【引用本文】 高建飞, 徐衍明, 范昌福, 等. 元素分析仪-气体同位素质谱法分析硫酸钙样品硫同位素组成[J]. 岩矿测试, 2020, 39(1): 53-58. doi: 10.15898/j.cnki.11-2131/td.201908120128
GAO Jian-fei , XU Yan-ming , FAN Chang-fu , et al. EA-IRMS Analysis Method of Sulfur Isotope Composition in Gypsum Samples[J]. Rock and Mineral Analysis, 2020, 39(1): 53-58. doi: 10.15898/j.cnki.11-2131/td.201908120128

元素分析仪-气体同位素质谱法分析硫酸钙样品硫同位素组成

1. 中国地质科学院矿产资源研究所, 自然资源部成矿作用与资源评价重点实验室, 北京 100037;

2. 青岛地质工程勘察院(青岛地质勘查开发局), 山东 青岛 266071

收稿日期: 2019-08-12  修回日期: 2019-09-21 

基金项目: 中国地质科学院矿产资源研究所基本科研业务费专项经费资助(KK1913)

作者简介: 高建飞,博士,副研究员,主要研究方向为同位素地球化学。E-mail:34209995@qq.com。。

EA-IRMS Analysis Method of Sulfur Isotope Composition in Gypsum Samples

1. Key Laboratory of Metallogeny and Mineral Assessment, Ministry of Natural Resources;Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China;

2. Qingdao Geological Engineering Survey Institute(Qingdao Geological Exploration and Development Bureau), Qingdao 266071, China

Received Date: 2019-08-12
Revised Date: 2019-09-21

摘要:硫酸盐硫同位素的常规分析方法是将硫酸盐转化为硫酸钡后搭配双路进样SO2法,该法易于操作、数据稳定,但样品用量大、费时费力,需要繁杂的前处理,无法满足微量分析发展方向的需求。本文以石膏为例,以元素分析仪-气体同位素质谱连续流法直接测定硫酸钙样品硫同位素比值,对同一样品分别采用:①硫酸钙与V2O5混合后包裹于锡杯中密封,直接进行元素分析仪-气体同位素质谱分析;②硫酸钙充分溶于去离子水中,向溶有硫酸钙样品的液体中加入沉淀试剂BaCl2,将生成的硫酸钡沉淀滤出后,用去离子水清洗2~3遍,烘干后与V2O5混合包裹于锡杯中密封再进行质谱测定。实验选取了13件δ34S值变化范围介于-20‰~+30‰之间的天然石膏样品,将获得的硫同位素比值进行对比,二者δ34SV-CDT绝对差值0.00‰~0.24‰,表明同一样品的硫同位素比值结果在误差范围内基本一致。与常规分析方法相比,本文建立的直接在线分析时无需任何化学前处理,只需直接加入适量的V2O5,V2O5和氧气中的外部氧在瞬间燃烧的过程中替代了硫酸钙本身的氧,生成的SO2气体的氧是均一的,其硫同位素比值能完全代表样品的硫同位素组成,无需进行氧同位素的校正。经过验证表明,硫酸钙样品的直接在线分析是完全可行的。

关键词: 硫酸钙, 硫同位素, 元素分析仪-气体同位素质谱, 前处理

EA-IRMS Analysis Method of Sulfur Isotope Composition in Gypsum Samples

KEY WORDS: calcium sulfate, sulfur isotope, EA-IRMS, pretreatment

本文参考文献

[1]

Ohmoto H,Kakegawa T,Donald R L,et al.3.4-billion-year-old biogenic pyrites from barberton,South Africa:Sulfur isotope evidence[J].Science,1993,262:555-557.

[2]

Ohmoto H,Goldhaber M B.Sulfur and carbon isotopes[M]//Barnes H L.Geochemistry of Hydrothermal Ore Deposits (3rd Edition).New York:John Wiley and Sons,1997:517-611.

[3]

Ono S.Multiple-sulphur isotope biosignatures[J].Space Science Reviews,2008,135(1-4):203-220.

