【引用本文】 魏双, 王家松, 徐铁民, 等. 海泡石化学成分分析标准物质研制[J]. 岩矿测试, 2021, 40(5): 763-773. doi: 10.15898/j.cnki.11-2131/td.202102090022
WEI Shuang, WANG Jia-song, XU Tie-min, et al. Preparation of Sepiolite Reference Material for Chemical Composition Analysis[J]. Rock and Mineral Analysis, 2021, 40(5): 763-773. doi: 10.15898/j.cnki.11-2131/td.202102090022

海泡石化学成分分析标准物质研制

1. 

中国地质调查局天津地质调查中心, 天津 300170

2. 

华北地质科技创新中心, 天津 300170

收稿日期: 2021-02-09  修回日期: 2021-06-29  接受日期: 2021-07-28

基金项目: 中国地质调查局地质调查项目"地质调查标准化与标准制修订(2019-2021)"(DD20190472)

作者简介: 魏双, 工程师, 主要从事地质样品分析测试和方法研究。E-mail: ws.198909@163.com

通信作者: 王家松, 硕士, 高级工程师, 主要从事地质样品分析测试和方法研究。E-mail: 372516720@qq.com

Preparation of Sepiolite Reference Material for Chemical Composition Analysis

1. 

Tianjin Centre of Geological Survey, China Geological Survey, Tianjin 300170, China

2. 

North China Centre for Geoscience Innovation, Tianjin 300170, China

Corresponding author: WANG Jia-song, 372516720@qq.com

Received Date: 2021-02-09
Revised Date: 2021-06-29
Accepted Date: 2021-07-28

摘要:海泡石是一种十分重要的非金属矿,被广泛应用于航空、畜牧、化工环保等领域中,贸易活动十分活跃。鉴于中国一直没有海泡石标准物质,国际上的海泡石标准物质定值组分少,为了满足相关研究需求,本文研制了湖南湘潭的海泡石标准物质(GBW07138)。对Ba、Be、Bi、Cd、Ce、Co、Cr、Cs、La、Li、Lu、U、Nb、Nd、Ni、Pb、SiO2、Al2O3、Fe2O3、MgO、CaO、Na2O、K2O、TiO2共24种组分进行均匀性和稳定性检验。针对不同含量、不同性质的组分,采用合理的国家标准方法检验了20种组分的RSD小于3%,其余4种组分Bi、La、Lu、Mo的RSD略大于3%,方差检验的F值均小于列表临界值[F0.05(29,60)=1.65],表明该标准物质均匀性良好。在稳定性考察期内,24种组分的含量无统计学上的明显变化,表明该标准物质稳定性良好。由9家实验室采用重量法、容量法、X射线荧光光谱法、电感耦合等离子体质谱法等传统化学分析方法和现代仪器分析方法协作定值,最终定值组分63种,涵盖了主量、微量及全部稀土元素,其中海泡石特征组分MgO和烧失量(LOI)的含量分别为18%±0.2%和8.55%±0.19%,这两种组分与现有的标准物质形成一定阶梯性,能够更好地满足海泡石成分分析测试需求。该海泡石标准物质可用于地质找矿、地球化学调查、地质矿产产品测试以及其他行业相关领域样品测试的质量监控标准。而且在研制该标准物质过程中,改良或开发的一些新方法可为后续开发海泡石标准物质提供技术支持。

关键词: 海泡石, 标准物质, 均匀性检验, 稳定性检验, 标准值

要点

(1) 研制了一种海泡石标准物质,填补中国海泡石标准物质空白。

(2) 海泡石标准物质定值组分达63种,涵盖主量元素、微量元素、稀土元素。

(3) 定值方法、定值准确度和不确定度评定均达到国家级标准物质的水平,并开发了针对海泡石的分析测试方法。

Preparation of Sepiolite Reference Material for Chemical Composition Analysis

ABSTRACT

BACKGROUND:

Sepiolite is a very important non-metallic mineral, which is widely used in aviation, animal husbandry, the chemical industry, environmental protection and other fields. Sepiolite is in great demand and needs a lot of analysis and testing. However, the existing sepiolite reference materials are inadequate and do not satisfy the needs of sepiolite composition analysis. Furthermore, there are no sepiolite reference materials in China, making it necessary to develop one.

