【引用本文】 董会军, 董建芳, 王昕洲, 等. pH值对HPLC-ICP-MS测定水体中不同形态砷化合物的影响[J]. 岩矿测试, 2019, 38(5): 510-517. doi: 10.15898/j.cnki.11-2131/td.201808230096
DONG Hui-jun, DONG Jian-fang, WANG Xin-zhou, et al. Effect of pH on Determination of Various Arsenic Species in Water by HPLC-ICP-MS[J]. Rock and Mineral Analysis, 2019, 38(5): 510-517. doi: 10.15898/j.cnki.11-2131/td.201808230096

pH值对HPLC-ICP-MS测定水体中不同形态砷化合物的影响

河北省地质环境监测院, 河北省地质资源环境监测与保护重点实验室, 河北 石家庄 050021

收稿日期: 2018-08-23  修回日期: 2019-03-09  接受日期: 2019-04-09

基金项目: 河北省地矿局地质科技发展项目(201610);河北省“三三三人才工程”(A2017002031)

作者简介: 董会军, 工程师, 主要从事地下水检测工作。E-mail:donghuijun@hegeoenv.com

通信作者: 王昕洲, 高级工程师, 主要从事地下水监测、地质灾害预警等工作。E-mail:jcywxz@hegeoenv.com

Effect of pH on Determination of Various Arsenic Species in Water by HPLC-ICP-MS

Hebei Key Laboratory of Geological Resources and Environment Monitoring and Protection, Hebei Geological Environment Monitoring Institute, Shijiazhuang 050021, China

Corresponding author: WANG Xin-zhou, jcywxz@hegeoenv.com

Received Date: 2018-08-23
Revised Date: 2019-03-09
Accepted Date: 2019-04-09

摘要:在高效液相色谱-电感耦合等离子体质谱(HPLC-ICP-MS)测定不同形态砷化合物的检测技术中,流动相的pH值是一个关键影响因素。以往较多的研究仅关注了pH值对分离度的影响,通过比较分离度的优劣选择一个适用的pH值。本文采用HPLC-ICP-MS技术测定不同形态的砷化合物,以30mmol/L碳酸氢铵溶液作为流动相,研究了当流动相pH值在6.0~9.7范围内变化时,对砷形态化合物保留时间和峰强度产生的影响,从砷化合物的分离度、灵敏度和分析成本三个方面确定合理的分析方案。结果表明:pH值在6.0~7.5和9.5~9.7范围内,As(Ⅲ)、As(Ⅴ)、一甲基砷(MMA)和二甲基砷(DMA)四种形态的砷化合物的色谱峰分离效果较好;pH值在8.0~9.0范围时,随着pH值的增加,As(Ⅲ)和DMA出峰顺序发生了交换;pH为弱酸性时,砷化合物的灵敏度均较高;pH为偏碱性时,分析周期变短,适用于快速分析。碱性条件下,部分砷化合物与色谱柱结合能力更强,被保留在色谱柱内,使得色谱柱的寿命可能缩短。研究认为:偏酸性的流动相条件,适用于超低浓度(如≤ 10μg/L)的样品分析;偏碱性的流动相条件,具有明显的时间成本和运行成本优势,但要对色谱柱定期维护。

关键词: 水体, 砷形态, pH值, 高效液相色谱-电感耦合等离子体质谱法, 分离度, 灵敏度, 分析成本

要点

(1) 关注了流动相的pH不同引起的保留时间和峰强度的变化。

(2) 在较宽pH值范围条件下不同形态的砷化合物均能实现有效分离。

(3) 发现了流动相pH的变化对砷形态化合物的灵敏度影响显著。

Effect of pH on Determination of Various Arsenic Species in Water by HPLC-ICP-MS

ABSTRACT

BACKGROUND:

Previous studies have focused on the effect of pH on separability, choosing an optimal pH by comparing the degree of separation in the determination of different arsenic species by high-performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS).

OBJECTIVES:

To determine an effective analysis program by comparing the separation, sensitivity and analysis coat at different pH.

METHODS:

Different species of arsenic compounds were determined by HPLC-ICP-MS, using 30mmol/L ammonium bicarbonate solution as the eluent. The retention time and peak strength of arsenic compounds were monitored when the pH of the eluent changed between 6.0 and 9.7.

