【引用本文】 刘娟娟, 陈永雷, 陈兴国, . 新型荧光碳点的制备及其在微量金属离子测定中的应用[J]. 岩矿测试, 2020, 39(2): 174-187. doi: 10.15898/j.cnki.11-2131/td.201907100099
LIU Juan-juan, CHEN Yong-lei, CHEN Xing-guo. A Review of the Preparation of Novel Fluorescent Carbon Dot and Its Application for the Determination of Trace Metal Ions[J]. Rock and Mineral Analysis, 2020, 39(2): 174-187. doi: 10.15898/j.cnki.11-2131/td.201907100099

新型荧光碳点的制备及其在微量金属离子测定中的应用

1. 

兰州大学化学化工学院, 甘肃 兰州 730000

2. 

兰州大学第二医院, 甘肃 兰州 730030

收稿日期: 2019-07-10  修回日期: 2019-09-09  接受日期: 2019-10-21

基金项目: 国家自然科学基金项目(21675068)

作者简介: 刘娟娟, 博士, 从事新型碳点荧光探针的合成及应用研究。E-mail:jjliu14@lzu.edu.cn

通信作者: 陈兴国, 教授, 博士生导师, 从事纳米材料在分析化学中的应用研究。E-mail:chenxg@lzu.edu.cn

A Review of the Preparation of Novel Fluorescent Carbon Dot and Its Application for the Determination of Trace Metal Ions

1. 

College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China

2. 

Lanzhou University Second Hospital, Lanzhou 730030, China

Corresponding author: CHEN Xing-guo, chenxg@lzu.edu.cn

Received Date: 2019-07-10
Revised Date: 2019-09-09
Accepted Date: 2019-10-21

摘要:碳点(CD)具有粒径小、抗光漂白性好、荧光稳定性高、发射光谱可调、表面易功能化、毒性低及生物相容性好等优点,已在催化、生物成像、药物传递、荧光检测、光电子器件等方面得到了广泛的应用。近年来,利用不同原料制备高性能荧光CD的合成方法备受关注。此外,通过CD直接与目标分析物相互作用,特异性配体修饰后的CD与目标分析物相互作用、CD与其他物质形成复合物后与目标分析物相互作用构建荧光探针,并将其用于微量金属离子的检测得到了迅速发展和广泛应用。本文阐述了CD的光学性质和合成原料,对其常用的自上而下法和自下而上法两类合成方法的过程及特点进行了总结。在此基础上,详细评述了基于CD与目标分析物的三种相互作用方式所构建的荧光探针在测定Fe3+、Zn2+、Cu2+等具有生化作用的离子和Hg2+、As3+、Pb2+、Cr6+、Cd2+等重金属离子的应用进展。本文指出,深入研究检测机理,发展新型检测模式,针对特定金属离子和样品组成设计构建荧光探针,建立可用于复杂样品的分析方法是开展构建新型CD荧光探针所面临的挑战和发展方向。

关键词: 碳点, 荧光探针, 光学性质, 合成原料, 金属离子

要点

(1) 总结了CD的合成原料、方法及其与目标分析物之间的相互作用方式。

(2) 综述了基于CD构建的荧光探针在测定金属离子中的应用。

(3) 指出构建新型CD荧光探针面临的挑战及发展方向。

A Review of the Preparation of Novel Fluorescent Carbon Dot and Its Application for the Determination of Trace Metal Ions

ABSTRACT

BACKGROUND:

Owing to their small particle size, good stability against photobleaching, high fluorescence stability, tunable fluorescence emission, easy surface functionalization, low toxicity and excellent biocompatibility, carbon dot (CD) has been widely applied in many fields including catalyst, cell imaging, drug delivery, fluorescence detection and photoelectronic devices. In recent years, synthetic methods for preparing high-performance fluorescent CD using different raw materials have attracted much attention. In addition, detection of trace metal ions by a fluorescent probe has been rapidly developed and widely used. The fluorescent probe can be constructed thus:the CD directly interact with the target analyte, the CD modified by the specific ligand interact with the target analyte, and the CD forming a complex with other substances interact with the target analyte.

OBJECTIVES:

To provide references for researchers to synthesize CD and construct fluorescent probes based on CD for the determination of trace metal ions in complex samples.

METHODS:

The optical properties and synthetic raw materials of CD were described. The process and characteristics of the commonly used top-down and bottom-up methods were summarized. The application progress of fluorescent probes constructed by the three interaction modes between CD and target analytes for the determination of biochemical reaction ions, Fe3+, Zn2+ and Cu2+, and other heavy metal ions such as Hg2+, As3+, Pb2+, Cr6+ and Cd2+ were reviewed.

RESULTS:

Different raw materials had been utilized for synthesizing CD with different properties. The prepared CD were used to construct fluorescent probes for the determination of micro metal ions with high selectivity and sensitivity.

CONCLUSIONS:

Further research on the determination mechanisms, development of new detection modes, construction of fluorescent probes for specific metal ions and sample components, and establishment of analytical methods, which can be applied to complex samples are the challenges and development orientation of the fluorescent probes based on CD.

KEY WORDS: carbon dot, fluorescent probe, optical properties, synthetic materials, metal ions

HIGHLIGHTS

(1) The synthetic raw materials, methods and the interaction modes between CD and target analytes were summarized.

(2) The applications of CD-based fluorescent probes for the determination of metal ions were reviewed.

