【引用本文】 李迎春, 张磊, 周伟, 等. 熔融制样-波长色散和能量色散X射线荧光光谱仪应用于硅酸盐类矿物及疑难样品分析[J]. 岩矿测试, 2020, 39(6): 828-838. doi: 10.15898/j.cnki.11-2131/td.201912250178
LI Ying-chun, ZHANG Lei, ZHOU Wei, et al. Determination of Major and Minor Elements in Rocks, Soils and Sediments and Complex Samples by Wavelength and Energy Dispersive X-ray Fluorescence Spectrometer with Fusion Sampling[J]. Rock and Mineral Analysis, 2020, 39(6): 828-838. doi: 10.15898/j.cnki.11-2131/td.201912250178

熔融制样-波长色散和能量色散X射线荧光光谱仪应用于硅酸盐类矿物及疑难样品分析

国家地质实验测试中心, 北京 100037

收稿日期: 2020-05-29  修回日期: 2020-07-24  接受日期: 2020-09-19

基金项目: 中国地质调查局地质调查项目“水样测试分析质量控制”(DD20190323)

作者简介: 李迎春, 高级工程师, 从事X射线荧光光谱及其相关地质样品分析方法研究。E-mail:liyingchun@cags.ac.cn

Determination of Major and Minor Elements in Rocks, Soils and Sediments and Complex Samples by Wavelength and Energy Dispersive X-ray Fluorescence Spectrometer with Fusion Sampling

National Research Center for Geoanalysis, Beijing 100037, China

Received Date: 2020-05-29
Revised Date: 2020-07-24
Accepted Date: 2020-09-19

摘要:目前硅酸盐类样品中主量元素一般采用熔融制样X射线荧光光谱法(XRF)测定,不仅单元素测定结果不能超差,而且百分数加和也要满足要求。但对于矿化样品,由于微量元素较高,往往造成不能满足加和质量要求。充分利用波长色散(WD)和能量色散(ED)复合式X射线荧光光谱仪同时波谱、能谱测定的优势,可使分析人员快速掌握样品组成信息,对评估矿化样品数据质量具有重要意义。本文利用波长-能量色散X射线荧光光谱仪,可在测定主量元素的同时加入更多的微量元素进行测定,而分析时间不延长。主量元素采用波长色散定量,次量元素主要采用能量色散测定,在保证主量元素准确度的情况下,合理设置测量条件,延长能谱测量时间,实现在波长色散12min左右测定主量元素的同时,能够提供14个微量元素如Rb、Sr、Y、Zr、Ba、Cu、Zn的测定结果和10个线性范围较窄或含量较低元素如Co、Ge、Pr、Ta的参考结果,24个微量元素最大检出限为16.76μg/g。通过准确度考核,主量元素测定结果与认定值基本一致,高含量微量元素测定结果亦满足定量分析要求。该方法可使分析人员快速掌握样品组成信息,为提供更加准确、可靠的数据奠定基础,有效地解决矿化疑难样品主量元素测定问题。

关键词: 波长色散-能量色散X射线荧光光谱仪, 熔融制样, 矿化样品, 硅酸盐类矿物, 主次微量元素

要点

(1) 实现了应用波谱测定主量元素、能谱同时测定多种微量元素。

(2) 合理改变了部分元素电压、电流条件,有效延长了能谱测量时间,对主次量元素进行了准确度评估。

(3) 通过Ba、Cu、Ni矿化样品主量元素加和,探讨了矿化疑难样品主次量元素定量分析问题。

Determination of Major and Minor Elements in Rocks, Soils and Sediments and Complex Samples by Wavelength and Energy Dispersive X-ray Fluorescence Spectrometer with Fusion Sampling

ABSTRACT

BACKGROUND:

At present, the major elements in silicate samples are generally determined by X-ray fluorescence spectrometry with fusion sample preparation. Not only can the single element determination results not exceed the limit, but also the percentage sum must meet the requirements of sum quality (99.3%-100.7%). However, for the analysis of mineralized samples, due to the high content of trace elements, it is often not possible to meet the requirements of sum quality. The wavelength and energy dispersive X-ray fluorescence spectrometer are fully utilized. The advantages of the determination can make the analysts to get the information of sample composition as soon as possible, which is of great significance to evaluate the data quality of mineralized samples.

