【引用本文】 杨海涛, 康文贵, 汪超, 等. 金活动态提取ICP-MS法测定王家坪金矿床深穿透地球化学样品中的金[J]. 岩矿测试, 2021, 40(5): 774-782. doi: 10.15898/j.cnki.11-2131/td.202012120161
YANG Hai-tao, KANG Wen-gui, WANG Chao, et al. Determination of Au in Deep-penetrating Geochemical Samples of the Wangjiaping Gold Deposit by ICP-MS with Extraction Elements of Mobile Forms[J]. Rock and Mineral Analysis, 2021, 40(5): 774-782. doi: 10.15898/j.cnki.11-2131/td.202012120161

金活动态提取ICP-MS法测定王家坪金矿床深穿透地球化学样品中的金

1. 

西安西北有色地质研究院有限公司, 陕西 西安 710054

2. 

陕西省矿产资源综合利用工程技术研究中心, 陕西 西安 710054

3. 

有色金属西北矿产地质测试中心, 陕西 西安 710054

收稿日期: 2020-12-12  修回日期: 2021-06-02  接受日期: 2021-07-20

基金项目: 西北有色地质矿业集团科技基金"金属活动态测量在隐伏矿找矿中的应用研究"(2019-西北地矿-KJ-02)

作者简介: 杨海涛, 硕士, 高级工程师, 从事矿产勘查与研究工作。E-mail: yht.1@qq.com

Determination of Au in Deep-penetrating Geochemical Samples of the Wangjiaping Gold Deposit by ICP-MS with Extraction Elements of Mobile Forms

1. 

Xi'an Northwest Geological Institute for Nonferrous Metals Co., LTD., Xi'an 710054, China

2. 

Shaanxi Engineering Technology Research Centre of Comprehensive Utilization of Mineral Resources, Xi'an 710054, China

3. 

Northwest Mineral Geological Analytic Centre of Nonferrous Metals, Xi'an 710054, China

Received Date: 2020-12-12
Revised Date: 2021-06-02
Accepted Date: 2021-07-20

摘要:金属活动态测量方法是寻找隐伏矿的有效手段之一,但在方法应用过程中发现不同地球化学景观条件下金元素的有效活动态类型不尽相同,并且提取过程中固液比、温度、时间等条件会对活动态提取数据产生较大影响。为了探讨金元素活动态选择性提取及方法在秦岭地区的指示效果等问题,本文利用电感耦合等离子体质谱(ICP-MS)分析技术对秦岭地区王家坪金矿床金元素活动态提取的不同实验条件及不同粒级样品进行对比研究,确定了针对金元素水提取态、黏土吸附态、有机结合态和铁锰氧化物结合态的最佳提取条件为:固液比1:5,提取时间24h,提取温度35℃,采样粒级为-80目。金元素四个相态的方法检出限分别为:水提取态0.03ng/g,黏土吸附态0.03ng/g,有机结合态0.04ng/g,铁锰氧化物结合态0.05ng/g,精密度(RSD)为7.25%~9.02%。该方法应用于王家坪金矿床23线,经分析金元素各形态平均含量为:水提取态0.19×10-9,黏土吸附态0.30×10-9,有机结合态11.16×10-9,铁锰氧化物结合态0.20×10-9,其中有机结合态为矿区土壤中金元素赋存的主要活动相态,金的有机结合态异常与隐伏金矿体位置一致。

关键词: 王家坪金矿床, 活动态提取, 电感耦合等离子体质谱法, 深穿透地球化学, 隐伏金矿体

要点

(1) 对比研究了金元素活动态提取过程中固液比、温度、时间等实验条件。

(2) 对比了不同粒级样品的活动态提取效果,-80目样品提取效果最佳。

(3) 金活动态提取、测定技术应用于秦岭中低山景观区隐伏金矿探测试验。

Determination of Au in Deep-penetrating Geochemical Samples of the Wangjiaping Gold Deposit by ICP-MS with Extraction Elements of Mobile Forms

ABSTRACT

BACKGROUND:

Metal activity state measurement method is one of the effective means to find hidden ore. However, during the application of the method, it was found that the types of effective activity states of gold in different geochemical landscape conditions were not the same. Moreover, it was found that the conditions such as solid-liquid ratio, temperature and time during the extraction would have a significant impact on the active state extraction data.