(3) The challenge and development direction of constructing novel CD-based fluorescent probes were highlighted.

本文参考文献

[1]

Xu X, He L, Long Y W, et al. S-doped carbon dots capped ZnCdTe quantum dots for ratiometric fluorescence sensing of guanine[J].Sensors and Actuators B:Chemical, 2019, 279: 44-52. doi: 10.1016/j.snb.2018.09.102

[2]

李庆霞, 刘亚轩, 陈卫明, 等. 荧光光谱法分析油气化探样品中的芳烃[J]. 岩矿测试, 2014, 33(4): 561-569. doi: 10.3969/j.issn.0254-5357.2014.04.018

Li Q X, Liu Y X, Chen W M, et al. Analysis of aromatic hydrocarbons in oil and gas geochemical exploration samples by fluorescence spectrometry[J]. Rock and Mineral Analysis, 2014, 33(4): 561-569. doi: 10.3969/j.issn.0254-5357.2014.04.018

[3]

Sun X C, Lei Y. Fluorescent carbon dots and their sensing applications[J].TrAC Trends in Analytical Chemistry, 2017, 89: 163-180. doi: 10.1016/j.trac.2017.02.001

[4]

许金钩. 荧光分析法近年来的某些进展[J]. 岩矿测试, 1992, 11(1): 53-57.

Xu J G. Some recent advances in fluorimetry[J]. Rock and Mineral Analysis, 1992, 11(1): 53-57.

[5]

Prapainop K, Mekseriwattana W, Siangproh W, et al. Successive detection of benzoic acid and total parabens in foodstuffs using mercaptosuccinic acid capped cadmium telluride quantum dots[J].Food Control, 2019, 96: 508-516. doi: 10.1016/j.foodcont.2018.10.009

[6]

Huo F J, Su J, Sun Y Q, et al. A rhodamine-based dual chemosensor for the visual detection of copper and the ratiometric fluorescent detection of vanadium[J].Dyes and Pigments, 2010, 86(1): 50-55. doi: 10.1016/j.dyepig.2009.11.007

[7]

Liu J J, Chen Y L, Wang W F, et al. "Switch-on" fluorescent sensing of ascorbic acid in food samples based on carbon quantum dots-MnO2 probe[J]. Journal of Agricultural and Food Chemistry, 2015, 64(1): 371-380.

[8]

Peng Z L, Han X, Li S H, et al. Carbon dots:Bioma-cromolecule interaction, bioimaging and nanomedicine[J].Coordination Chemistry Reviews, 2017, 343: 256-277. doi: 10.1016/j.ccr.2017.06.001

[9]

Shah S N A, Lin J M. Recent advances in chemilumin-escence based on carbonaceous dots[J].Advances in Colloid and Interface Science, 2017, 241: 24-36. doi: 10.1016/j.cis.2017.01.003

[10]

Hong G S, Diao S, Antaris A L, et al. Carbon nanoma-terials for biological imaging and nanomedicinal therapy[J].Chemical Reviews, 2015, 115(19): 10816-10906. doi: 10.1021/acs.chemrev.5b00008

[11]

Bartelmess J, Quinn S J, Giordani S, et al. Carbon nanoma-terials:Multi-functional agents for biomedical fluorescence and Raman imaging[J].Chemical Society Reviews, 2015, 44(14): 4672-4698. doi: 10.1039/C4CS00306C

[12]

Kroto H W, Heath J R, O'Brien S C, et al. C60:Buckmin-sterfullerene[J].Nature, 1985, 318(6042): 162-163. doi: 10.1038/318162a0

[13]

Iijima S. Helical microtubules of graphitic carbon[J].Nature, 1991, 354(6348): 56-58. doi: 10.1038/354056a0

[14]

Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J].Science, 2004, 306(5696): 666-669. doi: 10.1126/science.1102896

[15]

Jiang J J, Ye G, Wang Z, et al. Heteroatom-doped carbon dots (CDs) as a class of metal-free photocatalysts for PET-RAFT polymerization under visible light and sunlight[J].Angewandte Chemie International Edition, 2018, 57(37): 12037-12042. doi: 10.1002/anie.201807385

[16]

Li F, Li T Y, Sun C X, et al. Selenium-doped carbon quantum dots for free-radical scavenging[J].Angewandte Chemie International Edition, 2017, 56(33): 9910-9914. doi: 10.1002/anie.201705989

[17]

Gong P W, Sun L, Wang F, et al. Highly fluorescent N-doped carbon dots with two-photon emission for ultrasensitive detection of tumor marker and visual monitor anticancer drug loading and delivery[J].Chemical Engineering Journal, 2019, 356: 994-1002. doi: 10.1016/j.cej.2018.09.100

[18]

Moniruzzaman M, Kim J S. Mechanistic studies on the β-resorcylic acid mediated carbon dots for the pH-induced fluorescence switch and sensing application[J].Dyes and Pigments, 2019, 163: 538-546. doi: 10.1016/j.dyepig.2018.12.041

[19]

Qu S N, Wang X Y, Lu Q P, et al. A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots[J].Angewandte Chemie International Edition, 2012, 51(49): 12215-12218. doi: 10.1002/anie.201206791

[20]

Xu X Y, Ray R, Gu Y L, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J].Journal of the American Chemical Society, 2004, 126(40): 12736-12737. doi: 10.1021/ja040082h

[21]

Sun Y P, Zhou B, Lin Y, et al. Quantum-sized carbon dots for bright and colorful photoluminescence[J].Journal of the American Chemical Society, 2006, 128(24): 7756-7757. doi: 10.1021/ja062677d

[22]

Zheng M, Xie Z G, Qu D, et al. On-off-on fluorescent carbon dot nanosensor for recognition of chromium(Ⅵ) and ascorbic acid based on the inner filter effect[J].Applied Materials & Interfaces, 2013, 5(24): 13242-13247.