OBJECTIVES:

To develop a method for determination of major elements in mineralized samples.

METHODS:

The wavelength-energy dispersive X-ray fluorescence spectrometer was used to determine the major elements while adding more minor elements to the determination without prolonging the analysis time. The main elements were quantified by wavelength dispersion, while the minor elements were mainly determined by energy dispersion. Under the condition of ensuring the accuracy of the major elements, the measurement conditions were reasonably set and the energy spectrum measurement time was extended.

RESULTS:

The method achieved the measurement of the major elements within 12 minutes using wavelength dispersion, and also provided results of 14 minor elements such as Rb, Sr, Y, Zr, Ba, Cu, Zn and the semi-quantitative results of 10 elements with narrow linear range or low content such as Co, Ge, Pr and Ta. The maximum limit of detection of 24 minor elements was 16.76μg/g.

CONCLUSIONS:

Through the accuracy assessment, the determination results of major elements are consistent with the certified values, and the determination of minor elements with high content also meets the requirements of quantitative analysis. This method makes the analysts to get the information of sample composition quickly, provides a basis for more accurate and reliable data, and effectively solves the determination of major elements in complex mineralized samples.

KEY WORDS: wavelength dispersive-energy dispersive X-ray fluorescence spectrometer, fusion sample preparation, mineralized samples, silicate minerals, major, minor and trace elements

HIGHLIGHTS

(1) Major and trace elements were simultaneously determined by WD-ED X-ray fluorescence spectrometer.

(2) The voltage and current conditions of some elements were modified, and the energy spectrum measurement time was effectively prolonged. The accuracy of major and minor elements was evaluated.

(3) The quantitative analysis of major and minor elements in complex mineralized samples was discussed by summing major elements of Ba, Cu and Ni in mineralized samples.

本文参考文献

[1]

刘菊琴, 李小莉. 波长与能量色散复合型X射线荧光光谱仪测定海洋沉积物, 水系沉积物, 岩石和土壤样品中15种稀土元素[J]. 冶金分析, 2018, 38(5): 7-12.

Liu J Q, Li X L. Determination of fifteen rare earth elements in ocean sediment, stream sediment, rock and soil samples by wavelength dispersion energy dispersion combined type X-ray fluorescence spectrometer[J].Metallurgical Analysis, 2018, 38(5): 7-12.

[2]

张颖, 朱爱美, 张迎秋, 等. 波长与能量色散复合式X射线荧光光谱技术测定海洋沉积物元素[J]. 分析化学, 2019, 47(7): 1090-1097.

Zhang Y, Zhu A M, Zhang Y Q, et al. Fast analysis of major and minor elements in marine sediments by wavelength and energy dispersive X-ray fluorescence spectrometer[J].Chinese Journal of Analytical Chemistry, 2019, 47(7): 1090-1097.

[3]

沈亚婷, 李迎春, 孙梦荷, 等. 波长与能量色散复合式X射线荧光光谱仪特性研究及矿区土壤分析[J]. 光谱学与光谱分析, 2017, 37(7): 2216-2224.

Shen Y T, Li Y C, Sun M H, et al. Studies on characteristics on a combined wavelength and energy dispersion X-ray fluorescence spectrometer and determinations of major, minor and trace elements in soils around a mining area[J].Spectroscopy and Spectral Analysis, 2017, 37(7): 2216-2224.

[4]

Tugulan L C, Gradinaru J, Duliu O, et al. An EDXRF and WDXRF inter comparison case study:Major elements content of Dobrogea loess[J].Romanian Journal of Physics, 2016, 61: 1626-1634.

[5]

吉昂. X射线荧光光谱三十年[J]. 岩矿测试, 2012, 31(3): 383-398.

