【引用本文】 张洁, 阳国运, . 树脂交换分离-电感耦合等离子体质谱法测定铅锌矿中钨钼锡锗硒碲[J]. 岩矿测试, 2018, 37(6): 657-663. doi: 10.15898/j.cnki.11-2131/td.201803250028
ZHANG Jie, YANG Guo-yun. Determination of Tungsten, Molybdenum, Tin, Germanium, Selenium and Tellurium in Lead-Zinc Ore by Inductively Coupled Plasma-Mass Spectrometry with Resin Exchange Separation[J]. Rock and Mineral Analysis, 2018, 37(6): 657-663. doi: 10.15898/j.cnki.11-2131/td.201803250028

树脂交换分离-电感耦合等离子体质谱法测定铅锌矿中钨钼锡锗硒碲

广西壮族自治区地质矿产测试研究中心, 广西 南宁 530023

收稿日期: 2018-03-25  修回日期: 2018-06-27  接受日期: 2018-08-10

作者简介: 张洁, 硕士, 工程师, 从事岩石矿物无机分析。E-mail:402831171@qq.com

Determination of Tungsten, Molybdenum, Tin, Germanium, Selenium and Tellurium in Lead-Zinc Ore by Inductively Coupled Plasma-Mass Spectrometry with Resin Exchange Separation

Geology & Mineral Analysis & Test Research Center of Guangxi Zhuang Autonomous Region, Nanning 530023, China

Received Date: 2018-03-25
Revised Date: 2018-06-27
Accepted Date: 2018-08-10

摘要:铅锌矿常与硫化矿共生形成复合多金属矿床,其中伴生有益元素的含量对矿床的综合利用评估有重要的参考意义。在目前常用方法中,钨钼锡锗硒碲主要采用分组或单独熔矿和测试的方法,操作强度大、分析效率低,且高含量铜、铅和含量高于1 μg/g的硒分别干扰钨钼和碲的测定。本文采用过氧化钠碱熔,提取后加入0.8%柠檬酸溶液络合钨、钼、锡形成金属复合物,以8~9 g阳离子树脂交换分离高含量钠盐和铜、铅、锌、铁等主量元素,采用动能歧视模式以铼、硼为内标用电感耦合等离子体质谱仪同时测定钨钼锡锗硒碲的含量。经树脂处理后,铜铅锌铁的去除率均高于96%,在测定介质中实际浓度为0.192 ng/mL~1.28 μg/mL,基本消除了主量元素的干扰。各待测元素工作曲线相关系数为0.9994~0.9999,优于阳离子树脂处理前的0.9923~0.9992。经标准物质验证,各元素测定相对误差为-8.33%~7.00%,加标回收率为94.9%~107.5%,相对标准偏差(RSD,n=8)小于8%。该方法在样品前处理环节将主量干扰元素从溶液体系中分离,优化了测定介质,实现了铅锌矿中多元素的准确快速测定。

关键词: 铅锌矿, 过氧化钠熔融, 阳离子树脂分离, 电感耦合等离子体质谱法

要点

(1) 采用过氧化钠碱熔使铅锌矿中多元素同时分解完全。

(2) 以阳离子树脂交换分离钠盐及铜、铅、锌和铁降低基体效应和主量元素干扰。

(3) 建立钨、钼、锡、锗、硒、碲的溶液体系共存和ICP-MS同时测定技术。

Determination of Tungsten, Molybdenum, Tin, Germanium, Selenium and Tellurium in Lead-Zinc Ore by Inductively Coupled Plasma-Mass Spectrometry with Resin Exchange Separation

ABSTRACT

BACKGROUND:

Lead-zinc ore often co-exists with sulfide ore to form polymetallic deposits. The content of the associated beneficial elements can provide an important reference for the comprehensive utilization evaluation of the mineral deposits. Using current methods, tungsten, molybdenum, tin, germanium, selenium, and tellurium were analyzed by grouping or separate melting and analytical methods with strong operation and low analysis efficiency were employed. Moreover, copper and lead with high content, and selenium with the content higher than 1 μg/g interferes with the determination of tungsten and tellurium, respectively, when using current methods.

OBJECTIVES:

To establish a method for the determination of tungsten, molybdenum, tin, germanium, selenium, and tellurium in lead-zinc ore by ICP-MS.