[4]

Partridge M A,Golding S D,Baublys K,et al.Pyrite paragenesis and multiple sulfur isotope distribution in Late Archean and Early Paleoproterozoic hamersley basin sediments[J].Earth and Planetary Science Letters,2008,272(1-2):0-49.

[5]

Bowins R J,Crocket J H.Sulfur and carbon isotopes in Archean banded iron formations:Implications for sulfur sources[J].Chemical Geology,1994,111:307-323.

[6]

Kakegawa T,Ohmoto H.Sulfur isotope evidence for the origin of 3.4 to 3.1Ga pyrite at the Princeton gold mine,Barberton Greenstone Belt,South Africa[J].Precambrian Research,1999,96:209-224.

[7]

刘成林,王弭力,焦鹏程.新疆罗布泊盐湖氢氧锶硫同位素地球化学及钾矿成矿物质来源[J].矿床地质,1999,18(3):268-275.

Liu C L,Wang M L,Jiao P C.Hydrogen,oxygen,strontium and sulfur isotopic geochemistry and potash-forming material sources of LOP salt lake,Xinjiang[J].Mineral Deposits,1999,18(3):268-275.

[8]

张华,刘成林,王立成,等.老挝他曲盆地钾盐矿床蒸发岩硫同位素特征及成钾指示意义[J].地质论评,2014,60(4):851-857.

Zhang H,Liu C L,Wang L C,et al.Characteristics of evaporites sulfur isotope from Potash Deposit in Thakhek Basin,Laos,and its implication for potash formation[J].Geological Review,2014,60(4):851-857.

[9]

任顺利,李延河,曾普胜,等.膏盐层在云南会泽和毛坪铅锌矿成矿中的作用:硫同位素证据[J].地质学报,2018,92(5):1041-1055.

Ren S L,Li Y H,Zeng P S,et al.Effect of sulfate evaporate salt layer in mineralization of the Huize and Maoping lead-zinc deposits in Yunnan:Evidence from sulfur isotope[J].Acta Geologica Sinica,2018,92(5):1041-1055.

[10]

Strauss H.Geological evolution from isotope proxy signals -sulfur[J].Chemical Geology,1999,161(1):89-101.

[11]

Ahmad K,Davies C.A model of basin evolution in the Qa'Al-Azraq,Jordan using sulfur isotope analysis to distinguish sources of sulfur and gypsum[J].Carbonates & Evaporites,DOI:10.1107/s13146-017-0138-2.

[12]

李庆宽,樊启顺,山发寿,等.海陆相蒸发岩硫同位素值变化和地球化学应用[J].盐湖研究,2018,26(1):73-80.

Li Q K,Fan Q S,Shan F S,et al.The variation of sulfur isotope in marine-continental evaporites and its geochemical applications[J].Journal of Salt Lake Research,2018,26(1):73-80.

[13]

Kazuya T,Yoichi N,Yuko M,et al.High-sensitivity sulfur isotopic measurements for Antarctic ice core analyses[J].Rapid Communications in Mass Spectrometry,2018,32:1991-1998.

[14]

李延河,段超,韩丹,等.膏盐层氧化障在长江中下游玢岩铁矿成矿中的作用[J].岩石学报,2014,30(5):1355-1368.

Li Y H,Duan C,Han D,et al.Effect of sulfate evaporate salt layer for formation of porphyrite iorn ores in the Middle-Lower Yangtze River area[J].Acta Petrologica Sinica,2014,30(5):1355-1368.

[15]

Thode H G,Macnamara J,Collins C B.Narural variations in the isotopic content of sulphur and their signification[J].Canadian Journal of Research,1949,Canadab-27:361-373.

[16]

卞霄鹏,刘晨晖,朱志勇,等.硫酸盐硫同位素的MC-ICP-MS测定方法研究[J].矿物岩石地球化学通报,2016,35(3):465-472.

Bian X P,Liu C H,Zhu Z Y,et al.Sulfur isotope measurement of sulfates by using high-resolution MC-ICP-MS[J].Bulletin of Mineralogy,Petrology and Geochemistry,2016,35(3):465-472.