OBJECTIVES:

To solve the problems of selective extraction and accurate determination of the active state of gold.

METHODS:

A comparative study of different experimental conditions and samples of different grain sizes for the active state extraction of gold from the Wangjiaping gold deposit in the Qinling area using ICP-MS analysis.

RESULTS:

The optimal extraction conditions for gold element water extraction state, clay adsorption state, organic binding state and iron manganese oxide state were determined. Solid-liquid ratio was 1:5, the extraction time was 24h, the extraction temperature was 35℃ and the sample size range was -80 mesh. The method detection limits for the four phase states of elemental gold were 0.03ng/g for water extraction state 0.03ng/g for clay adsorption state, 0.04ng/g for organic binding state, 0.05ng/g for iron manganese oxide state. The relative standard deviation (RSD) was 7.25%-9.02%. In the 23rd line of the Wangjiaping gold deposit, the average content of the water extracted state gold was 0.19×10-9, the average clay adsorption state gold was 0.30×10-9, the average organic binding state gold was 11.16×10-9, and the average iron manganese oxide state gold was 0.20×10-9.

CONCLUSIONS:

The organic binding state is the main active phase state of gold in the soil of the mining area, and the abnormality of the organic binding state of gold is consistent with the position of the hidden gold ore body.

KEY WORDS: Wangjiaping gold deposit, mobile forms leaching, inductively coupled plasma-mass spectrometry, deep-penetrating geochemistry, concealed gold ore body

HIGHLIGHTS

(1) The experimental conditions such as solid-liquid ratio, temperature and time during the active state extraction of gold were studied.

(2) The active extraction effect of samples of different particle sizes was compared, and the extraction effect of -80 mesh sample was found to be the best.

(3) Gold activity state extraction and determination technology were applied to the hidden gold detection test in the middle and low mountain landscape area of the Qinling Mountains.

本文参考文献

[1]

Ryss Y S, Goldberg I S. The partial extraction of metals (CHIM) method in mineral exploration[R]//Bloom-stein E. Translation by earth science translation services of section entitled CHIM surface set-up unipolar extraction. USGS Open-File Report, 1990: 90-462.

[2]

Kristiansson K, Malmqvist L. Evidence for nondiffusive transport of 86Rn in the ground and a new physical model for the transport[J]. Society of Exploration Geophysicists, 1982, 47(10): 1444-1452.

[3]

Clark J R. Enzyme-induced leaching of B-horizon soils for mineral exploration in areas of glacial overburden[J]. Transactions of the Institution of Mining and Metallurgy (Section B: Applied Earth Science), 1993, 102: B19-B29.

[4]

Mann A W, Birrell R D, Gay L M, et al. Application of the mobile metal ion technique to routine geochemical exploration[J].Journal of Geochemical Exploration, 1998, 61(1): 87-102.

[5]

Wang X Q, Cheng Z Z, Lu Y X, et al. Nanoscale metals in earth gas and mobile forms of metals in overburden in wide-spaced regional exploration for giant deposits in overburden terrains[J].Journal of Geochemical Exploration, 1997, 58: 63-72. doi: 10.1016/S0375-6742(96)00052-0

[6]

Wang X Q. Leaching of mobile forms of metals in over-burden: Development and applications[J].Journal of Geochemical Exploration, 1998, 61: 39-55. doi: 10.1016/S0375-6742(97)00039-3

[7]

Cameron E M, Hamilton S M, Leybourne M I, et al. Finding deeply-buried deposits using geochemistry[J].Geochemistry: Exploration, Environment, Analysis, 2004, 4(1): 7-32. doi: 10.1144/1467-7873/03-019

[8]

Wang X Q, Zhang B M, Lin X, et al. Geochemical chall-enges of diverse regolith-covered terrains for mineral exploration in China[J]. Ore Geology Reviews, 2016, 73(3): 417-431.

[9]

王学求. 深穿透勘查地球化学[J]. 物探与化探, 1998, 22(3): 165-169.

