【引用本文】 胡璇, . 电感耦合等离子体发射光谱法测定铝土矿中的稀土氧化物[J]. 岩矿测试, 2020, 39(6): 954-960. doi: 10.15898/j.cnki.11-2131/td.201911260164
HU Xuan. Determination of Rare Earth Oxides in Bauxite by Inductively Coupled Plasma-Optical Emission Spectrometry[J]. Rock and Mineral Analysis, 2020, 39(6): 954-960. doi: 10.15898/j.cnki.11-2131/td.201911260164

电感耦合等离子体发射光谱法测定铝土矿中的稀土氧化物

中国铝业集团郑州有色金属研究院有限公司, 河南 郑州 450041

收稿日期: 2019-11-26  修回日期: 2020-02-13  接受日期: 2020-05-20

基金项目: 中国铝业股份有限公司技术标准项目(ZY2019GZC01)

作者简介: 胡璇, 硕士, 高级工程师, 主要从事电感耦合等离子体光谱分析工作。E-mail:hux19832003@aliyun.com

Determination of Rare Earth Oxides in Bauxite by Inductively Coupled Plasma-Optical Emission Spectrometry

Chalco Zhengzhou Non-ferrous Metals Research Institute Co. LTD, Zhengzhou 450041, China

Received Date: 2019-11-26
Revised Date: 2020-02-13
Accepted Date: 2020-05-20

摘要:采用电感耦合等离子体发射光谱法(ICP-OES)测定铝土矿中的稀土氧化物时,酸溶往往造成溶样不彻底,高温碱熔时大量的熔剂会降低稀土元素的发射强度,同时由于稀土氧化物含量(0.0010%~0.050%)较低,存在铝、铁等基体干扰,难以准确测定。本文采用氢氧化钠熔融铝土矿样品,熔融物用热水浸取,三乙醇胺溶液掩蔽铝和铁,乙二胺四乙酸二钠溶液络合钙、镁等干扰元素,稀土氢氧化物留存于沉淀中,沉淀经盐酸溶解进入待测液,从而将稀土元素与熔剂和基体元素分离。实验结果表明:标准溶液无需基体匹配,各稀土氧化物标准曲线的线性相关系数均不小于0.9999,检出限在0.0002%~0.0015%之间;按照实验方法分析实际样品中稀土氧化物的含量,测定结果的相对标准偏差(RSD,n=6)为2.0%~4.6%,回收率为85.2%~104.4%。本方法与电感耦合等离子体质谱法(ICP-MS)相比,两种方法的测定结果无显著性差异。

关键词: 铝土矿, 稀土氧化物, 氢氧化钠熔融, 沉淀分离, 基体干扰, 电感耦合等离子体发射光谱法

要点

(1) 铝土矿中的稀土元素在碱熔后经过滤被分离出来。

Determination of Rare Earth Oxides in Bauxite by Inductively Coupled Plasma-Optical Emission Spectrometry

ABSTRACT

BACKGROUND:

When the rare earth oxides in bauxite are determined by inductively coupled plasma-optical emission spectrometry (ICP-OES), acid dissolution often results in incomplete dissolution of samples, and a large amount of fluxes at high temperature alkali fusion will reduce the emission intensity of rare earth elements. Moreover, due to the low content of rare earth oxides (0.0010%-0.050%) and the matrix interferences such as aluminum and iron, accurate determination of them is difficult.

OBJECTIVES:

To develop an accurate method to determine the contents of rare earth oxides in bauxite by ICP-OES.

METHODS:

The bauxite was fused with sodium hydroxide, and the melt was extracted with hot water. A triethanolamine solution was used to eliminate the interferences of aluminum and iron, and ethylenediamine tetraacetate disodium solution was used to complex with calcium, magnesium and other elements. Rare earth hydroxide was retained in the precipitation, which was dissolved into the liquid hydrochloric acid digestion. Rare earth elements can be effectively separated from fluxes and matrix elements by the proposed procedure.

RESULTS:

The standard solution did not need matrix matching. The linear correlation coefficient of calibration curve was not less than 0.9999, and the detection limits were 0.0002%-0.0015%. The relative standard deviations of rare earth elements in the sample were 2.0%-4.6%, and recoveries were 85.2%-104.4%.

CONCLUSIONS:

There are no obvious differences for analytical results between ICP-OES and inductively coupled plasma-mass spectrometry (ICP-MS).