RESULTS:

In the pH ranges of 6.0-7.5 and 9.5-9.7, the chromatographic peaks of the arsenic compounds were well separated. When the pH value was 8.0-9.0, the peak order of As(Ⅲ) and DMA was exchanged as the pH value increased. When the pH was weakly acidic, the sensitivity of arsenic compounds was higher. When pH was alkaline, the analysis period became shorter and suitable for rapid analysis. About 70% of arsenic compounds in the alkaline eluent combined more strongly to the column and were retained in the column, shortening the life of the column. Acidic eluent was suitable for sample analysis at ultra-low concentrations (e.g. ≤ 10μg/L).

CONCLUSIONS:

The effect of pH of eluent plays a crucial role in the determination of arsenic species by affecting the binding ability of arsenic compounds to chromatographic column. The acidic eluent has a great advantage in sensitivity. The alkaline eluent has obvious advantages of time and operation cost, but it is necessary to pay attention to the maintenance of the chromatographic column.

KEY WORDS: water, arsenic species, pH, high-performance liquid chromatography-inductively coupled plasma-mass spectrometry, separation, sensitivity, analysis cost

HIGHLIGHTS

(1) The changes of retention time and peak strength caused by different pH of flow eluent were studied.

(2) Different arsenic species could be effectively separated within a wide pH range.

(3) The pH of the eluent had significant effect on the sensitivity of arsenic species.

本文参考文献

[1]

Hirata S, Toshimitsu H. Determination of arsenic species and arsenosugars in marine samples by HPLC-ICP-MS[J]. Applied Organometallic Chemistry, 2007, 21: 447-454.

[2]

Mcsheehy S, Szpunar J, Morabito R, et al. The speciation of arsenic in biological tissues and the certification of reference materials for quality control[J]. Trends in Analytical Chemistry, 2003, 22(4): 191.

[3]

Francesconi K A, Kuehnelt D. Determination of arsenic species:A critical review of methods and applications, 2000-2003[J]. Analyst, 2004, 129: 373-395.

[4]

张静, 刘晓端, 江林, 等. 土壤中不同形态砷的分析方法[J]. 岩矿测试, 2008, 37(3): 179-183.

Zhang J, Liu X D, Jiang L, et al. Speciation analysis of arsenic in soil[J]. Rock and Mineral Analysis, 2008, 37(3): 179-183.

[5]

袁建, 王亚平, 许春雪, 等. 地下水中砷形态标准物质研制[J]. 岩矿测试, 2012, 31(2): 331-337.

Yuan J, Wang Y P, Xu C X, et al. The development of arsenic speciation reference material in ground water[J]. Rock and Mineral Analysis, 2012, 31(2): 331-337.

[6]

严秀平, 倪哲明. 联用技术应用于元素形态分析的新进展[J]. 光谱学与光谱分析, 2003, 23(5): 945-954.

Yan X P, Ni Z M. New advances in application of combined technology to element species analysis[J]. Spectroscopy and Spectroscopic Analysis, 2003, 23(5): 945-954.

[7]

Cullen W R, Reimer K J. Arsenic speciation in the environment[J]. Chemical Reviews, 1989, 89(1): 713-764.

[8]

何红蓼, 倪哲明, 李冰, 等. 环境样品中痕量元素的化学形态分析Ⅱ:砷汞镉锡铅硒铬的形态分析[J]. 岩矿测试, 2005, 24(2): 118-128.

He H L, Ni Z M, Li B, et al. Trace elemental speciation in environmental samples Ⅱ:Speciation of As, Hg, Cd, Sn, Pb, Se and Cr[J]. Rock and Mineral Analysis, 2005, 24(2): 118-128.

[9]

Chen S, Zhu S, Lu D, et al. Dispersive micro-solid phase extraction coupled with dispersive liquid-liquid microextraction for speciation of antimony in environmental water samples by electrothermal vaporization ICP-MS[J]. Atomic Spectroscopy, 2018, 39(2): 55-61.