OBJECTIVES:

To prepare a reference material for composition analysis of sepiolite whose certified value components cover as many elements as possible.

METHODS:

Sepiolite samples were collected from Xiangtan, Hunan Province. The samples were subjected to primary crushing, coarse-grain sieving, inactivation, fine grinding and fine grain sieving. After passing the initial inspection, samples were bottled and numbered. Random samples were taken for homogeneity test, stability test. 24 components were selected for homogeneity and stability test.

RESULTS:

The results showed that the RSD of 20 components were less than 3%, and the F value of the variance test was less than the critical value of the list[F0.05(29, 60)=1.65], indicating that the homogeneity of the reference material was good. During the investigation period, the contents of 24 components had no significant change, indicating that the standard material was stable. Nine laboratories cooperated with traditional chemical analysis methods and modern instrumental analysis methods to determine the value. The final values were 63 components, covering major, trace and all rare earth elements. The contents of characteristic components MgO and LOI were 18% and 8.55%, respectively. These two components form a certain ladder with the existing reference materials, which can better satisfy the requirements of sepiolite composition analysis.

CONCLUSIONS:

The developed sepiolite reference material can be used as the quality control standards for geological prospecting, geochemical investigation and testing of geological and mineral products, as well as for other industries to analyze similar materials. Moreover, in the process of developing the reference material, improvements and developments to the new methods will provide technical support for the subsequent development of the sepiolite reference material.

KEY WORDS: sepiolite, reference material, homogeneity test, stability test, certified values

HIGHLIGHTS

(1) A sepiolite reference material was developed to fill the blank of domestic sepiolite reference material.

(2) Certified values and uncertainties of 63 components, including major elements, trace elements and rare earth elements were given in the sepiolite CRM.

(3) The determination method, accuracy and uncertainty evaluation all reached the level of national standard material, and some analytical test methods for sepiolite were developed.

本文参考文献

[1]

李文光. 海泡石粘土矿床的成矿地质特征及找矿远景[J]. 化工矿产地质, 2001, 23(3): 158-164. doi: 10.3969/j.issn.1006-5296.2001.03.006

Li W G. Minerogenetic geological features of sepiolite clay ore deposit and its prospect of ore-search[J].Geological Institute for Chemical Minerals, 2001, 23(3): 158-164. doi: 10.3969/j.issn.1006-5296.2001.03.006

[2]

周永兴. 从专利变化看国内海泡石应用趋势[J]. 中国非金属矿工业导刊, 2020, (3): 1-5, 53. doi: 10.3969/j.issn.1007-9386.2020.03.001

Zhou Y X. Application trend of sepiolite in China from patent changes[J].China Non-metallic Mining Industry Herald, 2020, (3): 1-5, 53. doi: 10.3969/j.issn.1007-9386.2020.03.001

[3]

陈镇, 向明辉, 蒋鹏, 等. 低品位海泡石的酸热改性及对吸附性能的影响[J]. 湖南工程学院学报, 2017, 27(4): 59-63. doi: 10.3969/j.issn.1671-119X.2017.04.015

Chen Z, Xiang M H, Jiang P, et al. Modification of low grade sepiolite and its effect on adsorption properties[J].Journal of Hunan Institute of Engineering, 2017, 27(4): 59-63. doi: 10.3969/j.issn.1671-119X.2017.04.015

[4]

Abad-Valle P, Álvarez-Ayuso E, Murciego A, et al. Assessment of the use of sepiolite amendment to restore heavy metal polluted mine soil[J].Geoderma, 2016, 280: 57-66. doi: 10.1016/j.geoderma.2016.06.015

[5]

Xu Y, Liang X F, Xu Y M, et al. Remediation of heavy metal-polluted agricultural soils using clay minerals: A review[J].Pedosphere, 2017, 27(2): 193-204. doi: 10.1016/S1002-0160(17)60310-2

[6]

Zhou J, Fan Z Y, Tian Q, et al. Removal of heavy metal ions by porous sepiolite-based membrane[J]. Micro & Nano Letters, 2020, 15(13): 903-906.