[23]

Baker S N, Baker G A. Luminescent carbon nanodots:Emergent nanolights[J].Angewandte Chemie International Edition, 2010, 49(38): 6726-6744. doi: 10.1002/anie.200906623

[24]

Goryacheva I Y, Sapelkin A V, Sukhorukov G B, et al. Carbon nanodots:Mechanisms of photoluminescence and principles of application[J].TrAC Trends in Analytical Chemistry, 2017, 90: 27-37. doi: 10.1016/j.trac.2017.02.012

[25]

Zheng L Y, Chi Y W, Dong Y Q, et al. Electrochemi-luminescence of water-soluble carbon nanocrystals released electrochemically from graphite[J].Journal of the American Chemical Society, 2009, 131(13): 4564-4565. doi: 10.1021/ja809073f

[26]

Zhang P J, Xue Z J, Luo D, et al. Dual-peak electro-generated chemiluminescence of carbon dots for iron ions detection[J].Analytical Chemistry, 2014, 86(12): 5620-5623. doi: 10.1021/ac5011734

[27]

Liu H P, Ye T, Mao C D, et al. Fluorescent carbon nano-particles derived from candle soot[J].Angewandte Chemie International Edition, 2007, 46(34): 6473-6475. doi: 10.1002/anie.200701271

[28]

Qiao Z A, Wang Y F, Gao Y, et al. Commercially activated carbon as the source for producing multicolor photoluminescent carbon dots by chemical oxidation[J].Chemical Communications, 2010, 46(46): 8812-8814. doi: 10.1039/c0cc02724c

[29]

Zhu S J, Meng Q N, Wang L, et al. Highly photo-luminescent carbon dots for multicolor patterning, sensors, and bioimaging[J].Angewandte Chemie International Edition, 2013, 52(14): 3953-3957. doi: 10.1002/anie.201300519

[30]

Krysmann M J, Kelarakis A, Dallas P, et al. Formation mechanism of carbogenic nanoparticles with dual photoluminescence emission[J].Journal of the American Chemical Society, 2012, 134(2): 747-750. doi: 10.1021/ja204661r

[31]

Dong Y Q, Pang H C, Yang H B, et al. Carbon-based dots Co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission[J].Angewandte Chemie International Edition, 2013, 52(30): 7800-7804. doi: 10.1002/anie.201301114

[32]

Huang H, Lü J J, Zhou D L, et al. One-pot green synthesis of nitrogen-doped carbon nanoparticles as fluorescent probes for mercury ions[J].RSC Advances, 2013, 3(44): 21691-21696. doi: 10.1039/c3ra43452d

[33]

Yang X M, Zhuo Y, Zhu S S, et al. Novel and green synthesis of high-fluorescent carbon dots originated from honey for sensing and imaging[J].Biosensors and Bioelectronics, 2014, 60: 292-298. doi: 10.1016/j.bios.2014.04.046

[34]

Wang L, Zhou H S. Green synthesis of luminescent nitrogen-doped carbon dots from milk and its imaging application[J].Analytical Chemistry, 2014, 86(18): 8902-8905. doi: 10.1021/ac502646x

[35]

Li C L, Ou C M, Huang C C, et al. Carbon dots prepared from ginger exhibiting efficient inhibition of human hepatocellular carcinoma cells[J].Journal of Materials Chemistry B, 2014, 2(28): 4564-4571. doi: 10.1039/c4tb00216d

[36]

Wu Z L, Zhang P, Gao M X, et al. One-pot hydro-thermal synthesis of highly luminescent nitrogen-doped amphoteric carbon dots for bioimaging from Bombyx mori silk-natural proteins[J].Journal of Materials Chemistry B, 2013, 1(22): 2868-2873. doi: 10.1039/c3tb20418a

[37]

Wei J M, Shen J M, Zhang X, et al. Simple one-step synthesis of water-soluble fluorescent carbon dots derived from paper ash[J].RSC Advances, 2013, 3(32): 13119-13122. doi: 10.1039/c3ra41751d

[38]

Hu Y P, Yang J, Tian J W, et al. Waste frying oil as a precursor for one-step synthesis of sulfur-doped carbon dots with pH-sensitive photoluminescence[J].Carbon, 2014, 77: 775-782. doi: 10.1016/j.carbon.2014.05.081

[39]

Zhu L L, Yin Y J, Wang C F, et al. Plant leaf-derived fluorescent carbon dots for sensing, patterning and coding[J].Journal of Materials Chemistry C, 2013, 1(32): 4925-4932. doi: 10.1039/c3tc30701h

[40]

Jiang K, Sun S, Zhang L, et al. Red, green, and blue luminescence by carbon dots:Full-color emission tuning and multicolor cellular imaging[J].Angewandte Chemie International Edition, 2015, 54(18): 5360-5363. doi: 10.1002/anie.201501193

[41]

Liu Y H, Duan W X, Song W, et al. Red emission B, N, S-Co-doped carbon dots for colorimetric and fluorescent dual mode detection of Fe3+ ions in complex biological fluids and living cells[J]. ACS Applied Materials & Interfaces, 2017, 9(14): 12663-12672.