[10]

Soleo L, Lovreglio P, Lacvicoli S, et al. Significance of urinary arsenic speciation in assessment of seafood ingestion as the main source of organic and inorganic arsenic in a population resident near a coastal area[J]. Chemosphere, 2008, 73: 291-299.

[11]

Karthikeyan S, Hirata S. Ion chromatography-inductively coupled plasma mass spectrometry determination of arsenic species in marine samples[J]. Applied Organometallic Chemistry, 2004, 18: 323-330.

[12]

杨正标, 陆喜红, 任兰, 等. HPLC-ICP-MS法测定地表水体中砷的形态[J]. 化学分析计量, 2015, 24(1): 37-39.

Yang Z B, Lu X H, Ren L, et al. Determination of arsenic species in water by high performance liquid chromatography and inductively coupled plasma mass spectrometry[J]. Chemical Analysis and Mererage, 2015, 24(1): 37-39.

[13]

Komorowicz I, Sajnog A, Baralkiewicz D, et al. Total arsenic and arsenic species determination in freshwater fish by ICP-DRC-MS and HPLC/ICP-DRC-MS techniques[J]. Molecules, 2019, 24(3): 607-625.

[14]

Son S H, Lee W B, Kim D H, et al. An alternative analytical method for determining arsenic species in rice by using ion chromatography and inductively coupled plasma-mass spectrometry[J]. Food Chemistry, 2019, 270(1): 353-358.

[15]

刘崴, 胡俊栋, 杨红霞, 等. 高效液相色谱-电感耦合等离子体质谱法测定禽类生物样品中7种砷形态[J]. 理化检验(化学分册), 2017, 53(3): 299-304.

Liu W, Hu J D, Yang H X, et al. Determination of seven arsenic species in poultry biological sample by HPLC-ICP-MS[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2017, 53(3): 299-304.

[16]

白云飞.土壤底泥中砷形态提取与水样中砷形态保存实验研究[D].北京: 中国地质大学(北京), 2007.

Bai Y F.An Experimental Research on Preservation of Arsenic Species in Water Samples and Extraction of the Speciation from Soils and Sediments[D].Beijing: China University of Geosciences (Beijing), 2007.

[17]

陈绍占, 刘丽萍, 杜宏举, 等. 高效液相色谱-电感耦合等离子体质谱法分析经牛黄解毒片暴露后大鼠血清中砷形态[J]. 质谱学报, 2017, 38(2): 177-186.

Chen S Z, Liu L P, Du H J, et al. Arsenic species in rat serum after oral adiministration of Niuhuang Jiedu tablet by HPLC-ICP-MS[J]. Journal of Chinese Mass Spectrometry Society, 2017, 38(2): 177-186.

[18]

王林裴, 郑亚哲, 彭新然, 等. HPLC-ICP-MS法测定水产动物及其制品中5种砷形态的含量[J]. 食品与机械, 2017, 33(11): 61-66.

Wang L P, Zheng Y Z, Peng X R, et al. Determination of five arsenic species in aquatic animals and their products by high performance liquid chromatoraphy and inductively coupled plasma mass spectrometry[J]. Food and Machinery, 2017, 33(11): 61-66.

[19]

Slejkovec Z, Falnoga I, Goessler W, et al. Analytical artefacts in the speciation of arsenic in clinical samples[J]. Analytica Chimica Acta, 2008, 607: 83-91.

[20]

侯艳霞, 刘丽萍, 潘浩, 等. 高效液相色谱-电感耦合等离子体质谱分析大米中砷形态化合物[J]. 分析试验室, 2013, 32(10): 103-107.

Hou Y X, Liu L P, Pan H, et al. Determination of arsenic species in rice by HPLC-ICP-MS[J]. Chinese Journal of Analysis Laboratory, 2013, 32(10): 103-107.

[21]

方军, 舒永红, 滕久委, 等. HPLC-ICP-MS测定中药中砷的形态[J]. 分析试验室, 2007, 26(9): 34-37.

Fang J, Shu Y H, Teng J W, et al. Determination of arsenic speciation in traditional Chinese medicine using HPLC-ICP-MS[J]. Chinese Journal of Analysis Laboratory, 2007, 26(9): 34-37.

