【引用本文】 袁永海, 杨锋, 余红霞, 等. 微波消解-多接收电感耦合等离子体质谱高精度测定锶钕同位素组成[J]. 岩矿测试, 2018, 37(4): 356-363. doi: 10.15898/j.cnki.11-2131/td.201707290122
YUAN Yong-hai, YANG Feng, YU Hong-xia, et al. High-precision Measurement of Strontium and Neodymium Isotopic Composition by Multi-collector Inductively Coupled Plasma-Mass Spectrometry with Microwave Digestion[J]. Rock and Mineral Analysis, 2018, 37(4): 356-363. doi: 10.15898/j.cnki.11-2131/td.201707290122

微波消解-多接收电感耦合等离子体质谱高精度测定锶钕同位素组成

1. 

桂林理工大学广西隐伏金属矿产勘查重点实验室, 广西 桂林 541004

2. 

桂林理工大学地球科学学院, 广西 桂林 541004

3. 

中国地质大学(北京)地球科学与资源学院, 北京 100083

收稿日期: 2017-07-29  修回日期: 2018-03-22  接受日期: 2018-05-15

基金项目: 国家自然科学基金项目(41463002)

作者简介: 袁永海, 工程师, 从事岩石矿物分析测试工作。E-mail:hg20109@163.com

High-precision Measurement of Strontium and Neodymium Isotopic Composition by Multi-collector Inductively Coupled Plasma-Mass Spectrometry with Microwave Digestion

1. 

Guangxi Key Laboratory of Hidden Metallic Ore Deposits Exploration, Guilin University of Technology, Guilin 541004, China

2. 

College of Earth Sciences, Guilin University of Technology, Guilin 541004, China

3. 

School of Earth Sciences and Resources, China University of Geosciences(Beijing), Beijing 100083, China

Received Date: 2017-07-29
Revised Date: 2018-03-22
Accepted Date: 2018-05-15

摘要:应用多接收器电感耦合等离子体质谱仪(MC-ICP-MS)测定地质样品中锶、钕同位素组成时,化学前处理流程冗长、复杂,且容易出现样品未完全溶解的现象。本文采用微波消解法消解样品,在保证消解效果的前提下有效地缩短了溶样时间,在此基础上研究了锶、钕化学分离和质谱测试流程,重点考察了树脂柱的回收率和记忆效应。结果表明:树脂经10次使用后的锶、钕流程空白均低于1.0 ng,但回收率明显下降,分别由原来的98%和90%降到20%和50%,若待测样品中锶、钕含量较低,所接收的锶、钕则达不到质谱仪测试范围,因此建议锶特效树脂使用次数不超过5次,AG50W-X8稀土柱和Ln树脂使用次数不超过10次。整套流程应用于国际地质标准样品(BCR-2、W-2a、BHVO-2、AGV-2)的锶、钕分离,MC-ICP-MS所得的87Sr/86Sr、143Nd/144Nd测定值与文献报道值一致,仪器的内精度2SE(n=50)和方法的外精度2SD(n=6)均优于0.0015%,表明该流程可以满足地质样品中锶、钕同位素高精度测定的要求。

关键词: 微波消解, 淋洗曲线, , , 柱残留, 多接收器电感耦合等离子体质谱法

要点

(1) 采用微波消解法溶样,能有效保证锶、钕同位素组成分析中的消解效果并缩减溶样时间。

(2) 实验选择的锶特效树脂(100~150 μm)、稀土柱AG50W-X8(200~400目)及钕柱Ln-B50-S(50~100目)的选择性强,获得的锶、钕馏分对铷、铈等元素的干扰可以忽略。

(3) 在锶、钕同位素分离过程中,树脂柱的回收率与使用次数成反比。

High-precision Measurement of Strontium and Neodymium Isotopic Composition by Multi-collector Inductively Coupled Plasma-Mass Spectrometry with Microwave Digestion

ABSTRACT

BACKGROUND:

Determination of strontium (Sr) and neodymium (Nd) isotopic composition in geological samples by Multi-collector Inductively Coupled Plasma-Mass Spectrometry (MC-ICP-MS) needs a lengthy and complex chemical preparation procedure. Moreover, samples cannot be dissolved completely.

