【引用本文】 杨瑞林, 白燕, . 应用能谱-扫描电镜和X射线衍射技术研究原煤伴生矿物中稀土和放射性元素赋存形式[J]. 岩矿测试, 2019, 38(4): 382-393. doi: 10.15898/j.cnki.11-2131/td.201811210125
YANG Rui-lin, BAI Yan. The Occurrence of Rare Earth and Radioactive Elements in the Associated Minerals with Raw Coal by EDX-SEM and XRD[J]. Rock and Mineral Analysis, 2019, 38(4): 382-393. doi: 10.15898/j.cnki.11-2131/td.201811210125

应用能谱-扫描电镜和X射线衍射技术研究原煤伴生矿物中稀土和放射性元素赋存形式

1. 

山西师范大学分析测试中心, 山西 临汾 041004

2. 

山西省地质矿产局二一三实验室, 山西 临汾 041000

收稿日期: 2018-11-12  修回日期: 2019-03-11  接受日期: 2019-04-09

基金项目: 山西省国土资源厅资助项目"山西省霍西煤田煤炭中共伴生矿产资源调查与评价"(SXZDF20161029)

作者简介: 杨瑞林, 高级实验师, 主要从事电子显微技术的应用研究。E-mail:3500895295@qq.com

The Occurrence of Rare Earth and Radioactive Elements in the Associated Minerals with Raw Coal by EDX-SEM and XRD

1. 

Center of Analysis and Test, Shanxi Normal University, Linfen 041004, China

2. 

Laboratory 213 of Shanxi Geology Mineral Bureau, Linfen 041000, China

Received Date: 2018-11-12
Revised Date: 2019-03-11
Accepted Date: 2019-04-09

摘要:研究原煤中稀土及放射性元素的赋存形式,对原煤是集中还是分散利用、燃煤过程中粉煤灰的排放截留、从原煤或粉煤灰中提取稀土及放射性元素等方面都具有指导意义。由前人研究可知不同矿区原煤中稀土及放射性元素的赋存形式有差异。本文研究了山西省霍西煤田两个矿区175个煤样中稀土及放射性元素的赋存形式,应用背散射电子图像(BSEI)定位分析区域,应用BSEI、能谱-扫描电镜法(EDX-SEM)中的面分析(EDS-mapping)和粉晶X射线衍射法确定了主要伴生矿物,应用BSEI和EDX-SEM中的点分析(EDS-point)确定了微量伴生矿物。在煤样中发现了铈镧钕钇镝钪六种稀土元素及一种放射性元素钍,其中铈、镧和钕主要以磷酸盐形式伴生于高岭石类矿物中,部分伴生在含氧化铝或氧化硅较多的矿物中,少量存在于碳中;钇、镝以磷酸盐或氧化物形式独立存在于碳中;在部分锆石、独居石中分别发现了钪和钍。研究表明,该矿区煤样中稀土元素主要以细粒自生矿物的形式伴生在其他矿物中,少数以独立矿物的形式存在于碳中,放射性元素钍伴生在独居石中。

关键词: 原煤, 伴生矿物, 稀土元素, , 能谱-扫描电镜法, 粉晶X射线衍射法

要点

(1) 进一步规范了研究原煤中稀土及放射性元素赋存形式的方法。

(2) 应用BSEI和EDS-point提高了检测原煤中稀土及放射性元素的灵敏度。

(3) 阐明了霍西煤田原煤中发现的六种稀土及一种放射性元素的赋存形式。

The Occurrence of Rare Earth and Radioactive Elements in the Associated Minerals with Raw Coal by EDX-SEM and XRD

ABSTRACT

BACKGROUND:

The study on the occurrences of rare earth and radioactive elements in raw coal is of great significance in terms of whether the raw coal is concentrated or dispersed, the emission of fly ash is intercepted, and the rare earth elements (REEs) and radioactive elements are extracted from raw coal or fly ash. Previous studies showed that the occurrences of rare earth and radioactive elements in raw coal of various mining areas are different.

OBJECTIVES:

To study the occurrences of rare earth and radioactive elements in 175 coal samples from two mining areas in the Huoxi coalfield of Shanxi Province.