[42]

Ma Y X, Chen Y L, Liu J J, et al. Ratiometric fluorescent detection of chromium(Ⅵ) in real samples based on dual emissive carbon dots[J].Talanta, 2018, 185: 249-257. doi: 10.1016/j.talanta.2018.03.081

[43]

Liu J J, Dong Y Y, Ma Y X, et al. One-step synthesis of red/green dual-emissive carbon dots for ratiometric sensitive ONOO- probing and cell imaging[J].Nanoscale, 2018, 10(28): 13589-13598. doi: 10.1039/C8NR04596H

[44]

Liu J J, Chen Y L, Wang L L, et al. Modification-free fabricating ratiometric nanoprobe based on dual-emissive carbon dots for nitrite determination in food samples[J].Journal of Agricultural and Food Chemistry, 2019, 67(13): 3826-3836. doi: 10.1021/acs.jafc.9b00024

[45]

Xu Q, Kuang T R, Liu Y, et al. Heteroatom-doped carbon dots:Synthesis, characterization, properties, photoluminescence mechanism and biological applications[J].Journal of Materials Chemistry B, 2016, 45(4): 7204-7219.

[46]

Yu S J, Kang M W, Chang H C, et al. Bright fluorescent nanodiamonds:No photobleaching and low cytotoxicity[J].Journal of the American Chemical Society, 2005, 127(50): 17604-17605. doi: 10.1021/ja0567081

[47]

Bottini M, Balasubramanian C, Dawson M I, et al. Isolation and characterization of fluorescent nanoparticles from pristine and oxidized electric arc-produced single-walled carbon nanotubes[J].The Journal of Physical Chemistry B, 2006, 110(2): 831-836. doi: 10.1021/jp055503b

[48]

Zhou J G, Booker C, Li R Y, et al. An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs)[J].Journal of the American Chemical Society, 2007, 129(4): 744-745. doi: 10.1021/ja0669070

[49]

Liu R L, Wu D Q, Liu S H, et al. An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers[J].Angewandte Chemie International Edition, 2009, 48(25): 4598-4601. doi: 10.1002/anie.200900652

[50]

Zhu H, Wang X L, Li Y L, et al. Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties[J].Chemical Communications, 2009, (34): 5118-5120. doi: 10.1039/b907612c

[51]

Li H T, He X D, Liu Y, et al. Synthesis of fluorescent carbon nanoparticles directly from active carbon via a one-step ultrasonic treatment[J].Materials Research Bulletin, 2011, 46(1): 147-151. doi: 10.1016/j.materresbull.2010.10.013

[52]

Xu Q, Pu P, Zhao J G, et al. Preparation of highly photoluminescent sulfur-doped carbon dots for Fe(Ⅲ) detection[J].Journal of Materials Chemistry A, 2015, 3(2): 542-546. doi: 10.1039/C4TA05483K

[53]

Li Z P, Zhang J, Li Y X, et al. Carbon dots based photoelectrochemical sensors for ultrasensitive detection of glutathione and its applications in probing of myocardial infarction[J].Biosensors and Bioelectronics, 2018, 99: 251-258. doi: 10.1016/j.bios.2017.07.065

[54]

Konar S, Kumar B N P, Mahto M K, et al. N-doped carbon dot as fluorescent probe for detection of cysteamine and multicolor cell imaging[J].Sensors and Actuators B:Chemical, 2019, 286: 77-85. doi: 10.1016/j.snb.2019.01.117

[55]

Li H X, Yan X, Qiao S P, et al. Yellow-emissive carbon dot-based optical sensing platforms:Cell imaging and analytical applications for biocatalytic reactions[J].ACS Applied Materials & Interfaces, 2018, 10(9): 7737-7744.

[56]

Kumari A, Kumar A, Sahu S K, et al. Synthesis of green fluorescent carbon quantum dots using waste polyolefins residue for Cu2+ ion sensing and live cell imaging[J].Sensors and Actuators B:Chemical, 2018, 254: 197-205. doi: 10.1016/j.snb.2017.07.075

[57]

Demir B, Lemberger M M, Panagiotopoulou M, et al. Tracking hyaluronan:Molecularly imprinted polymer coated carbon dots for cancer cell targeting and imaging[J].ACS Applied Materials & Interfaces, 2018, 10(4): 3305-3313.