OBJECTIVES:

To effectively digest samples and eliminate interferences from the experimental process.

METHODS:

Geological samples were dissolved by microwave digestion. The processes of Sr, Nd chemical separation and mass spectrometry analyses were studied. In particular, the recovery and memory effect of resin column were investigated.

RESULTS:

The research shows that after ten times usages Sr and Nd procedure, blanks of the resin are less than 1.0 ng. However, the recovery decreases significantly from 98% to 20% and 90% to 50%, respectively. If the analyzed samples contain low concentrations of Sr and Nd, which are insufficient for mass spectrometry analysis, it is suggested that Sr special effect resin should be used no more than 5 times and AG50W-X8 and Ln resin should be used no more than 10 times. The entire procedure is applied in the separation of Sr and Nd of international standard geological samples (BCR-2, W-2a, BHVO-2, AGV-2). The acquired 87Sr/86Sr and 143Nd/144Nd ratios are consistent with those in the literature, and the instrumental internal precision 2SE (n=50) and methodological external precision 2SD (n=6) are better than 0.0015%.

CONCLUSIONS:

The proposed method meets the requirement of high-precision measurement of Sr and Nd isotopic composition in geological samples.

KEY WORDS: microwave digestion, elution curve, strontium, neodymium, column residuals, Multi-collector Inductively Coupled Plasma-Mass Spectrometry

HIGHLIGHTS

(1) Using microwave digestion to dissolve samples guarantees digestion effects and reduces dissolving time in Sr-Nd isotope analysis.

(2) The fractions of Sr and Nd have negligible interference on Rb and Ce because of the high selectivity of the Sr-special resin (100-150 μm), rare earth column AG50W-X8 (200-400 mesh) and Nd column Ln-B50-S (50-100 mesh).

(3) During separation of Sr and Nd, the recovery of elements in the resin column decreased obviously with the increasing use.

本文参考文献

[1]

王文元, 高建国, 侬阳霞, 等. 云南禄劝噜鲁铅锌矿床铷-锶同位素年代学与硫、铅同位素地球化学特征[J]. 地质通报, 2017, 36(7): 1294-1304. doi: 10.3969/j.issn.1671-2552.2017.07.019

Wang W Y, Gao J G, Nong Y X, et al. Rb-Sr isotopic geochronology and geochemical characteristics of S and Pb isotopes of the Lulu Pb-Zn deposit in Luquan, Yunnan Province[J].Geological Bulletin of China, 2017, 36(7): 1294-1304. doi: 10.3969/j.issn.1671-2552.2017.07.019

[2]

Deng K, Li Q G, Chen Y J, et al. Geochronology, geochemistry and Sr-Nd-Pb-Hf isotopes of the Early Jurassic granodiorite from the Sankuanggou intrusion, Heilongjiang Province, Northeastern China:Petrogenesis and geodynamic implications[J].Lithos, 2018, 296-299: 113-128. doi: 10.1016/j.lithos.2017.10.016

[3]

刘贤荣, 林晓辉, 于瑞莲, 等. 铅-锶-钕同位素示踪技术在PM2.5源解析中的应用[J]. 环境科学导刊, 2016, 35(5): 55-59. doi: 10.3969/j.issn.1673-9655.2016.05.013

Liu X R, Lin X H, Yu R L, et al. Application of Pb-Sr-Nd isotopic tracing technique in the recognition and analysis of PM2.5 pollution sources[J].Environmental Science Survey, 2016, 35(5): 55-59. doi: 10.3969/j.issn.1673-9655.2016.05.013

[4]

邵磊, 李长安, 张玉芬, 等. 长江上游水系沉积物锶-钕同位素组成及物源示踪[J]. 沉积学报, 2014, 32(2): 290-295.

Shao L, Li C A, Zhang Y F, et al. Sr-Nd isotopic compositions of the upper Yangtze River sediments:Implications for tracing sediment sources[J]. Acta Sedimentologica Sinca, 2014, 32(2): 290-295.