METHODS:

The analysis region was located by back scattered electron imaging (BSEI), and the main associated minerals were determined by EDS-mapping and powder X-ray diffraction. The trace associated minerals were determined by BSEI and EDS-point methods.

RESULTS:

Six rare earth elements and a radioactive element were determined in the coal samples. Cerium, lanthanum and neodymium were associated with kaolinite minerals in the form of phosphate, partly occuring in minerals containing alumina or silicon oxide, and in carbon to a small degree. Yttrium and dysprosium existed independently in carbon in the form of phosphate or oxide, whereas scandium was found in zircon, and thorium is found in monazite.

CONCLUSIONS:

The REE in the coal samples of the mining area were associated with other minerals in the form of fine-grained authigenic minerals, and a few occurred as independent minerals in carbon. The radioactive element thorium was associated with monazite.

KEY WORDS: feed coal, associated minerals, rare earth elements, thorium, energy dispersive X-ray spectrometry-scanning electron microscopy, powder X-ray diffraction

HIGHLIGHTS

(1) Further method standardization of studying the occurrence of rare earth and radioactive elements in raw coal.

(2) Back scattered electron imaging and EDS-point were used to improve the sensitivity of rare earth and radioactive elements in raw coal.

(3) Illustration of the occurrences of six rare earth elements and one radioactive element in raw coal from the Huoxi coalfield.

本文参考文献

[1]

Zielinski R A, Budahn J R. Radionuclides in fly ash and bottom ash:Improved characterization based on radiography and low energy gamma-ray spectrometry[J].Fuel, 1998, 77(4): 259-267. doi: 10.1016/S0016-2361(97)00194-4

[2]

Kizilshtein L Y, Kholodkov Y I. Ecologically hazardous elements in coals of the Donets Basin[J].International Journal of Coal Geology, 1999, 40: 189-197. doi: 10.1016/S0166-5162(98)00068-8

[3]

Goodarzi F. Assessment of elemental content of milled coal, combustion residues, and stack emitted materials:Possible environmental effects for a Canadian pulverized coal-fired power plant[J].International Journal of Coal Geology, 2006, 65: 17-25. doi: 10.1016/j.coal.2005.04.006

[4]

Flues M, Camargo I M C, Fiqueiredo F P M, et al. Evaluation of radionuclides concentration in Brazilian coals[J].Fuel, 2007, 86: 807-812. doi: 10.1016/j.fuel.2006.09.013

[5]

Smolka-Danielowska D. Rare earth elements in fly ashes created during the coal burning process in certain coal-fired power plants operating in Poland-Upper Silesian industrial region[J].Journal of Environmental Radioactivity, 2010, 101: 965-968. doi: 10.1016/j.jenvrad.2010.07.001

[6]

Seredin V V. Rare earth element-bearing coals from the Russian Far East deposit[J].International Journal of Coal Geology, 1996, 30: 101-129. doi: 10.1016/0166-5162(95)00039-9

[7]

Seredin V V, Dai S. Coal deposits as potential alternative source of lanthanides and yttrium[J].International Journal of Coal Geology, 2012, 94: 67-93. doi: 10.1016/j.coal.2011.11.001

[8]

Dai S F, Jiang Y F, Ward C R, et al. Mineralogical and geochemical compositions of the coal in the Guanbanwusu mine, Inner Mongolia, China:Further evidence for the existence of an Al (Ga and REE) ore deposit in the Jungar coalfield[J].International Journal of Coal Geology, 2012, 98: 10-40. doi: 10.1016/j.coal.2012.03.003

[9]

Seredin V V, Dai S F, Sun Y Z, et al. Coal deposits as promising sources of rare metals for alternative power and energy-efficient technologies[J].Applied Geochemistry, 2013, 31: 1-11. doi: 10.1016/j.apgeochem.2013.01.009

[10]

Funaria V, Bokhari S N H, Vigliotti L, et al. The rare earth elements in municipal solid waste incinerators ash and promising tools for their prospecting[J].Journal of Hazardous Materials, 2016, 301: 471-479. doi: 10.1016/j.jhazmat.2015.09.015

[11]

Zhang W C, Rezaee M, Bhagavatula A, et al. A review of the occurrence and promising recovery methods of rare earth elements from coal and coal by-products[J].International Journal of Coal Preparation and Utilization, 2015, 35: 295-330. doi: 10.1080/19392699.2015.1033097