[58]

Zhang R Z, Chen W. Nitrogen-doped carbon quantum dots: Facile synthesis and application as a "turn-off" fluorescent probe for detection of Hg2+ ions[J].Biosensors and Bioelectronics, 2014, 55: 83-90. doi: 10.1016/j.bios.2013.11.074

[59]

Li G L, Kong W H, Zhao M, et al. A fluorescence resonance energy transfer (FRET) based "turn-on" nanofluorescence sensor using a nitrogen-doped carbon dot-hexagonal cobalt oxyhydroxide nanosheet architecture and application to α-glucosidase inhibitor screening[J].Biosensors and Bioelectronics, 2016, 79: 728-735. doi: 10.1016/j.bios.2015.12.094

[60]

Zhang H J, Chen Y L, Liang M J, et al. Solid-phase synthesis of highly fluorescent nitrogen-doped carbon dots for sensitive and selective probing ferric ions in living cells[J].Analytical Chemistry, 2014, 86(19): 9846-9852. doi: 10.1021/ac502446m

[61]

Dong Y Q, Wang R X, Li G L, et al. Polyamine-functionalized carbon quantum dots as fluorescent probes for selective and sensitive detection of copper ions[J].Analytical Chemistry, 2012, 84(14): 6220-6224. doi: 10.1021/ac3012126

[62]

Liang M J, Chen Y L, Zhang H J, et al. Fluorescence resonance energy transfer-based ratiometric fluorescent assay for highly sensitive and selective determination of sulfide anions[J].Analyst, 2015, 140(19): 6711-6719. doi: 10.1039/C5AN01378J

[63]

Qu Z B, Zhou X G, Gu L, et al. Boronic acid functiona-lized graphene quantum dots as a fluorescent probe for selective and sensitive glucose determination in microdialysate[J].Chemical Communications, 2013, 49(84): 9830-9832. doi: 10.1039/c3cc44393k

[64]

Xu H, Huang S S, Liao C Y, et al. Highly selective and sensitive fluorescence probe based on thymine-modified carbon dots for Hg2+ and L-cysteine detection[J].RSC Advances, 2015, 5(108): 89121-89127. doi: 10.1039/C5RA18432K

[65]

Zhai W Y, Wang C X, Yu P, et al. Single-layer MnO2 nanosheets suppressed fluorescence of 7-hydroxycoumarin:Mechanistic study and application for sensitive sensing of ascorbic acid in vivo[J].Analytical Chemistry, 2014, 86(24): 12206-12213. doi: 10.1021/ac503215z

[66]

Deng J H, Lu Q J, Hou Y X, et al. Nanosensor composed of nitrogen-doped carbon dots and gold nanoparticles for highly selective detection of cysteine with multiple signals[J].Analytical Chemistry, 2015, 87(4): 2195-2203. doi: 10.1021/ac503595y

[67]

Wang Q, Zhang S R, Zhong Y G, et al. Preparation of yellow-green-emissive carbon dots and their application in constructing a fluorescent turn-on nanoprobe for imaging of selenol in living cells[J].Analytical Chemistry, 2017, 89(3): 1734-1741. doi: 10.1021/acs.analchem.6b03983

[68]

Qian Z S, Chai L J, Zhou Q, et al. Reversible fluorescent nanoswitch based on carbon quantum dots nanoassembly for real-time acid phosphatase activity monitoring[J].Analytical Chemistry, 2015, 87(14): 7332-7339. doi: 10.1021/acs.analchem.5b01488

[69]

Miao X, Qu D, Yang D X, et al. Synthesis of carbon dots with multiple color emission by controlled graphitization and surface functionalization[J].Advanced Materials, 2018, 30(1): 1704740. doi: 10.1002/adma.201704740

[70]

Fu F L, Wang Q. Removal of heavy metal ions from wastewaters:A review[J].Journal of Environmental Management, 2011, 92(3): 407-418. doi: 10.1016/j.jenvman.2010.11.011

[71]

Karaaslan N M, Yaman M. Assessment and ICP-MS determination of toxic metal content (Cd, Cr, Ni, and Pb) in Turkish chicken meat for use as bioindicator for human health[J]. Atomic Spectroscopy, 2018, 39(1): 16-21.

[72]

Paulino A T, Minasse F A S, Guilherme M R, et al. Novel adsorbent based on silkworm chrysalides for removal of heavy metals from wastewaters[J].Journal of Colloid and Interface Science, 2006, 301(2): 479-487. doi: 10.1016/j.jcis.2006.05.032

[73]

Bush A I, Pettingell W H, Multhaup G, et al. Rapid induction of Alzheimer A beta amyloid formation by zinc[J].Science, 1994, 265(5177): 1464-1467. doi: 10.1126/science.8073293

[74]

Zhang L, Peng D, Liang R P, et al. Graphene-based optical nanosensors for detection of heavy metal ions[J].TrAC Trends in Analytical Chemistry, 2018, 102: 280-289. doi: 10.1016/j.trac.2018.02.010

[75]

Waheed A, Mansha M, Ullah N, et al. Nanomaterials-based electrochemical detection of heavy metals in water:Current status, challenges and future direction[J].TrAC Trends in Analytical Chemistry, 2018, 105: 37-51. doi: 10.1016/j.trac.2018.04.012

[76]

田志仁, 封雪, 姜晓旭, 等. 生态环境监测工作中应用AAS/AFS和XRF法测定土壤重金属数据质量评价[J]. 岩矿测试, 2019, 38(5): 479-488.

Tian Z R, Feng X, Jiang X X, et al. Evaluation of data quality on the detection of heavy metals in soils by atomic absorption spectrometry or atomic fluorescence spectrometry and X-ray fluorescence spectrometry in ecological environment monitoring[J]. Rock and Mineral Analysis, 2019, 38(5): 479-488.

[77]

徐进力, 邢夏, 唐瑞玲, 等. 动能歧视模式ICP-MS测定地球化学样品中14种痕量元素[J]. 岩矿测试, 2019, 38(4): 394-402.

Xu J L, Xing X, Tang R L, et al. Determination of 14 trace elements in geochemical samples by ICP-MS using kinetic energy discrimination mode[J]. Rock and Mineral Analysis, 2019, 38(4): 394-402.