METHODS:

The samples were melted with sodium peroxide. After extraction, 0.8% citric acid solution was added to complex tungsten, molybdenum and tin to form metal complexes. 8-9 g cation resin was used to exchange sodium, copper, lead, zinc, iron and other major elements. The content of tungsten, molybdenum, tin, germanium, selenium and tellurium was determined by ICP-MS using a kinetic discrimination model with rhenium and boron as the internal standard.

RESULTS:

After the resin treatment, the removal rate of copper, lead, zinc and iron is higher than 96%, the actual concentrations in the measuring medium are 0.192 ng/mL-1.28 μg/mL, which effectively eliminates the interference of the main elements. The correlation coefficients of the working curve are 0.9994-0.9999, better than 0.9923-0.9992 before cation resin treatment. The method is verified by standard material, the relative errors are -8.33%-7.00%, the standard addition recoveries are 94.9%-107.5%, and the relative standard deviation (RSD, n=8) is less than 8%.

CONCLUSIONS:

This method can be used effectively to separate the main interference elements from the solution by sample pretreatment, optimizing the measuring medium and determining the accurate and rapid values of multiple elements in lead-zinc ore.

KEY WORDS: lead-zinc ore, sodium peroxide melts, cation resin separation, Inductively Coupled Plasma-Mass Spectrometry

HIGHLIGHTS

(1) Sodium peroxide alkaline fusion was used to decompose multiple elements in lead-zinc ore simultaneously.

(2) Separation of sodium, copper, lead, zinc and iron by cation resin to reduce matrix effect and major element interference.

(3) Coexisting tungsten, molybdenum, tin, germanium, selenium and tellurium in solution were simultaneously determined by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS).

本文参考文献

[1]

岩石矿物分析编委会. 岩石矿物分析[M] (第四版 第三分册) . 北京: 地质出版社, 2011: 54-87.

The Editorial Committee of Rock and Mineral Analysis . Rock and Mineral Analysis[M] (Fourth Edition:Volume Ⅲ) . Beijing: Geological Publishing House, 2011: 54-87.
[2]

李小辉, 孙慧莹, 于亚辉, 等. 交流电弧发射光谱法测定地球化学样品中银锡硼[J]. 冶金分析, 2017, 37(4): 16-21.

Li X H, Sun H Y, Yu Y H, et al. Determination of sliver, tin and boron in geochemical sample by alternating current (AC) arc emission spectrometry[J]. Metallurgical Analysis, 2017, 37(4): 16-21.

[3]

王铁, 亢德华, 于媛君, 等. 电感耦合等离子体质谱法测定锰铁中痕量铅锡锑[J]. 冶金分析, 2013, 33(5): 13-16. doi: 10.3969/j.issn.1000-7571.2013.05.003

Wang T, Kang D H, Yu Y J, et al. Determination of trace lead, tin and antimony in ferromanganese by inductively coupled plasma mass spectrometry[J].Metallurgical Analysis, 2013, 33(5): 13-16. doi: 10.3969/j.issn.1000-7571.2013.05.003

[4]

刘正, 王海舟, 李小佳, 等. 第三液相富集-石墨炉原子吸收光谱法测定高温合金中痕量碲[J]. 冶金分析, 2016, 36(5): 1-6.

Liu Z, Wang H Z, Li X J, et al. Determination of trace tellurium in superalloy by graphite furnace atomic absorption spectrometry after enrichment with the third liquid phase[J]. Metallurgical Analysis, 2016, 36(5): 1-6.

[5]

王佳翰, 冯俊, 王达成, 等. 电感耦合等离子体质谱法测定地球化学样品中钼镉钨铀锡[J]. 冶金分析, 2017, 37(6): 20-25.

Wang J H, Feng J, Wang D C, et al. Determination of molybdenum, cadmium, tungsten, uranium and tin in geochemical samples by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2017, 37(6): 20-25.

[6]

陈波, 刘洪青, 邢应香, 等. 电感耦合等离子体质谱法同时测定地质样品中锗硒碲[J]. 岩矿测试, 2014, 33(2): 192-196. doi: 10.3969/j.issn.0254-5357.2014.02.006

Chen B, Liu H Q, Xing Y X, et al. Simultaneous determination of Ge, Se and Te in geological samples by inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Anaysis, 2014, 33(2): 192-196. doi: 10.3969/j.issn.0254-5357.2014.02.006

[7]

张计东, 罗善霞, 焦圣兵, 等. 地球化学样品中微量锗的分析进展[J]. 冶金分析, 2014, 34(2): 29-35.