[12]

Rozelle P L, Khadilkar A B, Pulati N, et al. A study on removal of rare earth elements from U.S. coal byproducts by ion exchange[J].Metallurgical and Materials Transactions E, 2016, 3: 6-17. doi: 10.1007/s40553-015-0064-7

[13]

Lin R H, Howard B H, Roth E A, et al. Enrichment of rare earth elements from coal and coal by-products by physical separations[J].Fuel, 2017, 200: 506-520. doi: 10.1016/j.fuel.2017.03.096

[14]

赵志根, 唐修义, 李宝芳, 等. 淮南矿区煤的稀土元素地球化学[J]. 沉积学报, 2000, 18(3): 453-459. doi: 10.3969/j.issn.1000-0550.2000.03.022

Zhao Z G, Tang X Y, Li B F, et al. Geochemistry of rare-earth elements of coal in Huainan mining area[J].Acta Sedimentologica Sinica, 2000, 18(3): 453-459. doi: 10.3969/j.issn.1000-0550.2000.03.022

[15]

李大华, 胡礼忠, 陈坤, 等. 中国西南煤中的稀土元素[J]. 中国煤田地质, 2002, 14(1): 11-13. doi: 10.3969/j.issn.1674-1803.2002.01.004

Li D H, Hu L Z, Chen K, et al. Rare-earth elements in coal of South-Western China[J].Coal Geology of China, 2002, 14(1): 11-13. doi: 10.3969/j.issn.1674-1803.2002.01.004

[16]

代世峰, 任德贻, 李生盛, 等. 华北若干晚古生代煤中稀土元素的赋存特征[J]. 地球学报, 2003, 24(3): 273-278. doi: 10.3321/j.issn:1006-3021.2003.03.013

Dai S H, Ren D Y, Li S S, et al. Modes of occurrence of rare earth elements in some Late Paleozoic coals of North China[J].Acta Geoscientia Sinica, 2003, 24(3): 273-278. doi: 10.3321/j.issn:1006-3021.2003.03.013

[17]

Lashari A A, Kazi T G, Ali J, et al. Evaluation of sequential extraction schemes for the ETAAS determination of cadmium concentrations in coal samples from the Thar Coalfield, Pakistan[J].Atomic Spectroscopy, 2018, 39(5): 203-209.

[18]

姜尧发, 王西勃, 赵蕾, 等. 大屯矿区太原组煤中稀土元素的赋存特征[J]. 煤炭科学技术, 2006, 34(1): 73-75. doi: 10.3969/j.issn.0253-2336.2006.01.022

Jiang Y F, Wang X B, Zhao L, et al. Distribution characteristics of rare-earth element in coal of Taiyuan group in datum mining area[J].Coal Science and Technology, 2006, 34(1): 73-75. doi: 10.3969/j.issn.0253-2336.2006.01.022

[19]

Dai S F, Zhao L, Peng S P, et al. Abundances and dis-tribution of minerals and elements in high-alumina coal fly ash from the Jungar Power Plant, Inner Mongolia, China[J].International Journal of Coal Geology, 2010, 81: 320-332. doi: 10.1016/j.coal.2009.03.005

[20]

Moore F, Esmaeili A. Mineralogy and geochemistry of the coals from the Karmozd and Kiasar coal mines, Mazandaran Province, Iran[J]. International Journal of Coal Geology, 2012, 96-97(4): 9-21.

[21]

赵明坤, 王海泉, 许军, 等. 河南省二1煤层稀土元素赋存特征研究[J]. 煤炭科学技术, 2019, 47(2): 176-180.

Zhao M K, Wang H Q, Xu J, et al. Study on occurrence features of rare earth elements from Seam B1 in Henan Province[J]. Coal Science and Technology, 2019, 47(2): 176-180.

[22]

Vassilev S V, Vassileva C G. Occurrence, abundance and origin of mineral in coals and coal ashes[J].Fuel Processing Technology, 1996, 48: 85-106. doi: 10.1016/S0378-3820(96)01021-1

[23]

Dai S F, Zhao L, Hower J C, et al. Petrology, mineralogy, and chemistry of size-fractioned fly ash from the Jungar power plant, Inner Mongolia, China, with emphasis on the distribution of rare earth elements[J].Energy Fuel, 2014, 28: 1502-1514. doi: 10.1021/ef402184t

[24]

焦汇胜,李香庭. 扫描电镜能谱仪及波谱仪分析技术[M] . 长春: 东北师范大学出版社, 2011: 76-80.