[7]

Xie S, Wang L, Xu Y M, et al. Performance and mechanisms of immobilization remediation for Cd contaminated water and soil by hydroxy ferric combined acid-base modified sepiolite (HyFe/ABsep)[J].Science of The Total Environment. doi: 10.1016/j.scitotenv.2020.140009

[8]

Song N, Hursthouse A, Mclellan I, et al. Treatment of en-vironmental contamination using sepiolite: Current approaches and future potential[J].Environmental Geochemistry and Health, 2021, 4: 2679-2697. doi: 10.1007/s10653-020-00705-0

[9]

孟雪芬, 冯辉霞, 张斌, 等. 海泡石的改性方法及其应用研究进展[J]. 应用化工, 2020, 49(9): 2319-2323. doi: 10.3969/j.issn.1671-3206.2020.09.039

Meng X F, Feng H X, Zhang B, et al. Progress in modification method and application of sepiolite[J].Applied Chemical Industry, 2020, 49(9): 2319-2323. doi: 10.3969/j.issn.1671-3206.2020.09.039

[10]

温鑫, 谷晋川, 魏春梅, 等. 腐殖酸-海泡石复合钝化剂的制备及其对Cd污染土壤的修复[J]. 化工环保, 2020, 40(5): 518-523. doi: 10.3969/j.issn.1006-1878.2020.05.010

Wen X, Gu J C, Wei C M, et al. Preparation of humic acid-sepiolite composite passivator and its remediation effect on Cd contaminated soil[J].Environment Protection of Chemical Industry, 2020, 40(5): 518-523. doi: 10.3969/j.issn.1006-1878.2020.05.010

[11]

曹璟, 陈镇, 张小刚, 等. 改性海泡石在焦化废水处理中的应用[J]. 广东化工, 2020, 47(3): 151-152, 155. doi: 10.3969/j.issn.1007-1865.2020.03.071

Cao J, Chen Z, Zhang X G, et al. Application of modified sepiolite in coking wastewater treatment[J].Guangdong Chemical Industry, 2020, 47(3): 151-152, 155. doi: 10.3969/j.issn.1007-1865.2020.03.071

[12]

Wang F, Ding D P, Hao M, et al. Novel fabrication of a sepiolite supported cobalt-based catalyst via a coprecipitation-reduction method[J]. Applied Clay Science, 2020, 200: 105909.

[13]

汤敏, 汪形艳, 贺玥莹, 等. 三维花球状BiOCl/海泡石的制备及其在可见光催化降解双酚A中的应用[J]. 现代化工, 2018, 38(10): 131-136.

Tang M, Wang X Y, He Y Y, et al. Preparation of 3D flower-like BiOCl/sepiolite and its application in visible light photocatalytic degradation of bisphenol A[J]. Modern Chemical Industry, 2018, 38(10): 131-136.

[14]

Dong N, Ye Q, Chen M Y, et al. Sodium-treated sepiolite-supported transition metal (Cu, Fe, Ni, Mn, or Co) catalysts for HCHO oxidation[J].Chinese Journal of Catalysis, 2020, 41: 1734-1744. doi: 10.1016/S1872-2067(20)63599-9

[15]

唐永翔, 董晓晗, 韩焱, 等. 用于环己烷氧化的Co3O4/海泡石催化剂的制备和第一性原理研究[J]. 常州大学学报(自然科学版), 2020, 30(2): 30-36.