Zhang J D, Luo S X, Jiao S B, et al. Progress of analysis of micro germanium in geochemical samples[J]. Metallurgical Analysis, 2014, 34(2): 29-35.

[8]

董学林, 贾正勋, 汪慧平, 等. 共沉淀分离-电感耦合等离子体质谱法测定多金属矿石中硒和碲[J]. 冶金分析, 2016, 36(3): 6-10.

Dong X L, Jia Z X, Wang H P, et al. Determination of selenium and tellurium in polymetallic ore by coprecipitation separation-inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2016, 36(3): 6-10.

[9]

杨小莉, 杨小丽, 李小丹, 等. 敞开酸溶-电感耦合等离子体质谱法同时测定钨矿石和锡矿石中14种微量元素[J]. 岩矿测试, 2014, 33(3): 321-326. doi: 10.3969/j.issn.0254-5357.2014.03.006

Yang X L, Yang X L, Li X D, et al. Simultaneous determination of 14 trace elements in and yin ore with open acid digestion by inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Anaysis, 2014, 33(3): 321-326. doi: 10.3969/j.issn.0254-5357.2014.03.006

[10]

Gaschnig R M, Rudnick R L, Mcdonough W F, et al. Deter-mination of Ga, Ge, Mo, Ag, Cd, In, Sn, Sb, W, T1 and Bi in USGS whole-rock reference materials by standard addition ICP-MS[J].Geostandards and Geoanalytical Research, 2015, 39(3): 371-379. doi: 10.1111/ggr.2015.39.issue-3

[11]

Siewers U. Inductively coupled plasma/mass spectro-metry in geochemistry[J].Mikrochim Acta, 1989, 3: 365-372.

[12]

李华玲, 郑荣华, 沈加林, 等. 基体分离-高分辨电感耦合等离子体质谱法测定硫化物矿石中的稀土元素和钇[J]. 分析试验室, 2014, 33(10): 1139-1142.

Li H L, Zheng R H, Shen J L, et al. Determination of Y and rare earth elements in sulfide ore by high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS)after matrix separation[J]. Chinese Journal of Analysis Laboratory, 2014, 33(10): 1139-1142.

[13]

于亚辉, 王琳, 王明军, 等. 电感耦合等离子体质谱法测定地球化学样品中痕量铑的干扰消除方法探讨[J]. 冶金分析, 2017, 37(9): 25-32.

Yu Y H, Wang L, Wang M J, et al. Discussion on elimination of interference in determination of trace rhodium in geochemical sample by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2017, 37(9): 25-32.

[14]

倪文山, 刘长淼, 姚明星, 等. 电感耦合等离子体质谱法测定磷灰石中稀土元素分量和总量[J]. 冶金分析, 2016, 36(7): 69-73.

Ni W S, Liu C M, Yao M X, et al. Determination of the total amount of rare earth elements and its component in apatite by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2016, 36(7): 69-73.

[15]

孟时贤, 邓飞跃, 杨远, 等. 电感耦合等离子体发射光谱法测定铅锌矿中15个主次量元素[J]. 岩矿测试, 2015, 34(1): 48-54.

Meng S X, Deng F Y, Yang Y, et al. Simultaneous determination of 15 elements in lead-zinc ore by inductively coupled plasma-atomic emission spectrometry[J]. Rock and Mineral Anaysis, 2015, 34(1): 48-54.

相似文献(共19条)

[1]

张静梅, 张培新, 高孝礼, 黄光明, 窦银萍. 电感耦合等离子体质谱法同时测定地下水中硼溴碘. 岩矿测试, 2008, 27(1): 25-28.

[2]

尹周澜, 王薇惟, 覃祚明, 黄旭. 电感耦合等离子体质谱法测定高纯铟中铁. 岩矿测试, 2008, 27(3): 193-196.

[3]

李刚, 曹小燕. 电感耦合等离子体质谱法测定地质样品中锗和镉的干扰及校正. 岩矿测试, 2008, 27(3): 197-200.

[4]

王小强, 侯晓磊, 杨惠玲. 电感耦合等离子体发射光谱法同时测定铅锌矿中银铜铅锌. 岩矿测试, 2011, 30(5): 576-579.