[5]

刘家军, 吕志成, 吴胜华, 等. 南秦岭大巴山大型钡成矿带中锶同位素组成及其成因意义[J]. 地学前缘, 2014, 21(5): 23-30.

Liu J J, Lü Z C, Wu S H, et al. Strontium isotopic composition and its genetic significance of the Dabashan large barium metallogenic belt in Southern Qingling mountains[J]. Earth Science Frontiers, 2014, 21(5): 23-30.

[6]

蔡伊, 张乾, 张永斌, 等. 桂中镇圩碳酸盐岩型滑石矿床热液方解石的锶同位素研究[J]. 地球化学, 2015, 44(5): 427-437. doi: 10.3969/j.issn.0379-1726.2015.05.003

Cai Y, Zhang Q, Zhang Y B, et al. Strontium isotopic geochemistry of hydrothermal calcites in carbonate-hosted talc deposits at Zhengxu in central Guangxi Province, South China[J].Geochemical, 2015, 44(5): 427-437. doi: 10.3969/j.issn.0379-1726.2015.05.003

[7]

侯可军, 秦燕, 李延河, 等. 磷灰石Sr-Nd同位素的激光剥蚀-多接收器电感耦合等离子体质谱微区分析[J]. 岩矿测试, 2013, 32(4): 547-554. doi: 10.3969/j.issn.0254-5357.2013.04.005

Hou K J, Qin Y, Li Y H, et al. In situ Sr-Nd isotopic measurement of apatite using laser ablation multi-collector inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2013, 32(4): 547-554. doi: 10.3969/j.issn.0254-5357.2013.04.005

[8]

Bao Z A, Yuan H L, Zong C L, et al. Simultaneous determination of trace elements and lead isotopes in fused silicate rock powders using a boron nitride vessel and fs LA-(MC)-ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2016, 31: 1012-1022. doi: 10.1039/C5JA00410A

[9]

李杨, 杨岳衡, 焦淑娟, 等. 金红石Hf同位素激光原位多接收等离子体质谱(LA-MC-ICP-MS)测定[J]. 中国科学(地球科学), 2015, 58(6): 2134-2144.

Li Y, Yang Y H, Jiao S J, et al. In situ determination of hafnium isotopes from rutile using LA-MC-ICP-MS[J]. Science China (Earth Sciences), 2015, 58(6): 2134-2144.

[10]

何连花, 刘季花, 张俊, 等. MC-ICP-MS测定富钴结壳中的铜锌同位素的化学分离方法研究[J]. 分析测试学报, 2016, 35(10): 1347-1350. doi: 10.3969/j.issn.1004-4957.2016.10.023

He L H, Liu J H, Zhang J, et al. Separation of Cu and Zn in cobalt-rich crusts for isotope determination by MC-ICP-MS[J].Journal of Instrumental Analysis, 2016, 35(10): 1347-1350. doi: 10.3969/j.issn.1004-4957.2016.10.023

[11]

Li C F, Li X H, Li Q L, et al. Rapid and precise determination of Sr and Nd isotopic ratios in geological samples from the same filament loading by thermal ionization mass spectrometry employing a single-step separation scheme[J].Analytical Chemical Acta, 2012, 727: 54-60. doi: 10.1016/j.aca.2012.03.040

[12]

Liu H C, Chung C H, You C F, et al. Determination of 87Sr/86Sr and δ88Sr/86Sr ratios in plant materials using MC-ICP-MS[J].Analytical and Bioanalytical Chemistry, 2016, 408: 387-397. doi: 10.1007/s00216-015-9070-y

[13]

宗春蕾, 袁洪林, 戴梦宁, 等. 一次溶样分离地质样品中Pb-Sr-Nd方法的可行性研究[J]. 岩矿测试, 2012, 31(6): 945-949. doi: 10.3969/j.issn.0254-5357.2012.06.005