Wang X Q. Deep-penetration exploration geochemistry[J]. Geophysical & Geochemical Exploration, 1998, 22(3): 165-169.

[10]

Cameron E M, Leybourne M I, Reich M, et al. Geochemical anomalies in northern chile as a surface expression of the extended supergene metallogenesis of buried copper deposits[J].Geochemistry: Exploration, Environment, Analysis, 2010, 10: 157-169. doi: 10.1144/1467-7873/09-228

[11]

Antropova L V, Goldberg I S, Voroshilov N A, et al. New methods of regional exploration for blind mineralization: Application in the USSR[J].Journal of Geochemical Exploration, 1992, 43(2): 157-166. doi: 10.1016/0375-6742(92)90004-R

[12]

Mann A W, Birrell R D, Fedikow M A F, et al. Vertical ionic migration: Mechanisms, soil anomalies, and sampling depth for mineral exploration[J].Geochemistry: Exploration, Environment, Analysis, 2005, 5(3): 201-210. doi: 10.1144/1467-7873/03-045

[13]

程志中, 王学求, 喻劲松, 等. 深穿透地球化学方法在黄土覆盖区的应用——张全庄金矿试验实例[J]. 矿床地质, 2002, 21(Supplement 1): 1124-1127.

Cheng Z Z, Wang X Q, Yu J S, et al. Application of deep-penetration geochemistry in Loess Terrain: A case of Zhangquanzhuang gold deposit[J]. Mineral Deposits, 2002, 21(Supplement 1): 1124-1127.

[14]

文雪琴. 金活动态测量法在红壤区与干旱黄土区找矿中的应用[J]. 地球科学与环境学报, 2007, 29(4): 369-373. doi: 10.3969/j.issn.1672-6561.2007.04.006

Wen X Q. Application of selective leaching of mobile metals in red earth and loess terrain[J].Journal of Earth Sciences and Environment, 2007, 29(4): 369-373. doi: 10.3969/j.issn.1672-6561.2007.04.006

[15]

姚文生, 王学求, 张必敏, 等. 鄂尔多斯盆地砂岩型铀矿深穿透地球化学勘查方法实验[J]. 地学前缘, 2012, 19(3): 167-176.

Yao W S, Wang X Q, Zhang B M, et al. Piolt study of deep-penetrating geochemical for standstone type uranium deposit, Ordos Basin[J]. Earth Science Frontiers, 2012, 19(3): 167-176.

[16]

叶荣, 王学求, 赵伦山, 等. 戈壁覆盖区金窝子矿带深穿透地球化学方法研究[J]. 地质与勘探, 2004, 40(6): 65-70. doi: 10.3969/j.issn.0495-5331.2004.06.015

Ye R, Wang X Q, Zhao L S, et al. Deep penetration geochemistry methods in Gobi-overburden terrain of the Jinwozi metallogenic belt[J].Geology and Exploration, 2004, 40(6): 65-70. doi: 10.3969/j.issn.0495-5331.2004.06.015

[17]

刘汉粮, 张必敏, 王学求, 等. 穿透性地球化学在干旱戈壁荒漠覆盖区的应用——甘肃花牛山铅锌矿试验实例[J]. 地球学报, 2021, 42(4): 545-554.

Liu H L, Zhang B M, Wang X Q, et al. The application of deep-penetrating geochemistry in the arid Gobi desert terrain: A case study in the Huaniushan Pb-Zn deposit, Gansu Province[J]. Acta Geoscientica Sinica, 2021, 42(4): 545-554.

[18]

张必敏, 王学求, 徐善法, 等. 穿透性地球化学勘查技术在隐伏砂岩型铀矿调查中的应用研究[J]. 地球学报, 2020, 41(6): 770-784.

Zhang B M, Wang X Q, Xu S F, et al. The research and application of deep-penetrating geochemical exploration technology in the survey of concealed sandstone-type uranium deposits[J]. Acta Geoscientica Sinica, 2020, 41(6): 770-784.