[17]

Giesemann A,Jaeger H J,Norman A L,et al.Online sulfur-isotope determination using an elemental analyzer coupled to a mass spectrometer[J].Analytical Chemistry,1994,66(18):2816-2819.

[18]

Baublys1 K A,Goldingl S D,Youngl E,et al.Simultaneous determination of δ33SV-CDT and δ34SV-CDT using masses 48,49 and 50 on a continuous flow isotope ratio mass spectrometer[J]. Rapid Communications in Mass Spectrometry,2004,18:2765-2769.

[19]

Fourel F,Martineau F,Seris M,et al.Simultaneous N,C,S stable isotope analyses using a new purge and trap elemental analyzer and an isotope ratio mass spectrometer[J].Rapid Communications in Mass Spectrometry,2014,28(23):2587-2594.

[20]

Grassineau N V,Mattey D P,Lowry D.Sulfur isotope analysis of sulfide and sulfate minerals by continuous flow-isotope ratio mass spectrometry[J].Analysis Chemistry,2001,73:220-225.

[21]

Grassineau N V.High-precision EA-IRMS analysis of S and C isotopes in geological materials[J].Applied Geochemistry,2006,21:756-765.

[22]

Studley S A,Ripley E M,Elswick E R,et al.Analysis of sulfides in whole rock matrices by elemental analyzer-continuous flow isotope ratios mass spectrometry[J].Chemical Geology,2002,192:141-148.

[23]

金贵善,刘汉彬,张建锋,等.硫化物中硫同位素组成的EA-IRMS分析方法[J].铀矿地质,2014,30(3):187-192.

Jin G S,Liu H B,Zhang J F,et al.EA-IRMS system measurement of stable sulfur isotope in sulphide[J].Uranium Geology,2014,30(3):187-192.

[24]

韩娟,刘汉彬,金贵善,等.硫同位素组成的样品提取和制备[J].地质学报,2015,89(增刊):82-84. Han J,Liu H B,Jin G S,et al.Sample extraction and preparation of sulfur isotope composition[J].Acta Geologcal Sinica,2015

,89(Supplement):82-84.

[25]

Fourel F,Martineau F,Seris M,et al.Simultaneous N,C,S stable isotope analyses using a new purge and trap elemental analyzer and an isotope ratio mass spectrometer[J].Rapid Communications in Mass Spectrometry,2014,28(23):2587-2594.

[26]

Fry B,Silva S R,Kendall C,et al.Oxygen isotope corrections for online δ34S analysis[J].Rapid Communications in Mass Spectrometry,2002,16:854-858.

[27]

韩娟,刘汉彬,金贵善,等.样品质量对EA-IRMS法测量硫同位素组成的影响[J]. 铀矿地质,2018,34(3):166-173.

Han J,Liu H B,Jin G S,et al.Sample mass influence on the measurement of sulfur isotopic composition by EA-IRMS method[J].Uranium Geology,2018,34(3):166-173.

[28]

白瑞梅,李金城.热解硫酸钡制备硫同位素分析试样二氧化硫[J].岩矿测试,1998,17(1):40-43.

Bai R M,Li J C.Thermal decomposition of barium sulfate for preparation of sulfur dioxide used in sulfur isotope analysis[J].Rock and Mineral Analysis,1998,17(1):40-43.

相似文献(共20条)

[1]

白瑞梅, 李金城. 热解硫酸钡制备硫同位素分析试样二氧化硫. 岩矿测试, 1998, (1): 40-43.

[2]

周向科, 王建国, 刘荫椿, 李光景, 雷恒永, 毛冰. 哀牢山金矿带冬瓜林金矿床流体包裹体及硫同位素研究. 岩矿测试, 2017, 36(4): 430-439. doi: 10.15898/j.cnki.11-2131/td.201701060002

[3]

刘肖, 蔡亚岐, 牟世芬, 滕曼. 离子色谱法测定五氧化二铌和五氧化二钽中痕量氟氯和硫酸根离子的前处理方法. 岩矿测试, 2006, 25(4): 319-322.