Zong C L, Yuan H L, Dai M N, et al. A feasibility study on chemical separation of Pb, Sr and Nd from the same single dissolution of geological sample[J]. Rock and Mineral Analysis, 2012, 31(6): 945-949. doi: 10.3969/j.issn.0254-5357.2012.06.005

[14]

苟龙飞, 金章东, 邓丽, 等. 高效分离Li及其同位素的MC-ICP-MS精确测定[J]. 地球化学, 2017, 46(6): 528-537. doi: 10.3969/j.issn.0379-1726.2017.06.003

Gou L F, Jin Z D, Deng L, et al. Efficient purification for Li and high-precision and accuracy determination of Li isotopic compositions by MC-ICP-MS[J].Geochemical, 2017, 46(6): 528-537. doi: 10.3969/j.issn.0379-1726.2017.06.003

[15]

de Carvalho G G A, Oliveira P V, Yang L, et al. Determination of europium isotope ratios in natural waters by MC-ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2017, 32: 987-995. doi: 10.1039/C7JA00020K

[16]

Dominique W, Bruno K, Claude M, et al. High-precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(8): 1-30.

[17]

袁永海, 元志红. 微波消解-磷钼蓝分光光度法测定钨矿石中的磷含量[J]. 中国无机分析化学, 2015, 5(1): 24-27. doi: 10.3969/j.issn.2095-1035.2015.01.007

Yuan Y H, Yuan Z H. Determination of phosphorus in tungsten ores by microwave digestion-phosphorus molybdenum blue spectrophotometry[J].Chinese Journal of Inorganic Analytical Chemistry, 2015, 5(1): 24-27. doi: 10.3969/j.issn.2095-1035.2015.01.007

[18]

袁永海, 尹昌慧, 元志红, 等. 氢化物发生-原子荧光光谱法同时测定锡矿石中的砷和锑[J]. 冶金分析, 2016, 36(3): 39-43.

Yuan Y H, Yin C H, Yuan Z H, et al. Determination of arsenic and antimony in tin ore by hydride generation-atomic fluorescence spectrometry[J]. Metallurgical Analysis, 2016, 36(3): 39-43.

[19]

黎卫亮, 程秀花, 李忠煜, 等. 碱熔共沉淀-电感耦合等离子体质谱法测定橄榄岩中的稀土元素[J]. 岩矿测试, 2017, 36(5): 468-473.

Li W L, Cheng X H, Li Z Y, et al. Determination of rare earth elements in peridotite by inductively coupled plasma-mass spectrometry after alkali fusion and Mg(OH)2 and Fe(OH)3 coprecipitation[J]. Rock and Mineral Analysis, 2017, 36(5): 468-473.

[20]

李潮峰, 李献华, 郭敬辉, 等. 微量岩石样品中Rb-Sr和Pb一步分离及高精度热电离质谱测试[J]. 地球化学, 2011, 40(5): 399-406.

Li C F, Li X H, Guo J H, et al. Single-step separation of Rb-Sr and Pb from minor rock samples and high precision determination using thermal ionization mass spectrometry[J]. Geochemical, 2011, 40(5): 399-406.

相似文献(共20条)

[1]

林立, 周谙非, 张曼玲, 田艳玲, 杨彦丽. 微波消解-电感耦合等离子体发射光谱法分析食品中的总硼. 岩矿测试, 2008, 27(1): 21-24.

[2]

尹鹏, 何倩, 何会军, 赵志琦. 离子交换树脂法分离沉积物中锶和钕的影响因素研究. 岩矿测试, 2018, 37(4): 379-387. doi: 10.15898/j.cnki.11-2131/td.201804170046

[3]

韦刚健, 李献华, 刘颖, 涂湘林, 梁细荣. 利用选择性特效树脂富集分离岩石样品中的锶钐和钕. 岩矿测试, 2004, (1): 11-14.

[4]

奥地利安东帕有限公司. 密闭微波消解-ICPOES法测定钢铁样品中硅. 岩矿测试, 2008, 27(2): I-I.

[5]

陈贺海, 鲍惠君, 付冉冉, 应海松, 芦春梅, 金献忠, 肖达辉. 微波消解-电感耦合等离子体质谱法测定铁矿石中铬砷镉汞铅. 岩矿测试, 2012, 31(2): 234-240.