Tang Y X, Dong X H, Han Y, et al. Preparation and first principle study of Co3O4/sepiolite catalyst for cyclohexane oxidation[J]. Journal of Changzhou University (Natural Science Edition), 2020, 30(2): 30-36.

[16]

胡安, 袁鸽, 张宁, 等. 黏土矿物在电池领域的应用研究进展[J]. 新能源进展, 2020, 8(1): 56-61. doi: 10.3969/j.issn.2095-560X.2020.01.009

Hu A, Yuan G, Zhang N, et al. Advances in the application of clay minerals in the field of batteries[J].Advances in New and Renewable Energy, 2020, 8(1): 56-61. doi: 10.3969/j.issn.2095-560X.2020.01.009

[17]

王毅民, 王晓红, 高玉淑, 等. 中国地质标准物质制备技术与方法研究进展[J]. 地质通报, 2010, 29(7): 1090-1104. doi: 10.3969/j.issn.1671-2552.2010.07.016

Wang Y M, Wang X H, Gao Y S, et al. Advances in preparing techniques for geochemical reference materials in China[J].Geological Bulletin of China, 2010, 29(7): 1090-1104. doi: 10.3969/j.issn.1671-2552.2010.07.016

[18]

Jochum K P, Weis U, Schwager B, et al. Reference values following ISO guidelines for frequently requested rock reference materials[J].Geostandards and Geoanalytical Research, 2016, 40(3): 333-350. doi: 10.1111/j.1751-908X.2015.00392.x

[19]

Weis U, Schwager B, Nohl U, et al. Geostandards and geoanalytical research bibliographic review 2015[J].Geostandards and Geoanalytical Research, 2016, 40(4): 599-601. doi: 10.1111/ggr.12152

[20]

方蓬达, 张莉娟, 王家松, 等. 熔融制样-波长色散X射线荧光光谱法同时测定砂岩型铀矿中主量及铀、钍成分[J]. 地质调查与研究, 2021, 44(2): 35-39.

Fang P D, Zhang L J, Wang J S, et al. Simultaneous determination of major elements, uranium and thorium in sandstone type uranium deposits by melting sample preparation wavelength dispersive X-ray fluorescence spectrometry[J]. Geological Survey and Research, 2021, 44(2): 35-39.

[21]

王祎亚, 张中, 王毅民, 等. X射线荧光光谱在标准物质和标准方法研究中的应用评介[J]. 冶金分析, 2020, 40(10): 99-110.

Wang Y Y, Zhang Z, Wang Y M, et al. Review on the application of X-ray fluorescence spectrometry in geological reference materials and standard methods[J]. Metallurgical Analysis, 2020, 40(10): 99-110.

[22]

王雪莹, 王飞飞, 孙效轩, 等. 钛矿石与钛精矿X射线荧光光谱分析与化学分析用标准样品的研制[J]. 中国无机分析化学, 2018, 8(1): 21-28.

Wang X Y, Wang F F, Sun X X, et al. Development of certified reference materials of titanium ore and ilmenite concentrate for X-ray fluorescence spectrometry & chemical analysis[J]. Chinese Journal of Inorganic Analytical Chemistry, 2018, 8(1): 21-28.

[23]

隆英兰, 王景凤, 韩俊丽, 等. 电感耦合等离子体原子发射光谱法同时测定多金属矿石中铜、铅、锌、银[J]. 化学分析计量, 2020, 29(6): 38-41.

Long Y L, Wang J F, Han J L, et al. Simultaneous determination of copper, lead, zinc and silver in polymetallic ores by inductively coupled plasma-atomic emission spectrometry[J]. Chemical Analysis and Meterage, 2020, 29(6): 38-41.

[24]

鲁忍. 微波消解-电感耦合等离子体原子发射光谱法测定钨矿石中钨[J]. 化学分析计量, 2020, 29(6): 105-108.

Lu R. Determination of tungsten in tungsten ore by inductively coupled plasma atomic emission spectrometry with microwave digestion[J]. Chemical Analysis and Meterage, 2020, 29(6): 105-108.