Jiao H S,Li X T. Analysis Technology in Scanning Electron Microscope-Energy Dispersive Spectrometer and Spectrometer[M] . Changchun: Northeast Normal University Press, 2011: 76-80.
[25]

赵文宽. 仪器分析实验[M] . 北京: 高等教育出版社, 2011: 55-61.

Zhao W K. Instrumental Analysis[M] . Beijing: Higher Education Press, 2011: 55-61.
[26]

胡勇平, 于学峰, 郑林伟, 等. 高分辨扫描电镜和X射线能谱Mapping技术研究碲矿物的成分和形态特征[J]. 岩矿测试, 2015, 34(6): 643-651.

Hu Y P, Yu X F, Zheng L W, et al. Application of high-resolution scanning electron microscope and X-ray energy dispersive spectroscope mapping technique to study the composition and morphology of tellurium minerals[J]. Rock and Mineral Analysis, 2015, 34(6): 643-651.

[27]

王含, 周征宇, 钟倩, 等. 电子微探针-X射线衍射-扫描电镜研究老挝石岩石矿物学特征[J]. 岩矿测试, 2016, 35(1): 56-61.

Wang H, Zhou Z Y, Zhong Q, et al. Study on petrological and mineralogical characteristics of Laos Stone by EMPA-XRD-SEM[J]. Rock and Mineral Analysis, 2016, 35(1): 56-61.

[28]

刘亚非, 王立社, 魏小燕, 等. 应用电子微探针-扫描电镜-拉曼光谱-电子背散射衍射研究一种未知Ti-Zr-U氧化物的矿物学特征[J]. 岩矿测试, 2016, 35(1): 48-55.

Liu Y F, Wang L S, Wei X Y, et al. Study on the mineralogical properties of an unknown Ti-Zr-U oxide using EMPA, SEM, Raman spectroscopy and EBSD techniques[J]. Rock and Mineral Analysis, 2016, 35(1): 48-55.

[29]

李春辉, 宋党育, 宋播艺, 等. 豫西裴沟矿二叠系构造煤中稀土元素分布与赋存特征[J]. 地球化学, 2017, 46(7): 435-457.

Li C H, Song D Y, Song B Y, et al. Distribution and occurrence of REE in the Permian tectonically deformed coals from the Peigou Mine, Western Henan Province[J]. Geochimica, 2017, 46(7): 435-457.

[30]

林龙斌. 河东煤田北部主采煤中稀土元素地球化学特征[J]. 中国煤炭地质, 2018, 30(11): 18-23. doi: 10.3969/j.issn.1674-1803.2018.11.05

Lin L B. REE Geochemical features of main mineable coal seams in Northern Hedong Coalfield[J].Coal Geology of China, 2018, 30(11): 18-23. doi: 10.3969/j.issn.1674-1803.2018.11.05

[31]

殷晓. 扫描电镜能谱法测定独居石中铈、镧、钍等元素的含量[J]. 地质与资源, 2015, 24(5): 501-506. doi: 10.3969/j.issn.1671-1947.2015.05.017

Yin X. Content determination of cerium, lanthanum, thorium and other elements in monazite with SEM-EDS analysis[J].Geology and Resources, 2015, 24(5): 501-506. doi: 10.3969/j.issn.1671-1947.2015.05.017

[32]

沈明联, 杨瑞东. 煤中稀土元素研究综述[J]. 中国煤炭地质, 2016, 28(9): 18-20. doi: 10.3969/j.issn.1674-1803.2016.09.04

Shen M L, Yang R D. Summarization of REE in coal[J].Coal Geology of China, 2016, 28(9): 18-20. doi: 10.3969/j.issn.1674-1803.2016.09.04

[33]

黄文辉, 久博, 李媛, 等. 煤中稀土元素分布特征及其开发利用前景[J]. 煤炭学报, 2019, 44(1): 287-294.