Ji A. Development of X-ray fluorescence spectrometry in the 30 years[J].Rock and Mineral Analysis, 2012, 31(3): 383-398.

[6]

章连香, 符斌. X射线荧光光谱分析技术的发展[J]. 中国无机分析化学, 2013, 3(3): 1-7.

Zhang L X, Fu B. Advances in X-ray fluorescence spectrometry[J].Chinese Journal of Inorganic Analytical Chemistry, 2013, 3(3): 1-7.

[7]

苏晓鸣, 詹秀春, 李思源, 等. 偏振激发能量色散X荧光法在地球化学分析中应用及其与波长色散X荧光法的比较[J]. 上海地质, 2004, (3): 31-37.

Su X M, Zhan X C, Li S Y, et al. Application of polarized EDXRF in geochemical sample analysis and comparison with WDXRF[J].Shanghai Geology, 2004, (3): 31-37.

[8]

宋春苗, 周超, 胡学强, 等. 用于波长色散X射线荧光光谱仪的闪烁计数器及信号处理系统的研制[J]. 冶金分析, 2020, 40(5): 68-73.

Song C M, Zhou C, Hu X Q, et al. Development of a scintillator counter and signal processing system for wavelength dispersive X-ray fluorescence spectrometer[J].Metallurgical Analysis, 2020, 40(5): 68-73.

[9]

刘建坤, 郑荣华, 骆宏玉, 等. 波长色散X射线荧光光谱仪的内部校准[J]. 光谱实验室, 2013, 30(6): 3142-3144.

Liu J K, Zheng R H, Luo H Y, et al. In-house calibration of wavelength dispersive X-ray fluorescence spectrometer[J].Spectroscopy Laboratory, 2013, 30(6): 3142-3144.

[10]

周超, 宋春苗, 胡学强, 等. 一种用于波长色散X射线荧光光谱仪的流气式正比计数器的研制[J]. 冶金分析, 2019, 39(10): 14-17.

Zhou C, Song C M, Hu X Q, et al. Development of a flow-gas proportional counter for wavelength dispersive X-ray fluorescence spectrometer[J].Metallurgical Analysis, 2019, 39(10): 14-17.

[11]

林庆文, 杨俊, 刘玉纯, 等. 波长色散X射线荧光光谱仪的检定[J]. 化学分析计量, 2018, 27(4): 118-121.

Lin Q W, Yang J, Liu Y C, et al. Verification of wavelength dispersive X-ray fluorescence spectrometer[J].Chemical Analysis and Meterage, 2018, 27(4): 118-121.

[12]

程锋, 张庆贤, 葛良全, 等. 能量色散X射线荧光分析中改进型基本参数法研究[J]. 光谱学与光谱分析, 2015, 35(7): 2034-2037.

Cheng F, Zhang Q X, Ge L Q, et al. The study of advanced fundamental parameter method in EDXRFA[J].Spectroscopy and Spectral Analysis, 2015, 35(7): 2034-2037.

[13]

詹秀春, 樊兴涛, 李迎春, 等. 直接粉末制样-小型偏振激发能量色散X射线荧光光谱法分析地质样品中多元素[J]. 岩矿测试, 2009, 28(6): 501-506.

Zhan X C, Fan X T, Li Y C, et al. Multi-element determination in geological materials by bench-top polarized energy dispersive X-ray fluorescence spectrometry coupled with directly pressed powder sample preparation technique[J].Rock and Mineral Analysis, 2009, 28(6): 501-506.

[14]

王川. 熔融制样-X射线荧光光谱法测定深海沉积物中20种主次组分[J]. 冶金分析, 2020, 40(6): 49-55.

Wang C. Determination of twenty major and minor components in abyssal sediments by X-ray fluorescence spectrometry with fusion sample preparation[J].Metallurgical Analysis, 2020, 40(6): 49-55.

[15]

牟英华, 胡维铸, 张鲁宁, 等. 熔融制样-X射线荧光光谱法测定渣铁中主次成分[J]. 冶金分析, 2020, 40(5): 15-19.