[25]

Skrzypek G, Sadler R. A strategy for selection of reference materials in stable oxygen isotope analyses of solid materials[J]. Rapid Communications in Mass Spectrometry, 2011, 25(11): 1625-1630.

[26]

徐鹏, 孙亚莉. Carius管密封溶样-等离子体质谱法测定环境样品中镓、锗、砷、硒、镉、锡、锑、碲、汞、铅和铋[J]. 分析化学, 2010, 38(4): 581-584.

Xu P, Sun Y L. Determination of Ga, Ge, As, Se, Cd, Sn, Sb, Te, Hg, Pb and Bi in environmental samples by inductively coupled plasma mass spectrometry combined with Carius tube digestion[J]. Chinese Journal of Analytical Chemistry, 2010, 38(4): 581-584.

[27]

辛文彩, 林学辉, 徐磊, 等. 电感耦合等离子体质谱法测定海洋沉积物中34种痕量元素[J]. 理化检验(化学分册), 2012, 48(4): 459-464.

Xin W C, Lin X H, Xu L, et al. ICP-MS determination of 34 trace elements in marine sediments[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2012, 48(4): 459-464.

[28]

Low F, Zhang L. Microwave digestion for the quantification of inorganic elements in coal and coal ash using ICP-OES[J]. Talanta, 2012, 101: 346-352.

[29]

张楠, 徐铁民, 吴良英, 等. 微波消解-电感耦合等离子体质谱法测定海泡石中的稀土元素[J]. 岩矿测试, 2018, 37(6): 644-649.

Zhang N, Xu T M, Wu L Y, et al. Determination of rare earth elements in sepiolite by ICP-MS using microwave digestion[J]. Rock and Mineral Analysis, 2018, 37(6): 644-649.

[30]

王力强, 王家松, 徐铁民, 等. 敞口酸溶-电感耦合等离子体发射光谱法测定海泡石中的氧化铝等主量成分[J]. 岩矿测试, 2020, 39(3): 391-397.

Wang L Q, Wang J S, Xu T M, et al. Determination of major elements in sepoilite by inductively coupled plasma-optical emission spectrometry with opening acid dissolution[J]. Rock and Mineral Analysis, 2020, 39(3): 391-397.

[31]

郑智慷, 王家松, 曾江萍, 等. 微波消解-原子荧光光谱法测定化探样品中的砷和锑[J]. 地质调查与研究, 2019, 42(4): 263-266.

Zheng Z K, Wang J S, Zeng J P, et al. Determination of arsenic and antimony in geochemical samples by microwave digestion-atomic fluorescence spectrometry[J]. Geological Survey and Research, 2019, 42(4): 263-266.

[32]

王力强, 魏双, 王家松, 等. 敞口酸溶-电感耦合等离子体发射光谱法测定多金属矿中的铝锰钾钠钙镁硫[J]. 地质调查与研究, 2019, 42(4): 259-262.

Wang L Q, Wei S, Wang J S, et al. Determination of Al, Mn, K, Na, Ca, Mg, S in polymetallic ores by open acid solution-inductively coupled plasma emission spectro-metry[J]. Geological Survey and Research, 2019, 42(4): 259-262.

相似文献(共20条)

[1]

黄仁忠. 硫脲介质-石墨炉原子吸收光谱法测定化探样品中微量银. 岩矿测试, 2008, 27(3): 237-238.

[2]

余宇, 刘江斌, 党亮, 陈月源, 曹成东, 谈建安, 赵峰. X射线荧光光谱法同时测定石灰石中主次痕量组分. 岩矿测试, 2008, 27(2): 149-150.