[22]

倪张林, 汤富彬, 屈明华, 等. 高效液相色谱-电感耦合等离子体质谱联用技术测定花茶中砷形态[J]. 分析科学学报, 2013, 29(4): 506-510.

Ni Z L, Tang F B, Qu M H, et al. Determination of arsenic species in scented tea by HPLC-ICP-MS[J]. Journal of Analytical Science, 2013, 29(4): 506-510.

[23]

黄红霞. 离子色谱分离-电感耦合等离子体质谱联用法测定肉类食品中无机砷[J]. 理化检验(化学分册), 2010, 46(10): 1122-1124.

Huang H X. ICP-MS determination of inorganic arsenic in meat food with IC separation[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2010, 46(10): 1122-1124.

[24]

韩梅, 赵国兴, 李淑珍, 等. 毛细管电泳-电感耦合等离子体质谱法测定地下水中不同形态的砷[J]. 分析化学, 2013, 41(11): 1780-1781.

Han M, Zhao G X, Li S Z, et al. Speciation analysis of arsenic in groundwater by capillary electrophoresis-inductively coupled plasma mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2013, 41(11): 1780-1781.

[25]

杨林, 于珊. 碰撞反应电感耦合等离子体质谱法直接测定卤水中的溴碘[J]. 岩矿测试, 2013, 32(3): 502-505.

Yang L, Yu S. Direct measurement of Br and I in brines by collision response-inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2013, 32(3): 502-505.

[26]

姜贞贞, 刘高令, 王祝, 等. 电感耦合等离子体质谱法测定高海拔地区地热水中的微量元素[J]. 岩矿测试, 2016, 35(5): 475-480.

Jiang Z Z, Liu G L, Wang Z, et al. Determination of trace elements in thermomineral waters of a high altitude area by inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2016, 35(5): 475-480.

[27]

贾娜, 韩梅, 李科, 等. 离子色谱-电感耦合等离子体质谱法测定地下水中4种形态砷的含量[J]. 理化检验(化学分册), 2016, 52(3): 292-295.

Jia N, Han M, Li K, et al. IC-ICP-MS determination of 4 arsenic species in groundwater[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2016, 52(3): 292-295.

[28]

吴思霖, 王欣美, 于建, 等. 高效液相色谱-电感耦合等离子体质谱联用测定肌肉及鸡肝中10种砷形态化合物[J]. 分析测试学报, 2018, 37(4): 482-486.

Wu S L, Wang X M, Yu J, et al. Determination of ten arsenic species compounds in chicken and chicken liver by HPLC-ICP-MS[J]. Journal of Instrumental Analysis, 2018, 37(4): 482-486.

[29]

Wangkarn S, Spiros A. High-speed separation of arsenic compounds using narrow-bore high-performance liquid chromatography on-line with inductively coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2000, 15(6): 627-633.

[30]

Raimund W. HPLC-ICP-MS快速、准确测定鱼肉组织中的砷甜菜碱(AsB)[J]. 中国环境监测, 2004, 20(6): 67-72.

Raimund W. Rapid and accurate determination of arsenic betaine (AsB) in fish tissue by HPLC-ICP-MS[J]. Environmental Monitoring in China, 2004, 20(6): 67-72.

[31]

邹昊辰.硅藻土负载铁氧化物对砷吸附的研究[D].长春: 吉林大学, 2013.

Zou H C.Study on Adsorption of Arsenic by Diatomite Coated Iron Oxide[D].Changchun: Jilin University, 2013.

[32]

张秀尧, 蔡欣欣, 张晓艺, 等. 离子色谱-三重四极杆质谱联用法测定奶粉中氟乙酸钠[J]. 质谱学报, 2019, 40(1): 90-96.

Zhang X Y, Cai X X, Zhang X Y, et al. Determination of sodium monofluoroacetate in dairy powders by ion chromatography-triple quadrpole mass spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2019, 40(1): 90-96.

相似文献(共18条)

[1]

江林, 刘晓端, 张静. 土壤中不同形态砷的分析方法. 岩矿测试, 2008, 27(3): 179-183.