Huang W H, Jiu B, Li Y, et al. Distribution characteristics of rare earth elements in coal and its prospects on development and exploitation[J]. Journal of China Coal Society, 2019, 44(1): 287-294.

相似文献(共20条)

[1]

易芬云 黎拒难 朱义文 费俊杰. 钍—茜素氨羧络合剂极谱络合吸附波的研究. 岩矿测试, 2001, (2): 105-107.

[2]

张兆祥, 蔡金芳. 分光光度法同时测定岩矿中铀和钍. 岩矿测试, 1990, (3): 243-244.

[3]

郑静, 潘教麦, 陈骏. 氯化十六烷基吡啶-Triton X-100-对乙酰基偶氮氯膦光度法测定矿石中的微量钍. 岩矿测试, 1998, (1): 37-39.

[4]

逯义. X射线荧光光谱法测定稀土精矿中的稀土元素分量. 岩矿测试, 2012, 31(2): 277-281.

[5]

卜赛斌, 张淑英. x射线荧光光谱无标半定量分析稀土元素方法的改进. 岩矿测试, 2003, (1): 37-39.

[6]

李艳玲, 熊采华, 方金东, 黄慧萍, 陶德刚. 基体分离-电感耦合等离子体质谱测定重晶石中超痕量稀土元素. 岩矿测试, 2005, (2): 87-92.

[7]

熊采华, 储溱, 赵志飞, 熊玉祥, 柳建一. 硝酸-氢氟酸酸溶电感耦合等离子体质谱法测定黑钨矿单矿物中稀土元素. 岩矿测试, 2012, 31(4): 602-606.

[8]

查立新, 刘洪青. 单道扫描电感耦合等离子体发射光谱法测定大洋标准物质中稀土元素. 岩矿测试, 1997, (1): 23-27.

[9]

关瑾, 何传昌, 任丽艳, 牛秋玲, 阎峰, 石爽. 色谱法在稀土元素分离分析研究中的应用进展. 岩矿测试, 2012, 31(5): 767-774.

[10]

陈道华, 张欣. 等离子体发射光谱法直接测定海洋沉积物中的微量稀土元素. 岩矿测试, 2003, (1): 61-63.

[11]

周剑雄, 陈振宇, . 独居石的电子探针钍—铀—铅化学测年. 岩矿测试, 2002, (4): 241-246.

[12]

熊英, 陈文科, 田萍, 吴邦朝. 含粗粒金矿样品采集加工与分析研究进展. 岩矿测试, 2015, 34(1): 12-18. doi: 10.15898/j.cnki.11-2131/td.2015.01.002

[13]

陈宗团, 张海政. 萃取色谱富集—等离子体质谱测定海水中的超痕量稀土. 岩矿测试, 1997, (3): 201-206.

[14]

叶元今, 伊丽莹. 用DBN—偶氮胂双波长分光光度法测定微量钍. 岩矿测试, 1989, (2): 131-134.

[15]

袁黎明, 宋文骏. 二溴—氯偶氮氯膦与钍的显色反应及其应用. 岩矿测试, 1989, (3): 188-191.

[16]

潘旭红, 潘教麦. 新试剂二溴邻硝基偶氮胂光度测定矿石中的钍. 岩矿测试, 1991, (2): 81-83.

[17]

宋金如, 梁雨果. 几种不对称变色酸双偶氮胂类显色剂与钍的显色反应. 岩矿测试, 1990, (2): 134-138.

[18]

汪君, 王頔, 邓长生, 张建梅, 羊鸫, 王斌堂, 朱素霞. 电感耦合等离子体发射光谱法测定地球化学样品中的钍. 岩矿测试, 2014, 33(4): 501-505.

[19]

张延安, 沈珠琴. 铀钍分析方法某些进展. 岩矿测试, 1992, (1): 186-190.

[20]

张海政, 伊丽莹. 钍—偶氮胂Ⅲ—乙醇体系显色反应的研究及应用. 岩矿测试, 1991, (3): 182-184.

计量
  • PDF下载量(32)
  • 文章访问量(176)
  • HTML全文浏览量(17)
  • 被引次数(0)
目录

Figures And Tables

应用能谱-扫描电镜和X射线衍射技术研究原煤伴生矿物中稀土和放射性元素赋存形式

杨瑞林, 白燕