[19]

付亚龙, 常海钦, 林鑫, 等. 金属活动态测量在冲积平原覆盖区隐伏矿的试验研究——以安徽无为龙潭头硫铁矿为例[J]. 物探化探计算技术, 2019, 41(3): 401-411. doi: 10.3969/j.issn.1001-1749.2019.03.16

Fu Y L, Chang H Q, Lin X, et al. Application of selective leaching of mobile metals in overburden to mineral exploration in alluvial plain: A case study from Longtantou pyrite deposit, Anhui Province[J].Computing Techniques for Geophysical and Geochemical Exploration, 2019, 41(3): 401-411. doi: 10.3969/j.issn.1001-1749.2019.03.16

[20]

文雪琴. 荒漠戈壁区深穿透地球化学的理论方法及应用研究[D]. 西安: 长安大学, 2008.

Wen X Q. Deep-penetrating geochemistry: Theoretical consideration, methodology and application in desert terrain[D]. Xi'an: Chang'an Unicersity, 2008.

[21]

文雪琴. 金属活动态提取法及其在黑龙江大兴安岭森林覆盖区的应用[J]. 地球科学与环境学报, 2006, 28(4): 43-48. doi: 10.3969/j.issn.1672-6561.2006.04.008

Wen X Q. Application of selective leaching of mobile metal forms in forestry terrain, Daxinganling, Heilongjiang[J].Journal of Earth Sciences and Environment, 2006, 28(4): 43-48. doi: 10.3969/j.issn.1672-6561.2006.04.008

[22]

胡忠贤, 于援帮. 森林沼泽区从区域到矿区有效寻找隐伏矿的地球化学方法组合[J]. 物探与化探, 2009, 33(1): 35-37, 42.

Hu Z X, Yu Y B. The combination of effective geochemical methods in search for concealed ore deposits from region to ore district in the forest-swamp area[J]. Geophysical & Geochemical Exploration, 2009, 33(1): 35-37, 42.

[23]

鲁美, 叶荣, 张必敏, 等. 覆盖区地球化学勘查进展[J]. 矿床地质, 2019, 38(6): 1408-1411.

Lu M, Ye R, Zhang B M, et al. Geogas prospecting for buried deposits under loess overburden: Taking Shenjiayao gold deposit as an example[J]. Mineral Deposits, 2019, 38(6): 1408-1411.

[24]

谢学锦, 王学求. 深穿透地球化学新进展[J]. 地学前缘, 2003, 10(1): 225-238. doi: 10.3321/j.issn:1005-2321.2003.01.027

Xie X J, Wang X Q. Recent developments on deep-penetrating geochemistry[J].Earth Science Frontiers, 2003, 10(1): 225-238. doi: 10.3321/j.issn:1005-2321.2003.01.027

[25]

文雪琴, 王学求, 叶荣, 等. 干旱戈壁区金属元素的垂向变化与分散——以新疆金窝子金矿为例[J]. 矿物岩石地球化学通报, 2010, 29(1): 38-44, 51. doi: 10.3969/j.issn.1007-2802.2010.01.006

Wen X Q, Wang X Q, Ye R, et al. Vertical variation of metal elements in arid desert regolith-A case study at the Jinwozi gold deposit, Xinjiang, China[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2010, 29(1): 38-44, 51. doi: 10.3969/j.issn.1007-2802.2010.01.006

[26]

王学求, 刘占元, 叶荣, 等. 新疆金窝子矿区深穿透地球化学对比研究[J]. 物探与化探, 2003, 27(4): 247-250, 254. doi: 10.3969/j.issn.1000-8918.2003.04.001

Wang X Q, Liu Z Y, Ye R, et al. Deep-penetrting geochemistry: A comparative study in the Jinwazi gold ore district, Xinjiang[J].Geophysical & Geochemical Exploration, 2003, 27(4): 247-250, 254. doi: 10.3969/j.issn.1000-8918.2003.04.001

[27]

Xie X J, Lu Y X, Yao W S, et al. Further study on deep penetrating geochemistry over the spence porphyry copper deposit, Chile[J].Geoscience Frontiers, 2011, 2(3): 303-311. doi: 10.1016/j.gsf.2011.05.017

[28]

曹立峰, 王敏捷, 申硕果, 等. 活动态提取-电感耦合等离子体质谱法测定栾川矿集区深穿透地球化学样品中铜铅锌钨钼[J]. 岩矿测试, 2015, 34(4): 424-429.