Mou Y H, Hu W Z, Zhang L N, et al. Determination of major and minor components in slab iron by X-ray fluorescence spectrometry with fusion sample preparation[J].Metallurgical Analysis, 2020, 40(5): 15-19.

[16]

夏传波, 成学海, 张会堂, 等. 熔融制样-X射线荧光光谱法测定电气石中12种主次量元素[J]. 岩矿测试, 2018, 37(1): 36-42.

Xia C B, Cheng X H, Zhang H T, et al. Determination of twelve major and minor elements in tourmaline by X-ray fluorescence spectrometry with fusion sample preparation[J].Rock and Mineral Analysis, 2018, 37(1): 36-42.

[17]

马景治. 熔融制样-X射线荧光测定锰矿中10种主次成分的条件优化[J]. 分析测试技术与仪器, 2017, 23(4): 261-266.

Ma J Z. Condition optimization of X-ray fluorescence spectrometry with fusion sample preparation for determination of ten major and minor components in manganese ores[J].Analysis and Testing Technology and Instruments, 2017, 23(4): 261-266.

[18]

黄康, 李仲夏, 朱文静, 等. 熔融制样-X射线荧光光谱法测定金红石中主次组分[J]. 冶金分析, 2020, 40(3): 68-72.

Huang K, Li Z X, Zhu W J, et al. Determination of major and minor components in ruble by X-ray fluorescence spectrometry with fusion sample preparation[J].Metallurgical Analysis, 2020, 40(3): 68-72.

[19]

刘恒杰, 贾海峰, 谭清月, 等. 熔融制样-X射线荧光光谱法测定钨相锡矿中的主次成分[J]. 中国无机分析化学, 2020, 10(1): 70-75.

Liu H J, Jia H F, Tan Q Y, et al. Determination of primary and secondary components in tunggium-molybdenum tin mine by X-ray fluorescence with melt sample[J].Chinese Journal of Inorganic Analytical Chemistry, 2020, 10(1): 70-75.

[20]

周伟, 曾梦, 王健, 等. 熔融制样-X射线荧光光谱法测定稀土矿石中的主量元素和稀土元素[J]. 岩矿测试, 2018, 37(3): 298-305.

Zhou W, Zeng M, Wang J, et al. Determination of major and rare earth elements in rare earth ores by X-ray fluorescence spectrometry with fusion sample preparation[J].Rock and Mineral Analysis, 2018, 37(3): 298-305.

[21]

陈慧娟, 李曼, 韩蔚, 等. XRF检测镁质耐火材料的方法与应用[J]. 中国建材科技, 2019, (2): 1-5.

Chen H J, Li M, Han W, et al. Method and application of XRF detection of magnesium refractories[J].China Building Materials Science & Technology, 2019, (2): 1-5.

[22]

陈美瑜, 兰琳. 熔融制样X射线荧光光谱法测定陶瓷中的硅含量[J]. 功能材料, 2018, 49(12): 12217-12220.

Chen M Y, Lan L. Determination of silicon in ceramic by X-ray fluorescence spectrometry with fusion sample preparation[J].Journal of Functional Materials, 2018, 49(12): 12217-12220.

[23]

姚强, 朱宇宏, 王琼, 等. X射线荧光光谱法测定钒铁合金中钒铝硅锰[J]. 冶金分析, 2016, 36(9): 62-65.

Yao Q, Zhu Y H, Wang Q, et al. Determination of vanadium, aluminum, silicon and manganese in ferrovanadium alloy by X-ray fluorescence spectrometry[J].Metallurgical Analysis, 2016, 36(9): 62-65.

[24]

赵海峰. 熔融制样-X射线荧光光谱法测定连铸保护渣中7种组分[J]. 冶金分析, 2017, 37(4): 62-66.

Zhao H F. Determination of seven components in conti-nuous casting mold powder by X-ray fluorescence spectrometry with fusion sample preparation[J].Metallurgical Analysis, 2017, 37(4): 62-66.