[2]

张燮, 张兴磊, 陈焕文, 周跃明, 花榕, 胡燕. 手持式消光光度计的研制及用于掺杂牛奶的现场快速检测. 岩矿测试, 2008, 27(3): 169-173.

[3]

王军学. X射线荧光光谱法测定锌铝硅合金中硅和铁. 岩矿测试, 2008, 27(1): 77-78.

[4]

刘景龙, 吴巧丽. 原子荧光光谱仪工作温度对水体中砷含量测定的影响. 岩矿测试, 2019, 38(2): 228-232. doi: 10.15898/j.cnki.11-2131/td.201804260052

[5]

宋淑玲, 饶竹, 赵威, 路国慧. 地质调查样品中有机氯农药分析的灵敏度和准确定性控制方法. 岩矿测试, 2010, 29(5): 590-592.

[6]

赵悦, 秦晓鹏, 刘菲. 水体中主要阴离子及pH值对双氯芬酸液相色谱定量的影响. 岩矿测试, 2018, 37(1): 79-86. doi: 10.15898/j.cnki.11-2131/td.201704260067

[7]

秦冲, 施畅, 万秋月, 王磊, 刘爱琴, 安彩秀. 高效液相色谱-电感耦合等离子体质谱联用检测土壤中的无机硒形态. 岩矿测试, 2018, 37(6): 664-670. doi: 10.15898/j.cnki.11-2131/td.201803200024

[8]

何晗晗, 于扬, 刘新星, 黄凡, 赵芝, 李超. 赣南小流域水体中溶解态稀土含量及pH和Eh值变化特征. 岩矿测试, 2015, 34(4): 487-493. doi: 10.15898/j.cnki.11-2131/td.2015.04.018

[9]

吴昆明, 郭华明, 魏朝俊. 天然磁铁矿化学改性及其在水体除砷中的应用. 岩矿测试, 2017, 36(1): 32-39. doi: 10.15898/j.cnki.11-2131/td.2017.01.005

[10]

黄志丁, 王军, 逯海, 杨晓进. 电感耦合等离子体质谱法测定硫时不同形态硫的影响. 岩矿测试, 2012, 31(1): 77-82.

[11]

盛东, 胡忻, 刘锡尧. 水体悬浮颗粒物的扫描电镜与X射线能谱显微分析. 岩矿测试, 2010, 29(6): 683-686.

[12]

杨红霞, 刘崴, 李冰. 碱消解-高效液相色谱-电感耦合等离子体质谱法测定生物样品中的甲基汞和乙基汞. 岩矿测试, 2008, 27(6): 405-408.

[13]

潘小川, 刘晓端, 李奇, 葛晓立, 罗松光. 密云水库水体的地球化学特征. 岩矿测试, 2003, (1): 44-48.

[14]

蒋华江, 叶巧云, 韩德满. 2—(2,3,5—三氮唑偶氮)—1,8—二羟基—3,6—萘二磺酸与钴的显色反应及应用. 岩矿测试, 2002, (2): 155-157.

[15]

张茂忠. 不同酸度的水测定固体样品pH的矫正方法. 岩矿测试, 1989, (1): 70-72.

[16]

蓝高勇, 王华, 俞建国, 应启和, 唐伟, 杨会. 固体聚合膜电解浓集法测量天然水中低含量氚的化学淬灭效应研究. 岩矿测试, 2016, 35(4): 415-419. doi: 10.15898/j.cnki.11-2131/td.2016.04.013

[17]

查向平, 龚冰, 郑永飞. 高灵敏度元素分析仪-连续流同位素质谱法对硅酸盐岩中碳及碳同位素组成的精确测定. 岩矿测试, 2017, 36(4): 327-339. doi: 10.15898/j.cnki.11-2131/td.201611190174

[18]

珀金埃尔默公司分析科学部. 高效液相色谱-等离子体质谱技术在溴元素形态分析中的应用. 岩矿测试, 2008, 27(6): 0-0.

计量
  • PDF下载量(5)
  • 文章访问量(240)
  • HTML全文浏览量(21)
  • 被引次数(0)
目录

Figures And Tables

pH值对HPLC-ICP-MS测定水体中不同形态砷化合物的影响

董会军, 董建芳, 王昕洲, 李义, 赵峰