Cao L F, Wang M J, Shen S G, et al. Determination of Cu, Pb, Zn, W and Mo in deep-penetrating geochemical samples of the Luanchuan ore concentrated district by ICP-MS with extraction elements of mobile forms[J]. Rock and Mineral Analysis, 2015, 34(4): 424-429.

[29]

唐志中, 陈静, 孙自军, 等. 深穿透地球化学样品中金活动态提取条件研究[J]. 黄金, 2013, 34(6): 71-74.

Tang Z Z, Chen J, Sun Z J, et al. Leaching conditions for determination of mobile forms of gold in deep-penetrating geochemical samples[J]. Gold, 2013, 34(6): 71-74.

[30]

刘新伟, 汪超, 韩璐, 等. 王家坪金矿床地质地球化学特征及成因探讨[J]. 黄金科学技术, 2016, 24(4): 39-46.

Liu X W, Wang C, Han L, et al. Geological geochemical characteristics and genesis of Wangjiaping gold deposit[J]. Gold Science and Technology, 2016, 24(4): 39-46.

[31]

汪超, 陈文强, 刘新伟, 等. 陕西王家坪金矿床与国内外典型卡林型金矿床地质特征对比——兼论卡林型金矿床的判定原则[J]. 矿产勘查, 2016, 7(6): 904-913. doi: 10.3969/j.issn.1674-7801.2016.06.003

Wang C, Chen W Q, Liu X W, et al. Comparison of geological characteristics between Wangjiaping gold deposit in Shaanxi and the domestic and foreign Carlin-type gold deposits: Discussion on judgment principles of Carlin-type gold deposit[J].Mineral Exploration, 2016, 7(6): 904-913. doi: 10.3969/j.issn.1674-7801.2016.06.003

[32]

Wedepohl K H. The composition of the continental crust[J].Geochimica Et Cosmochimica Aeta, 1995, 59(7): 1217-1232. doi: 10.1016/0016-7037(95)00038-2

[33]

王学求, 叶荣. 纳米金属微粒发现——深穿透地球化学的微观证据[J]. 地球学报, 2011, 32(1): 7-12. doi: 10.3975/cagsb.2011.01.02

Wang X Q, Ye R. Findings of nanoscale metal particles: Evidence for deep-penetrating geochemsitry[J].Acta Geoscientica Sinica, 2011, 32(1): 7-12. doi: 10.3975/cagsb.2011.01.02

[34]

张必敏, 王学求, 叶荣, 等. 土壤微细粒分离测量技术在黄土覆盖区隐伏金矿勘查中的应用及异常成因探讨[J]. 桂林理工大学学报, 2019, 39(2): 301-310.

Zhang B M, Wang X Q, Ye R, et al. Fine-grained soil prospecting method for mineral exploration in loess covered areas and discussion on the origin of geochemical anomalies[J]. Journal of Guilin University of Technology, 2019, 39(2): 301-310.

[35]

王冀艳, 胡家祯, 丁汉铎, 等. 金活动态提取剂提取-电感耦合等离子体质谱法测定深穿透地球化学样品中的金[J]. 岩矿测试, 2020, 39(4): 525-534.

Wang Y Y, Hu J Z, Ding H D, et al. Determination of gold mobile fraction in deep-penetrating geochemical samples by ICP-MS with pre-extraction[J]. Rock and Mineral Analysis, 2020, 39(4): 525-534.

[36]

Mann A W. Strong versus weak digestions: Ligand-based soil extraction geochemistry[J].Geochemistry-Exploration Environment Analysis, 2010, 10: 17-26. doi: 10.1144/1467-7873/09-216

[37]

白金峰, 卢荫庥. 活动态测量中滤材的选择及其应用[J]. 物探与化探, 2001, 25(4): 272-278. doi: 10.3969/j.issn.1000-8918.2001.04.005

Bai J F, Lu Y X. Filter optimization and application in momeo survey[J].Geophysical & Geochemical Exploration, 2001, 25(4): 272-278. doi: 10.3969/j.issn.1000-8918.2001.04.005

[38]

