中文核心期刊

中国科技核心期刊

CSCD来源期刊

DOAJ 收录

Scopus 收录

朱鑫祥, 刘琰. 四川雪宝顶W-Sn-Be矿床中矿物化学组成及矿床成因[J]. 岩矿测试, 2021, 40(2): 296-305. DOI: 10.15898/j.cnki.11-2131/td.202101100006
引用本文: 朱鑫祥, 刘琰. 四川雪宝顶W-Sn-Be矿床中矿物化学组成及矿床成因[J]. 岩矿测试, 2021, 40(2): 296-305. DOI: 10.15898/j.cnki.11-2131/td.202101100006
ZHU Xin-xiang, LIU Yan. Chemical Composition of Minerals in Xuebaoding W-Sn-Be Deposit, Sichuan Province: Constraints on Ore Genesis[J]. Rock and Mineral Analysis, 2021, 40(2): 296-305. DOI: 10.15898/j.cnki.11-2131/td.202101100006
Citation: ZHU Xin-xiang, LIU Yan. Chemical Composition of Minerals in Xuebaoding W-Sn-Be Deposit, Sichuan Province: Constraints on Ore Genesis[J]. Rock and Mineral Analysis, 2021, 40(2): 296-305. DOI: 10.15898/j.cnki.11-2131/td.202101100006

四川雪宝顶W-Sn-Be矿床中矿物化学组成及矿床成因

Chemical Composition of Minerals in Xuebaoding W-Sn-Be Deposit, Sichuan Province: Constraints on Ore Genesis

  • 摘要: 雪宝顶矿床位于四川省的松潘甘孜造山带中,以出产大颗粒含W-Sn-Be-F-P的矿物而闻名,前人对该矿床已经开展了大量的研究,但缺乏对粗粒矿物的主次痕量元素研究。本次研究采用X射线荧光光谱(XRF)、电子探针(EMPA)和电感耦合等离子体质谱(ICP-MS)技术对矿床中各矿物的主次痕量元素进行测试分析。结果显示,雪宝顶矿床中的绿柱石、白钨矿、锡石、白云母、萤石、磷灰石、电气石,除富含W、Sn、Be、Na、K、Ca等主要成矿元素外,还富集Li、Rb、Cs等碱金属元素和F、B、P等挥发份。其中,雪宝顶绿柱石中富含Li(3484~4243μg/g)、Rb(39.3~71.1μg/g)、Cs(2955~3526μg/g);白云母中Li、Rb和Cs元素含量分别高达4243μg/g、72.3μg/g和3526μg/g;磷灰石中除主量元素P外,F(4.48%~5.21%)含量相对较高;电气石中的B含量高达30990~32880μg/g。雪宝顶矿床中的花岗岩岩体W、Sn、Be、Li、Rb、Cs、F、B、P等元素相对富集,但CaO含量(0.46%~0.82%)相对较低。其中Li、F、B、P等元素对成矿元素在成矿流体内的富集起到了极大的促进作用。矿区内大理岩是一种富Ca的方解石大理岩,为成矿提供了大量的Ca元素,有利于粗粒矿物的大规模沉淀。因此,粗粒矿物中的W、Sn、Be、Li、Rb、Cs、F、B、P等元素主要来源于原始岩浆流体,大理岩地层为粗粒矿物提供了大量的Ca元素。

     

    Abstract:
    BACKGROUNDThe Xuebaoding deposit, located in the Songpan-Ganzi orogenic belt, Sichuan Province, is famous for coarse-grained W-Sn-Be-F-P-bearing minerals. Many studies have been carried out on this deposit, but there is a lack of research on major and trace elements of coarse-grained minerals.
    OBJECTIVESTo obtain major and trace element composition of minerals and provide constraints on ore genesis of the Xuebaoding deposit.
    METHODSIn this study, X-ray fluorescence spectrometry (XRF) and electron probe microanalysis (EMPA) were used to analyze the major elements of minerals in the deposit, and the trace elements were analyzed by inductively coupled plasma mass spectrometry (ICP-MS).
    RESULTSThe results showed that beryl, scheelite, cassiterite, muscovite, fluorite, apatite and tourmaline in the Xuebaoding deposit were rich in major ore-forming elements (W, Sn, Be, Na, K, Ca) and alkali metal elements such as Li, Rb, Cs, and volatiles such as F, B, and P. Beryl in the Xuebaoding deposit was rich in Li (3484-4243μg/g), Rb (39.3-71.1μg/g) and Cs (2955-3526μg/g). The content of Li, Rb and Cs in muscovite was as high as 4243μg/g, 72.3μg/g and 3526μg/g, respectively. The content of F in apatite and B in tourmaline were 4.48%-5.21% and 30990-32880μg/g, respectively. The granites in the Xuebaoding deposit were relatively rich in W, Sn, Be, Li, Rb, Cs, F, B, P, with relatively low CaO content (0. 46%-0. 82%). Li, Rb, Cs, F, B, P were conducive to the enrichment of ore-forming elements in fluids. Marble in the mining area was calcite marble, which provided a large amount of Ca for mineralization and was conducive to the large-scale precipitation of coarse-grained minerals.
    CONCLUSIONSW, Sn, Be, Li, Rb, Cs, F, B and P in coarse-grained minerals are mainly derived from magmatic fluids, where the marble strata provide a large amount of Ca for coarse-grained minerals.

     

/

返回文章
返回