[78]

Tel-Cyana G, Ullaha Z, Öztürka M, et al. Heavy metals, trace and major elements in 16 wild mushroom species determined by ICP-MS[J]. Atomic Spectroscopy, 2018, 39(1): 29-37.

[79]

Ananthanarayanan A, Wang X W, Routh P, et al. Facile synthesis of graphene quantum dots from 3D graphene and their application for Fe3+ sensing[J].Advanced Functional Materials, 2014, 24(20): 3021-3026. doi: 10.1002/adfm.201303441

[80]

Zhang S W, Li J X, Zeng M Y, et al. Polymer nanodots of graphitic carbon nitride as effective fluorescent probes for the detection of Fe3+ and Cu2+ ions[J].Nanoscale, 2014, 6(8): 4157-4162. doi: 10.1039/c3nr06744k

[81]

Ho A J, Chang H C, Su W T, et al. DOPA-mediated reduction allows the facile synthesis of fluorescent gold nanoclusters for use as sensing probes for ferric ions[J].Analytical Chemistry, 2012, 84(7): 3246-3253. doi: 10.1021/ac203362g

[82]

Qu X Y, Liu Q, Ji X N, et al. Enhancing the Stokes' shift of BODIPY dyes via through-bond energy transfer and its application for Fe3+-detection in live cell imaging[J].Chemical Communications, 2012, 48(38): 4600-4602. doi: 10.1039/c2cc31011b

[83]

Wu P, Li Y, Yan X P, et al. CdTe quantum dots (QDs) based kinetic discrimination of Fe2+ and Fe3+, and CdTe QDs-Fenton hybrid system for sensitive photoluminescent detection of Fe2+[J].Analytical Chemistry, 2009, 81(15): 6252-6257. doi: 10.1021/ac900788w

[84]

Yang C X, Ren H B, Yan X P, et al. Fluorescent metal-organic framework MIL-53(Al) for highly selective and sensitive detection of Fe3+ in aqueous solution[J].Analytical Chemistry, 2013, 85(15): 7441-7446. doi: 10.1021/ac401387z

[85]

Feng J, Chen Y L, Han Y L, et al. Fluorescent carbon nanoparticles:A low-temperature trypsin-assisted preparation and Fe3+ sensing[J].Analytica Chimica Acta, 2016, 926: 107-117. doi: 10.1016/j.aca.2016.04.039

[86]

Oyaro N, Ogendi J, Murago E N M, et al. The contents of Pb, Cu, Zn and Cd in meat in Nairobi, Kenya[J].Journal of Food, Agriculture & Environment, 2007, 5(3&4): 119-121.

[87]

Shi Y P, Chen Z H, Cheng X, et al. A novel dual-emission ratiometric fluorescent nanoprobe for sensing and intracellular imaging of Zn2+[J].Biosensors and Bioelectronics, 2014, 61: 397-403. doi: 10.1016/j.bios.2014.05.050

[88]

Moskvin L N, Kamentsev M Y, Grigor'ev G L, et al. Capillary-electrophoretic determination of zinc and cadmium ions in aqueous solutions with ion-exchange preconcentration[J].Journal of Analytical Chemistry, 2010, 65(1): 99-102. doi: 10.1134/S1061934810010193

[89]

Kaur P, Kaur S, Mahajan A, et al. Highly selective colorimetric sensor for Zn2+ based on hetarylazo derivative[J].Inorganic Chemistry Communications, 2008, 11(6): 626-629. doi: 10.1016/j.inoche.2008.02.025

[90]

Zhang Z M, Shi Y P, Pan Y, et al. Quinoline derivative-functionalized carbon dots as a fluorescent nanosensor for sensing and intracellular imaging of Zn2+[J].Journal of Materials Chemistry B, 2014, 2(31): 5020-5027. doi: 10.1039/C4TB00677A

[91]

Cao Y Y, Liu Y N, Li F, et al. Portable colorimetric detection of copper ion in drinking water via red beet pigment and smartphone[J].Microchemical Journal, 2019, 150: 104176. doi: 10.1016/j.microc.2019.104176

[92]

Liu J M, Lin L P, Wang X X, et al. Highly selective and sensitive detection of Cu2+ with lysine enhancing bovine serum albumin modified-carbon dots fluorescent probe[J].Analyst, 2012, 137(11): 2637-2642. doi: 10.1039/c2an35130g

[93]

Aragay G, Pons J, Merkoci A, et al. Recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavy-metal detection[J].Chemical Reviews, 2011, 111(5): 3433-3458. doi: 10.1021/cr100383r

[94]

Zrazhevskiy P, Sena M, Gao X H, et al. Designing multifun-ctional quantum dots for bioimaging, detection, and drug delivery[J].Chemical Society Reviews, 2010, 39(11): 4326-4354. doi: 10.1039/b915139g

[95]

Yang H, Mao H J, Wan Z H, et al. Micelles assembled with carbocyanine dyes for theranostic near-infrared fluorescent cancer imaging and photothermal therapy[J].Biomaterials, 2013, 34(36): 9124-9133. doi: 10.1016/j.biomaterials.2013.08.022

[96]

Gedda G, Lee C Y, Lin Y C, et al. Green synthesis of carbon dots from prawn shells for highly selective and sensitive detection of copper ions[J].Sensors and Actuators B:Chemical, 2016, 224: 396-403. doi: 10.1016/j.snb.2015.09.065

