: 10.15898/j.cnki.11-2131/td.2016.01.009

[14]

孟长峰, 薛俊辉. X射线荧光光谱-X射线衍射研究宁夏贺兰石岩石矿物学特征. 岩矿测试, 2018, 37(1): 50-55. doi: 10.15898/j.cnki.11-2131/td.201709050141

[15]

迟广成, 宋丽华, 赵爱林. X射线粉晶衍射仪分析磷化膜组成. 岩矿测试, 2007, 26(2): 163-164.

[16]

迟广成, 王娜, 吴桐. X射线粉晶衍射仪鉴别鸡血石. 岩矿测试, 2010, 29(1): 71-73.

[17]

王强, 陈勇, 马在平, 颜世永, 张娟, 刘超英, 周瑶琪. 低温加热后伊利石的激光拉曼光谱特征. 岩矿测试, 2007, 26(3): 188-192.

[18]

黄文清, 金绪广, 左锐, 晁东娟, 杨桂群, 薛盼, 陈小军, 张锦雯. 天然与合成紫晶的红外和偏振拉曼光谱鉴定特征. 岩矿测试, 2019, 38(4): 403-410. doi: 10.15898/j.cnki.11-2131/td.201807230087

[19]

庞小丽, 刘晓晨, 薛雍, 江向锋, 江超华. 粉晶X射线衍射法在岩石学和矿物学研究中的应用. 岩矿测试, 2009, 28(5): 452-456.

[20]

李功顺. X射线粉晶衍射法分析磷化膜不同成分衍射强度比. 岩矿测试, 2008, 27(5): 392-394.

计量
  • PDF下载量(9)
  • 文章访问量(584)
  • 被引次数(0)
目录

Figures And Tables

X射线粉晶衍射-拉曼光谱法研究含甲烷双组分水合物结构及谱学特征

孟庆国, 刘昌岭, 李承峰, 郝锡荦