徐进力, 邢夏, 张鹏鹏, 等. 元素活动态提取条件和分析方法的应用研究[J]. 地质学报, 2020, 94(3): 982-990. doi: 10.3969/j.issn.0001-5717.2020.03.022

Xu J L, Xing X, Zhang P P, et al. Application research on extraction conditions and analysis methods of active state elements[J].Acta Geologica Sinica, 2020, 94(3): 982-990. doi: 10.3969/j.issn.0001-5717.2020.03.022

[39]

赵伟, 王玉林, 钟莅湘, 等. 土壤样品中贵金属活动态提取技术[J]. 岩矿测试, 2010, 29(3): 212-216. doi: 10.3969/j.issn.0254-5357.2010.03.003

Zhao W, Wang Y L, Zhong L X, et al. Extraction and determination methods for mobile forms of precious metals in soil samples[J]. Rock and Mineral Analysis, 2010, 29(3): 212-216. doi: 10.3969/j.issn.0254-5357.2010.03.003

[40]

葛江洪, 王英凯, 张旭, 等. 黑龙江省特殊景观区化探土壤样品中钼的相态分析方法及应用[J]. 岩矿测试, 2019, 38(2): 222-227.

Ge J H, Wang Y K, Zhang X, et al. Phase state analysis method and application of molybdenum in soil samples of special landscape exploration in Heilongjiang Province[J]. Rock and Mineral Analysis, 2019, 38(2): 222-227.

[41]

刘汉粮, 王学求, 张必敏, 等. 沙泉子隐伏铜镍矿地球化学勘查方法试验[J]. 物探化探计算技术, 2014, 36(6): 763-770.

Liu H L, Wang X Q, Zhang B M, et al. Geohemical exploration for concealed Cu-Ni deposit, Shaquanzi, Xinjiang[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2014, 36(6): 763-770.

[42]

樊会民, 李方周. 陕西省地球化学景观划分及地球化学勘查方法选择[J]. 陕西地质, 2013, 31(1): 49-53.

Fan H M, Li F Z. Compartment aliantion of geochemical landscape and selection of geochemical exploration method in Shaanxi Province[J]. Geology of Shaanxi, 2013, 31(1): 49-53.

[43]

彭珍. 北山地区深穿透地球化学方法的试验研究[D]. 北京: 中国地质大学(北京), 2013.

Peng Z. Study on experimental method of the deep-penetration geochemistry of Beishan area[D]. Beijing: China University of Geosciences (Beijing), 2013.

相似文献(共20条)

[1]

曹立峰, 王敏捷, 申硕果, 闫红岭, 连文莉, 刘军. 活动态提取-电感耦合等离子体质谱法测定栾川矿集区深穿透地球化学样品中铜铅锌钨钼. 岩矿测试, 2015, 34(4): 424-429. doi: 10.15898/j.cnki.11-2131/td.2015.04.008

[2]

王冀艳, 胡家祯, 丁汉铎, 曹立峰, 张明炜, 张帆, 黄杰, 姚文生. 金活动态提取剂提取-电感耦合等离子体质谱法测定深穿透地球化学样品中的金. 岩矿测试, 2020, 39(4): 525-534. doi: 10.15898/j.cnki.11-2131/td.201909300142

[3]

藏吉良, 丁春霞, 尚宝忠, 吴建政, 赵伟, 张帆, 王筱丽, 孙爱琴. 深穿透地球化学样品中铜活动态提取条件研究与初步应用. 岩矿测试, 2012, 31(4): 607-612.

[4]

张静梅, 张培新, 高孝礼, 黄光明, 窦银萍. 电感耦合等离子体质谱法同时测定地下水中硼溴碘. 岩矿测试, 2008, 27(1): 25-28.

[5]

尹周澜, 王薇惟, 覃祚明, 黄旭. 电感耦合等离子体质谱法测定高纯铟中铁. 岩矿测试, 2008, 27(3): 193-196.

[6]

李刚, 曹小燕. 电感耦合等离子体质谱法测定地质样品中锗和镉的干扰及校正. 岩矿测试, 2008, 27(3): 197-200.

[7]

赵 伟, 王玉林, 钟莅湘, 温婷婷, 孙爱琴. 土壤样品中贵金属活动态提取技术. 岩矿测试, 2010, 29(3): 212-216.