[97]

Liu Y L, Zhou Q X, Yuan Y Y, et al. Hydrothermal synthesis of fluorescent carbon dots from sodium citrate and polyacrylamide and their highly selective detection of lead and pyrophosphate[J].Carbon, 2017, 115: 550-560. doi: 10.1016/j.carbon.2017.01.035

[98]

Wang H T, Kang B S, Chancellor Jr T F, et al. Fast electrical detection of Hg(Ⅱ) ions with AlGaN/GaNAlGaN/GaN high electron mobility transistors[J].Applied Physics Letters, 2007, 91(4): 042114. doi: 10.1063/1.2764554

[99]

Gupta A, Verma N C, Khan S, et al. Carbon dots for naked eye colorimetric ultrasensitive arsenic and glutathione detection[J].Biosensors and Bioelectronics, 2016, 81: 465-472. doi: 10.1016/j.bios.2016.03.018

[100]

Kiran K, Kumar K, Prasad B, et al. Speciation deter-mination of chromium(Ⅲ) and(Ⅵ) using preconcentration cloud point extraction with flame atomic absorption spectrometry (FAAS)[J].Journal of Hazardous Materials, 2008, 150(3): 582-586. doi: 10.1016/j.jhazmat.2007.05.007

[101]

Niu W J, Shan D, Zhu R H, et al. Dumbbell-shaped carbon quantum dots/AuNCs nanohybrid as an efficient ratiometric fluorescent probe for sensing cadmium(Ⅱ) ions and L-ascorbic acid[J].Carbon, 2016, 96: 1034-1042. doi: 10.1016/j.carbon.2015.10.051

[102]

贺攀红, 吴领军, 杨珍, 等. 氢化物发生-电感耦合等离子体发射光谱法同时测定土壤中痕量砷锑铋汞[J]. 岩矿测试, 2013, 32(2): 240-243. doi: 10.3969/j.issn.0254-5357.2013.02.009

He P H, Wu L J, Yang Z, et al. Simultaneous determination of trace As, Sb, Bi and Hg in soils by hydride generation-inductively coupled plasma-atomic emission spectrometry[J]. Rock and Mineral Analysis, 2013, 32(2): 240-243. doi: 10.3969/j.issn.0254-5357.2013.02.009

[103]

郭丹, 范华均. 汞-碘化钾-甲紫-Triton X-305体系光度法测定痕量汞[J]. 岩矿测试, 1996, 15(1): 39-42.

Guo D, Fan H J. Spectrophotometric determination of trace mercury with the color system of mecury(Ⅱ) potassium iodide-methyl violet-Triton X-305[J]. Rock and Mineral Analysis, 1996, 15(1): 39-42.

[104]

Qin X Y, Lu W B, Asiri A M, et al. Microwave-assisted rapid green synthesis of photoluminescent carbon nanodots from flour and their applications for sensitive and selective detection of mercury(Ⅱ) ions[J].Sensors and Actuators B:Chemical, 2013, 184: 156-162. doi: 10.1016/j.snb.2013.04.079

[105]

Liu J J, Chen Y L, Wang W F, et al. Effective synthesis of highly fluorescent nitrogen doped carbon nanoparticles for selective sensing of Hg2+ in food and cosmetics samples[J].RSC Advances, 2016, 6(92): 89916-89924. doi: 10.1039/C6RA20861D

[106]

Lu W B, Qin X Y, Liu S, et al. Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for sensitive and selective detection of mercury(Ⅱ) ions[J].Analytical Chemistry, 2012, 84(12): 5351-5357. doi: 10.1021/ac3007939

[107]

黎香荣, 韦万兴, 崔翔, 等. 电感耦合等离子体发射光谱法测定磷矿石中微量有毒元素铅砷镉[J]. 岩矿测试, 2009, 28(4): 370-372. doi: 10.3969/j.issn.0254-5357.2009.04.014

Li X R, Wei W X, Cui X, et al. Determination of trace toxic elements of lead, arsenic and cadmium in phosphate ores by inductively coupled plasma-atomic emission spectrometry[J]. Rock and Mineral Analysis, 2009, 28(4): 370-372. doi: 10.3969/j.issn.0254-5357.2009.04.014

[108]

Liu Y L, Zhou Q X, Li J, et al. Selective and sensitive chemosensor for lead ions using fluorescent carbon dots prepared from chocolate by one-step hydrothermal method[J].Sensors and Actuators B:Chemical, 2016, 237: 597-604. doi: 10.1016/j.snb.2016.06.092

[109]

张保科, 王蕾, 马生凤, 等. 电感耦合等离子体质谱法测定地质样品中铜锌铕钆铽的干扰及校正[J]. 岩矿测试, 2012, 31(2): 253-257. doi: 10.3969/j.issn.0254-5357.2012.02.010

Zhang B K, Wang L, Ma S F, et al. Interference correction in determination of Cu, Zn, Eu, Gd, Tb in geological samples by inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2012, 31(2): 253-257. doi: 10.3969/j.issn.0254-5357.2012.02.010

[110]

Mutuyimana F P, Liu J J, Nsanzamahoro S, et al. Yellow-emissive carbon dots as a fluorescent probe for chromium(Ⅵ)[J].Microchimica Acta, 2019, 186(3): 163. doi: 10.1007/s00604-019-3284-1