[4]

凌媛, 黄毅, 尚文郁, 谢曼曼, 刘舒波, 孙青. 水中氯代烃单体碳同位素分析中预富集方法进展. 岩矿测试, 2011, 30(6): 795-801.

[5]

陈娟, 余晓平, 郭亚飞, 邓天龙. 天然水体中汞形态分析. 岩矿测试, 2012, 31(6): 939-944.

[6]

张小曳, 沈振兴, 梅凡民, 鹿化煜, 曹军骥. 大气粉尘样品的矿物分析方法初探. 岩矿测试, 2003, (3): 165-168.

[7]

张伟娜, 陆继龙, 段太成. 高温高压密闭溶样-电感耦合等离子体质谱法测定荧光粉中的杂质元素. 岩矿测试, 2012, 31(1): 90-94.

[8]

魏峰, 吕爱娟, 陈海英, 郑荣华, 骆宏玉, 沈加林. 水中多环芳烃前处理过程中的污染来源及去除方法. 岩矿测试, 2011, 30(2): 169-173.

[9]

李忠煜, 赵江华, 何峻. 油气化探样品前处理条件对稠环芳烃测定结果的影响. 岩矿测试, 2014, 33(3): 438-443.

[10]

吴夏, 涂林玲, 杨会, 王华, 朱晓燕, 张美良. 水样中溶解性无机碳同位素测试前处理方法对比研究. 岩矿测试, 2013, 32(4): 649-658.

[11]

焦杏春, 王 广, 叶传永, 刘晓端, 杨永亮, 王晓春. 样品前处理过程中多环芳烃的稳定碳同位素分馏. 岩矿测试, 2010, 29(3): 207-211.

[12]

徐丽, 邢蓝田, 王鑫, 李中平, 毛俊丽. 元素分析仪-同位素比值质谱测量碳氮同位素比值最佳反应温度和进样量的确定. 岩矿测试, 2018, 37(1): 15-20. doi: 10.15898/j.cnki.11-2131/td.201701130005

[13]

查向平, 龚冰, 郑永飞. 高灵敏度元素分析仪-连续流同位素质谱法对硅酸盐岩中碳及碳同位素组成的精确测定. 岩矿测试, 2017, 36(4): 327-339. doi: 10.15898/j.cnki.11-2131/td.201611190174

[14]

李立武, 王广, 李中平, 杜丽, 曹春辉. 稳定同位素质谱与同位素光谱结合的方法分析氧同位素17O/16O. 岩矿测试, 2013, 32(3): 392-397.

[15]

张媛媛, 贺行良, 孙书文, 朱志刚. 元素分析仪-同位素比值质谱仪测定海洋沉积物有机碳稳定同位素方法初探. 岩矿测试, 2012, 31(4): 627-631.

[16]

孟庆强, 金之钧, 刘文汇, 陶成, 把立强, 杨华敏. MAT 253气体同位素质谱仪测定微量氢同位素组成进样方法初探. 岩矿测试, 2010, 29(6): 639-642.

[17]

张巽, 谢智. 铼—锇同位素分析中样品的预处理. 岩矿测试, 1997, (4): 284-288.

[18]

刘丛强, 肖化云. 水样氮同位素分析预处理方法的研究现状与进展. 岩矿测试, 2001, (2): 125-130.

[19]

刘丛强, 肖化云. 水样硝酸盐氮同位素分析预处理方法探讨. 岩矿测试, 2002, (2): 105-108.

[20]

张巽, , 金立新. 铼—锇同位素分析中试样化学预处理方法进展. 岩矿测试, 2002, (1): 49-54.

计量
  • PDF下载量(3)
  • 文章访问量(64)
  • 被引次数(0)
目录

Figures And Tables

元素分析仪-气体同位素质谱法分析硫酸钙样品硫同位素组成

高建飞, 徐衍明, 范昌福, 胡斌, 李延河