[6]

沈宇, 张尼, 高小红, 李皓, 马怡飞. 微波消解电感耦合等离子体质谱法测定地球化学样品中钒铬镍锗砷. 岩矿测试, 2014, (5): 649-654.

[7]

何学贤, 李世珍, 王进辉, 唐索寒, 朱祥坤, 蔡俊军. 用于多接收器等离子体质谱铜铁锌同位素测定的离子交换分离方法. 岩矿测试, 2006, 25(1): 5-8.

[8]

Belshaw, Nick. 多接收器电感耦合等离子体质谱的新应用. 岩矿测试, 2007, 26(1): 55-60.

[9]

张莉, 桂建业, 张永涛. 抑制型离子色谱法同时测定水中锂和锶. 岩矿测试, 2006, 25(1): 87-88.

[10]

高博, 梁细荣, 刘颖, 胡光黔, 曾文, 涂湘林. 多接收器电感耦合等离子体质谱法测定镉标准溶液中镉的同位素组成. 岩矿测试, 2008, 27(5): 321-324.

[11]

赵悦, 侯可军, 田世洪, 杨丹, 苏嫒娜. 常用锂同位素地质标准物质的多接收器电感耦合等离子体质谱分析研究. 岩矿测试, 2015, 34(1): 28-39. doi: 10.15898/j.cnki.11-2131/td.2015.01.004

[12]

侯可军, 秦燕, 李延河, 范昌福. 磷灰石Sr-Nd同位素的激光剥蚀-多接收器电感耦合等离子体质谱微区分析. 岩矿测试, 2013, 32(4): 547-554.

[13]

宋伟娇, 代世峰, 赵蕾, 李霄, 王佩佩, 李甜, 王西勃. 微波消解-电感耦合等离子体质谱法测定煤中的硼. 岩矿测试, 2014, 33(3): 327-331.

[14]

唐索寒, 朱祥坤, 李津, 闫斌, 李世珍, 李志红, 王跃, 孙剑. 用于多接收器等离子体质谱测定的铁铜锌同位素标准溶液研制. 岩矿测试, 2016, 35(2): 127-133. doi: 10.15898/j.cnki.11-2131/td.2016.02.003

[15]

刘洪青, 孙月婷, 时晓露, 章勇. 微波消解-电感耦合等离子体质谱法测定生物样品中14个微量元素. 岩矿测试, 2008, 27(6): 427-430.

[16]

李志伟, 邰自安, 任文岩, 高志军, 李艳华. 微波消解电感耦合等离子体质谱法测定黑色页岩中稀有稀土元素. 岩矿测试, 2010, 29(3): 259-262.

[17]

冯永明, 邢应香, 刘洪青, 章勇. 微波消解-电感耦合等离子体质谱法测定生物样品中微量硒的方法研究. 岩矿测试, 2014, 33(1): 34-39.

[18]

陈贺海, 荣德福, 付冉冉, 余清, 廖海平, 任春生, 鲍惠君. 微波消解-电感耦合等离子体质谱法测定铁矿石中15个稀土元素. 岩矿测试, 2013, 32(5): 702-708.

[19]

李景喜, 陈发荣, 杨春茹, 崔维刚, 郑立, 王小如. 有机溶剂辅助微波消解-电感耦合等离子体质谱法测定多种原油中微量金属元素. 岩矿测试, 2011, 30(1): 12-16.

[20]

陈永欣, 黎香荣, 韦新红, 吕泽娥, 谢毓群, 蔡维专. 微波消解-电感耦合等离子体质谱法测定土壤和沉积物中痕量稀土元素. 岩矿测试, 2011, 30(5): 560-565.

计量
  • PDF下载量(25)
  • 文章访问量(102)
  • HTML全文浏览量(24)
  • 被引次数(0)
目录

Figures And Tables

微波消解-多接收电感耦合等离子体质谱高精度测定锶钕同位素组成

袁永海, 杨锋, 余红霞, 刘希军, 许继峰