[8]

文春华, 罗小亚, 李胜苗, 李建康. 应用X射线荧光光谱-电感耦合等离子体质谱法研究湖南传梓源地区稀有金属矿床伟晶岩地球化学特征. 岩矿测试, 2015, 34(3): 359-365. doi: 10.15898/j.cnki.11-2131/td.2015.03.017

[9]

应立娟, 林彬, 王立强, 李超, 王阔. 应用电感耦合等离子体质谱法研究西藏甲玛超大型铜多金属矿床辉钼矿稀土元素和微量元素地球化学特征. 岩矿测试, 2015, 34(3): 366-374. doi: 10.15898/j.cnki.11-2131/td.2015.03.018

[10]

苏晓云, 刘善宝, 高虎, 王成辉, 刘战庆, 胡正华, 刘建光, 陈国华, 万浩章. 基于电感耦合等离子体质谱/光谱技术研究朱溪钨铜矿床原生晕地球化学特征. 岩矿测试, 2015, 34(2): 252-260. doi: 10.15898/j.cnki.11-2131/td.2015.02.017

[11]

沈宇, 张尼, 高小红, 李皓, 马怡飞. 微波消解电感耦合等离子体质谱法测定地球化学样品中钒铬镍锗砷. 岩矿测试, 2014, (5): 649-654.

[12]

吴健玲, 刘亚轩, 张勤. 电感耦合等离子体质谱法直接同时测定地球化学样品中镓铟铊. 岩矿测试, 2003, (1): 21-27.

[13]

阳国运, 唐裴颖, 张洁, 战大川, 覃盛, 何雨珊. 电感耦合等离子体质谱法测定地球化学样品中的硼碘锡锗. 岩矿测试, 2019, 38(2): 154-159. doi: 10.15898/j.cnki.11-2131/td.201805070055

[14]

刘金巍, 刘雪松, 边超, 张涛, 张智印, 魏建朋. 甲烷动态反应电感耦合等离子体质谱法测定地下水中痕量硒. 岩矿测试, 2019, 38(1): 85-91. doi: 10.15898/j.cnki.11-2131/td.201804200049

[15]

施意华, 杨仲平, 熊传信, 徐华. 蒸馏分离-电感耦合等离子体质谱法测定地球化学样品中痕量钌和锇. 岩矿测试, 2010, 29(4): 350-354.

[16]

徐进力, 邢夏, 郝志红, 刘彬, 白金峰. 聚氨酯泡塑吸附-电感耦合等离子体质谱法测定地球化学样品中的微量铊. 岩矿测试, 2012, 31(3): 430-433.

[17]

邓长生, 李盛富, 张建梅, 王明力, 勒孚河, 牛芳红. 常压酸溶-电感耦合等离子体质谱法测定地球化学勘查样品中的铌钽. 岩矿测试, 2018, 37(4): 364-370. doi: 10.15898/j.cnki.11-2131/td.201802060016

[18]

张保科, 温宏利, 王蕾, 马生凤, 巩爱华. 封闭压力酸溶-盐酸提取-电感耦合等离子体质谱法测定地质样品中的多元素. 岩矿测试, 2011, 30(6): 737-744.

[19]

鲁麟, 梁婷, 陈郑辉, 王勇, 黑欢, 谢星. 利用X射线粉晶衍射和电感耦合等离子体质谱法研究江西西华山钨矿床中黑钨矿的矿物学特征及指示意义. 岩矿测试, 2015, 34(1): 150-160. doi: 10.15898/j.cnki.11-2131/td.2015.01.019

[20]

陈贺海, 鲍惠君, 付冉冉, 应海松, 芦春梅, 金献忠, 肖达辉. 微波消解-电感耦合等离子体质谱法测定铁矿石中铬砷镉汞铅. 岩矿测试, 2012, 31(2): 234-240.

计量
  • PDF下载量(17)
  • 文章访问量(2608)
  • HTML全文浏览量(694)
  • 被引次数(0)
目录

Figures And Tables

金活动态提取ICP-MS法测定王家坪金矿床深穿透地球化学样品中的金

杨海涛, 康文贵, 汪超, 胡西顺, 刘新伟