[25]

周雯闻. X射线荧光光谱法测定炼钢辅料化学成分研究[J]. 现代盐化工, 2017, 44(1): 20-21.

Zhou W W. Study on the determination of chemical components in steel accessories by X-ray fluorescence spectrometry[J].Modern Salt and Chemical Industry, 2017, 44(1): 20-21.

[26]

杨洪春. X射线荧光光谱法测定高铬型钒渣中主次组分[J]. 理化检验(化学分册), 2018, 54(6): 640-643.

Yang H C. Determination of major and minor components in high chromium type vanadium slag by X-ray fluorescence spectrometry[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2018, 54(6): 640-643.

[27]

刘艳辉, 常利民, 祁巍熔, 等. 熔融制样X射线荧光光谱法测定硅铁合金主次元素含量[J]. 冶金设备, 2019, (1): 132-134.

Liu Y H, Chang L M, Qi W R, et al. Determination of primary and secondary elements in ferrosilicon by X-ray fluorescence by fusion method[J].Metallurgical Equipment, 2019, (1): 132-134.

[28]

贺忠翔. 能量色散X射线荧光光谱法测定污染企业周边土壤重金属[J]. 环境与发展, 2019, (2): 163-164.

He Z X. Determination of heavy metal elements in soil peripheral of contaminated enterprises by energy dispersion X-ray fluorescence spectrometry[J].Environment and Development, 2019, (2): 163-164.

[29]

汪虹敏, 张颖, 徐磊, 等. 能量色散X射线荧光光谱法测定海洋碎屑沉积物中28种元素[J]. 海洋科学进展, 2020, 38(1): 71-80.

Wang H M, Zhang Y, Xu L, et al. Determination of twenty-eight elements in marine clastic sediment samples by energy dispersive X-ray fluorescence spectrometry[J].Advances in Marine Science, 2020, 38(1): 71-80.

[30]

霍红英, 邹敏, 张天益, 等. 粉末压片能量色散X射线荧光光谱法测定钛精矿中6种组分[J]. 冶金分析, 2019, 39(9): 26-31.

Huo H Y, Zou M, Zhang T Y, et al. Determination of six components in titanium concentrate by energy dispersive X-ray fluorescence spectrometry with pressed powder pellet[J].Metallurgical Analysis, 2019, 39(9): 26-31.

[31]

李迎春, 周伟, 王健, 等. X射线荧光光谱法测定高锶高钡的硅酸盐样品中主量元素[J]. 岩矿测试, 2013, 32(2): 249-253.

Li Y C, Zhou W, Wang J, et al. Determination of major elements in silicate samples with high content strontium and barium by X-ray fluorescence spectrometry[J].Rock and Mineral Analysis, 2013, 32(2): 249-253.

相似文献(共20条)

[1]

李鹏程, 王梅英, 李艳华, 张明炜, 刘春霞, 王冀艳, 刘勉, 陈冲科, 鲁鲲, 李振. 熔融制样X射线荧光光谱法测定珍珠岩矿中主量元素. 岩矿测试, 2015, 34(1): 104-110. doi: 10.15898/j.cnki.11-2131/td.2015.01.014

[2]

仵利萍, 刘卫. 熔融制样-X射线荧光光谱法测定重晶石中主次量元素. 岩矿测试, 2011, 30(2): 217-221.

[3]

夏传波, 成学海, 张会堂, 赵伟, 王卿. 熔融制样-X射线荧光光谱法测定电气石中12种主次量元素. 岩矿测试, 2018, 37(1): 36-42. doi: 10.15898/j.cnki.11-2131/td.201610260197

[4]

曹国洲, 应晓浒. 熔融制样X射线荧光光谱法测定钠长石钾长石中多元素. 岩矿测试, 2003, (3): 221-224.

[5]

褚宁, 李卫刚, 蒋晓光, 张彦甫, 毕孝瑞. 熔融制样波长色散X射线荧光光谱法测定白云石中钙镁硅铁铝. 岩矿测试, 2014, 33(6): 834-838.