[111]

高琳, 陈圣洁, 陈芳, 等. Triton X-114存在下镉试剂分光光度法测定环境水样中的镉[J]. 岩矿测试, 2013, 32(1): 114-118. doi: 10.3969/j.issn.0254-5357.2013.01.020

Gao L, Chen S J, Chen F, et al. Spectrophotometric determination of Cd(Ⅱ) in environmental water samples with cadion in the presence of Triton X-114 surface active agent[J]. Rock and Mineral Analysis, 2013, 32(1): 114-118. doi: 10.3969/j.issn.0254-5357.2013.01.020

[112]

Khan S, Soylak M, Alosmanov R, et al. Development of phosphate-containing polymer-based solid phase extraction procedure for the separation, enrichment, and determination of cadmium in water and food samples by FAAS[J]. Atomic Spectroscopy, 2018, 39(4): 158-163.

相似文献(共20条)

[1]

呙敏超, 韩桂荣. 合成碳硅石的鉴定方法. 岩矿测试, 2003, (1): 75-76.

[2]

范瑶瑶, 胡宗超, 郝宏艳, 刘政平, 覃汉清. X射线衍射-红外光谱-扫描电镜表征超声辅助合成GdPO4:Ce, Tb纳米材料形貌及光学性质. 岩矿测试, 2016, 35(2): 152-158. doi: 10.15898/j.cnki.11-2131/td.2016.02.007

[3]

何金兰. 鱼腥藻对某些金属离子的吸附效应研究(Ⅰ). 岩矿测试, 1992, (3): 225-227.

[4]

唐莉, 李家熙. 藻吸附金属离子的研究—斜生栅藻富集金. 岩矿测试, 1994, (3): 161-168.

[5]

何金兰. 鱼腥藻对某些金属离子的吸附效应研究(Ⅱ):鱼腥藻对金(Ⅲ)的吸附. 岩矿测试, 1995, (3): 231-233.

[6]

赵应权, 沈忠民, 王鹏. 光学显微镜成像方式及投影冷光源的分频合成探讨. 岩矿测试, 2014, 33(5): 674-680.

[7]

赵锦端, 郭茂生. 三羟基荧光酮类试剂荧光性质的研究. 岩矿测试, 1989, (4): 311-317.

[8]

欧阳振中, 白珊, 罗道成. CdTe量子点荧光猝灭法测定赤泥中痕量镍. 岩矿测试, 2015, 34(2): 176-180. doi: 10.15898/j.cnki.11-2131/td.2015.02.004

[9]

裴世桥, 朱玉伦. 二阶导数等值点荧光光度法同时测定岩矿中钨和钼. 岩矿测试, 1993, (3): 171-176.

[10]

席斌斌, 施伟军, 鲍芳, 蒋宏. 毛细管合成包裹体在激光拉曼探针测定包裹体盐度中的应用. 岩矿测试, 2013, 32(1): 34-39.

[11]

胡清菁, 张超兰, 靳振江, 曹建华, 李强. 铅锌矿尾砂重金属污染物对不同土地利用类型土壤性质影响的典范对应分析. 岩矿测试, 2014, 33(5): 714-722.

[12]

刘敦一, 王晨. 国家科技基础条件平台——北京离子探针中心. 岩矿测试, 2012, 31(4): 753-756.

[13]

文春华, 罗小亚, 李胜苗, 李建康. 应用X射线荧光光谱-电感耦合等离子体质谱法研究湖南传梓源地区稀有金属矿床伟晶岩地球化学特征. 岩矿测试, 2015, 34(3): 359-365. doi: 10.15898/j.cnki.11-2131/td.2015.03.017

[14]

赵西强, 庞绪贵, 王增辉, 战金成. 利用原子荧光光谱-电感耦合等离子体质谱法研究济南市大气干湿沉降重金属含量及年沉降通量特征. 岩矿测试, 2015, 34(2): 245-251. doi: 10.15898/j.cnki.11-2131/td.2015.02.016

[15]

常诚, 侯书恩, 王亚平. 探针原子化石墨炉原子吸收法测定高纯金属镁中痕量铝. 岩矿测试, 2000, (2): 142-145.

[16]

侯书恩 史玉芳 王亚平. 探针原子化石墨炉原子吸收法测定高纯金属镁中痕量铅. 岩矿测试, 2001, (1): 65-67.

[17]

安庆骧, 巢志瑜. 同步辐射X射线荧光微探针测定岩石中的元素分布. 岩矿测试, 1991, (2): 84-88.

[18]

巢志瑜, 安庆骧. 同步辐射X射线荧光微探针技术中地质标样的研究. 岩矿测试, 1992, (3): 252-255.

[19]

汤云晖, 何伟, 韩春明, 保增宽, 黄宇营. 磷灰石单晶体同步辐射X射线荧光探针成分分析. 岩矿测试, 2007, 26(5): 367-371.

[20]

肖晓辉. 铅电解原料工业硅氟酸中硫酸根的快速测定. 岩矿测试, 2007, 26(5): 421-422.

计量
  • PDF下载量(8)
  • 文章访问量(299)
  • HTML全文浏览量(70)
  • 被引次数(0)
目录

Figures And Tables

新型荧光碳点的制备及其在微量金属离子测定中的应用

刘娟娟, 陈永雷, 陈兴国