[3]

杨榕, 顾铁新, 潘含江, 刘妹, 周国华. GBW10010a大米标准物质复(研)制及数据特征. 岩矿测试, 2020, 39(6): 866-877. doi: 10.15898/j.cnki.11-2131/td.202005210073

[4]

辛文彩, 夏宁, 徐磊, 朱志刚. 长江三角洲沉积物标准物质研制. 岩矿测试, 2017, 36(4): 388-395. doi: 10.15898/j.cnki.11-2131/td.201609210141

[5]

李洁, 陈文, 刘新宇, 张彦, 陈岳龙, 杨莉. 新生代透长石SK01作为39Ar-40Ar法定年标准物质的均匀性检验. 岩矿测试, 2013, 32(2): 213-220.

[6]

林立, 周谙非, 张曼玲, 田艳玲, 杨彦丽. 微波消解-电感耦合等离子体发射光谱法分析食品中的总硼. 岩矿测试, 2008, 27(1): 21-24.

[7]

徐婷婷, 夏宁, 张波. 熔片制样-X射线荧光光谱法测定海洋沉积物样品中主次量组分. 岩矿测试, 2008, 27(1): 74-76.

[8]

李刚, 曹小燕. 电感耦合等离子体质谱法测定地质样品中锗和镉的干扰及校正. 岩矿测试, 2008, 27(3): 197-200.

[9]

李刚, 苏文峰. 焙烧分离-氢化物发生-原子荧光光谱法测定土壤样品中微量硒. 岩矿测试, 2008, 27(2): 120-122.

[10]

林光西. 氢化物发生-原子荧光光谱法直接测定地球化学样品中痕量碲. 岩矿测试, 2008, 27(2): 151-152.

[11]

蔡玉曼. 硅钼蓝分光光度法测定钛铁矿中二氧化硅不确定度评定. 岩矿测试, 2008, 27(2): 123-126.

[12]

李曼, 王连和. 区域地球化学样品分析质量管理计算机控制. 岩矿测试, 2008, 27(3): 219-222.

[13]

吴石头, 王亚平, 许春雪. 激光剥蚀电感耦合等离子体质谱元素微区分析标准物质研究进展. 岩矿测试, 2015, 34(5): 503-511. doi: 10.15898/j.cnki.11-2131/td.2015.05.002

[14]

吴石头, 王亚平, 詹秀春, AndreasKronz, KlausSimon, 许春雪, 田欢. CGSG系列标准物质元素分馏效应及主量微量元素单元内均匀性探究. 岩矿测试, 2016, 35(6): 612-620. doi: 10.15898/j.cnki.11-2131/td.2016.06.007

[15]

赵晓亮, 李志伟, 王烨, 王君玉, 仲伟路, 陈砚. 铌钽精矿标准物质研制. 岩矿测试, 2018, 37(6): 687-694. doi: 10.15898/j.cnki.11-2131/td.201711230185

[16]

顾勇冰, 张春牛, 郑云法. 1-偶氮苯-3-(5-氯-2-吡啶)-三氮烯的合成及其与镍的显色反应. 岩矿测试, 2005, (2): 112-114.

[17]

程志中, 刘妹, 张勤, 顾铁新, 黄宏库. 水系沉积物标准物质研制. 岩矿测试, 2011, 30(6): 714-722.

[18]

程志中, 顾铁新, 范永贵, 黄宏库, 刘 妹, 鄢卫东, 鄢明才. 九个铁矿石标准物质研制. 岩矿测试, 2010, 29(3): 305-308.

[19]

许春雪, 王亚平, 张旭, 董波, 孙德忠, 安子怡. 矽线石成分分析标准物质研制. 岩矿测试, 2017, 36(4): 396-404. doi: 10.15898/j.cnki.11-2131/td.201608190123

[20]

程志中, 刘妹, 黄宏库, 顾铁新, 鄢卫东. 镍矿石和镍精矿标准物质研制. 岩矿测试, 2013, 32(4): 600-607.

计量
  • PDF下载量(8)
  • 文章访问量(2607)
  • HTML全文浏览量(728)
  • 被引次数(0)
目录

Figures And Tables

海泡石化学成分分析标准物质研制

魏双, 王家松, 徐铁民, 方蓬达, 王力强, 王娜