[6]

邓赛文, 梁国立. X射线荧光分析中熔融制样的稀释率和烧失量校正. 岩矿测试, 1995, (3): 189-192.

[7]

李可及. 熔融制样X射线荧光光谱法测定岩盐中的主量成分. 岩矿测试, 2016, 35(3): 290-294. doi: 10.15898/j.cnki.11-2131/td.2016.03.012

[8]

叶淑爱, 王伟, 普旭力, 蔡继杰. 熔融制样X射线荧光光谱法测定碳化钨及其废料中的钨. 岩矿测试, 2015, 34(1): 99-103. doi: 10.15898/j.cnki.11-2131/td.2015.01.013

[9]

曾江萍, 吴磊, 李小莉, 王娜, 张莉娟. 较低稀释比熔融制样X射线荧光光谱法分析铬铁矿. 岩矿测试, 2013, 32(6): 915-919.

[10]

普旭力, 吴亚全, 王鸿辉, 董清木, 蔡鹭欣, 潘忠厚. X射线荧光光谱法同时测定铁矿石中主次量组分. 岩矿测试, 2008, 27(5): 353-356.

[11]

逯义. X射线荧光光谱法测定稀土精矿中的稀土元素分量. 岩矿测试, 2012, 31(2): 277-281.

[12]

詹秀春, 樊兴涛, 李迎春, 王袆亚. 直接粉末制样-小型偏振激发能量色散X射线荧光光谱仪分析地质样品中多元素. 岩矿测试, 2009, 28(6): 501-506.

[13]

袁静, 刘建坤, 郑荣华, 沈加林. 高能偏振能量色散X射线荧光光谱仪特性研究及地质样品中主微量元素分析. 岩矿测试, 2020, 39(6): 816-827. doi: 10.15898/j.cnki.11-2131/td.202001070007

[14]

于兆水, 张勤, 李小莉, 樊守忠, 潘晏山, 李国会. 高压粉末制样波长色散X射线荧光光谱法测定生物样品中23种元素. 岩矿测试, 2014, 33(6): 844-848.

[15]

魏灵巧, 宋红元, 易达, 罗磊, 付胜波, 黄瑞成. 熔融制样X射线荧光光谱法测定含硫量高的石膏矿物中主次量元素. 岩矿测试, 2015, 34(4): 448-453. doi: 10.15898/j.cnki.11-2131/td.2015.04.012

[16]

李清彩, 赵庆令. 粉末压片制样波长色散X射线荧光光谱法测定钼矿石中9种元素. 岩矿测试, 2014, 33(6): 839-843.

[17]

杨帆, 郝志红, 刘华忠, 郭志娟, 王徽. 便携式能量色散X射线荧光光谱仪在新疆东天山浅钻化探异常查证中的应用. 岩矿测试, 2015, 34(6): 665-671. doi: 10.15898/j.cnki.11-2131/td.2015.06.010

[18]

夏鹏超, 李明礼, 王祝, 李代琼, 胡亚燕. 粉末压片制样-波长色散X射线荧光光谱法测定斑岩型钼铜矿中主次量元素钼铜铅锌砷镍硫. 岩矿测试, 2012, 31(3): 468-472.

[19]

龙昌玉, 李小莉, 张 勤, 李国会. 能量色散X射线荧光光谱仪现场快速测定多金属矿中17种组分. 岩矿测试, 2010, 29(3): 313-315.

[20]

袁家义, 姜云, 吕振生. X射线荧光光谱熔融制样法测定钛铁矿中主次量组分. 岩矿测试, 2007, 26(2): 158-159.

计量
  • PDF下载量(30)
  • 文章访问量(508)
  • HTML全文浏览量(70)
  • 被引次数(0)
目录

Figures And Tables

熔融制样-波长色散和能量色散X射线荧光光谱仪应用于硅酸盐类矿物及疑难样品分析

李迎春, 张磊, 周伟, 尚文郁