[5]

阳国运, 唐裴颖, 张洁, 战大川, 覃盛, 何雨珊. 电感耦合等离子体质谱法测定地球化学样品中的硼碘锡锗. 岩矿测试, 2019, 38(2): 154-159. doi: 10.15898/j.cnki.11-2131/td.201805070055

[6]

孟时贤, 邓飞跃, 杨远, 苏卫汉, 闵晓芳, 雍伏曾. 电感耦合等离子体发射光谱法测定铅锌矿中15个主次量元素. 岩矿测试, 2015, 34(1): 48-54. doi: 10.15898/j.cnki.11-2131/td.2015.01.006

[7]

雷占昌, 韩斯琴图, 蒋常菊, 梁慧贞. 过氧化钠碱熔-电感耦合等离子体质谱法测定原生矿石中的锡. 岩矿测试, 2019, 38(3): 326-332. doi: 10.15898/j.cnki.11-2131/td.201812030127

[8]

熊英, 吴峥, 董亚妮, 裴若会, 刘晓艳, 吴赫, 张艳. 封闭消解-阳离子交换分离-电感耦合等离子体质谱法测定铜铅锌矿石中的铼. 岩矿测试, 2015, 34(6): 623-628. doi: 10.15898/j.cnki.11-2131/td.2015.06.004

[9]

熊英, 吴赫, 王龙山. 电感耦合等离子体质谱法同时测定铜铅锌矿石中微量元素镓铟铊钨钼的干扰消除. 岩矿测试, 2011, 30(1): 7-11.

[10]

王妍力, 罗明标, 柯麟, 徐志良, 方小伟. 氧化镁烧结-电感耦合等离子体质谱法测定砂岩型铀矿中的痕量铼. 岩矿测试, 2016, 35(4): 373-377. doi: 10.15898/j.cnki.11-2131/td.2016.04.006

[11]

曹立峰, 王敏捷, 申硕果, 闫红岭, 连文莉, 刘军. 活动态提取-电感耦合等离子体质谱法测定栾川矿集区深穿透地球化学样品中铜铅锌钨钼. 岩矿测试, 2015, 34(4): 424-429. doi: 10.15898/j.cnki.11-2131/td.2015.04.008

[12]

陈贺海, 鲍惠君, 付冉冉, 应海松, 芦春梅, 金献忠, 肖达辉. 微波消解-电感耦合等离子体质谱法测定铁矿石中铬砷镉汞铅. 岩矿测试, 2012, 31(2): 234-240.

[13]

李冰, , 史世云. 电感耦合等离子体质谱法同时测定地质样品中痕量碘溴硒砷的研究:Ⅱ.土壤及沉积物标准物质分析. 岩矿测试, 2001, (4): 241-246.

[14]

张保科, 王蕾, 马生凤, 温宏利, 巩爱华. 电感耦合等离子体质谱法测定地质样品中铜锌铕钆铽的干扰及校正. 岩矿测试, 2012, 31(2): 253-257.

[15]

沈宇, 张尼, 高小红, 李皓, 马怡飞. 微波消解电感耦合等离子体质谱法测定地球化学样品中钒铬镍锗砷. 岩矿测试, 2014, (5): 649-654.

[16]

王琳, 唐志中, 来新泽, 连文莉, 胡家祯, 周岚. 混合吸附剂分离富集-电感耦合等离子体质谱法测定地质样品中铂钯金. 岩矿测试, 2013, 32(3): 420-426.

[17]

吴健玲, 刘亚轩, 张勤. 电感耦合等离子体质谱法直接同时测定地球化学样品中镓铟铊. 岩矿测试, 2003, (1): 21-27.

[18]

王瑞敏. 泡沫塑料富集-电感耦合等离子体质谱法测定土壤中超痕量金铂钯. 岩矿测试, 2011, 30(3): 295-298.

[19]

吕彩芬, 马新荣, 温宏利, 史世云, 李冰, 何红蓼. 电感耦合等离子体质谱法同时测定地质样品中痕量碘溴硒砷的研究Ⅰ.不同介质及不同阴离子形态对测定信号的影响. 岩矿测试, 2001, (3): 161-166.

计量
  • PDF下载量(24)
  • 文章访问量(143)
  • HTML全文浏览量(55)
  • 被引次数(0)
目录

Figures And Tables

树脂交换分离-电感耦合等离子体质谱法测定铅锌矿中钨钼锡锗硒碲

张洁, 阳国运