KEY WORDS: bauxite, rare earth oxide, sodium hydroxide melting, precipitation separation, matrix interference, inductively coupled plasma-optical emission spectrometry

HIGHLIGHTS

(1) Rare earth elements in bauxite were separated after filtering and alkali fusion.

本文参考文献

[1]

李彬, 王枝平, 曲凡, 等. 赤泥中有价金属的回收现状与展望[J]. 昆明理工大学学报(自然科学版), 2019, 44(2): 1-10.

Li B, Wang Z P, Qu F, et al. Present situation and prospect of recovery of valuable metals from red mud[J].Journal of Kunming University of Science and Technology (Natural Science), 2019, 44(2): 1-10.

[2]

王宝磊, 吴玉锋, 章启军, 等. 草酸盐重量法测定荧光粉废料中稀土氧化物的总量[J]. 稀土, 2016, 37(5): 92-96.

Wang B L, Wu Y F, Zhang Q J, et al. Determination of total rare earth oxides content in waste phosphors with oxalate gravimetric method[J].Chinese Rare Earths, 2016, 37(5): 92-96.

[3]

刘叶平, 李艳峰, 高立红, 等. 重量法测定镧镍合金中稀土总量[J]. 冶金分析, 2019, 39(11): 24-29.

Liu Y P, Li Y F, Gao L H, et al. Determination of total rare earth content in lanthanum-nickel alloy by gravimetric method[J].Metallurgical Analysis, 2019, 39(11): 24-29.

[4]

徐思婷, 施平. 草酸盐重量法测定有机溶液中稀土氧化物总量[J]. 材料研究与应用, 2017, 11(1): 55-58.

Xu S T, Shi P. Determination of total rare earth oxide contents in organic solution with oxalate gravimetric method[J].Materials Research and Application, 2017, 11(1): 55-58.

[5]

张燕辉, 杜若冰, 王振兴, 等. 氯乙酸缓冲体系在稀土测定中的应用研究[J]. 中国稀土学报, 2013, 21(5): 636-640.

Zhang Y H, Du R B, Wang Z X, et al. Research on buffer solution of chloroacetic acid in rare earth detection[J].Journal of the Chinese Society of Rare Earths, 2013, 21(5): 636-640.

[6]

胡珊玲, 邱谨, 吴志芳, 等. 三溴偶氮胂分光光度法测定镁合金中稀土总量[J]. 冶金分析, 2016, 36(10): 85-88.

Hu S L, Qiu J, Wu Z F, et al. Determination of total earth in magnesium alloy by tribromoarsenazo spectropho-tometry[J].Metallurgical Analysis, 2016, 36(10): 85-88.

[7]

潘福得, 刘丽萍. PMBP萃取-偶氮胂Ⅲ分光光度法测定茶叶中稀土元素总量[J]. 理化检验(化学分册), 2016, 52(1): 93-95.

Pan F D, Liu L P. Determination of the total amount of rare earth elements in tea by PMBP extraction-azobium Ⅲ spectrophotometry[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2016, 52(1): 93-95.

[8]

孙志峰, 张志刚, 张翼明, 等. 镝铁合金中稀土总量的测定——EDTA容量法[J]. 稀土, 2010, 31(1): 77-79.

Sun Z F, Zhang Z G, Zhang Y M, et al. Determination of total rare earth content in Dy-Fe alloy with EDTA volume method[J].Chinese Rare Earths, 2010, 31(1): 77-79.

[9]

Nuchdang S, Injarean U, Rattanaphra D.Evolution of rare earth elements, uranium and thoriumin geological samples by ICP-OES and their characterization[C]//Proceedings of International Nuclear Science and Technology Conference, 2019.

[10]

胡璇, 刘万超, 石磊, 等. 电感耦合等离子体发射光谱法测定赤泥浸出液中稀土元素[J]. 冶金分析, 2015, 35(12): 46-50.

Hu X, Liu W C, Shi L, et al. Determination of rare earth elements in leaching solution of red mud by inductively coupled plasma atomic emission spectrometry[J].Metallurgical Analysis, 2015, 35(12): 46-50.

[11]

周凯红, 张立锋, 刘晓杰, 等. 电感耦合等离子体原子发射光谱(ICP-AES)法测定镧玻璃废粉中稀土元素总量及配分量[J]. 中国无机分析化学, 2016, 6(3): 62-65.

Zhou K H, Zhang L F, Liu X J, et al. Determination of total content and component contents of rare earth complex in waste powder of lanthanum glass by inductively coupled plasma atomic emission spectrometry (ICP-AES)[J].Chinese Journal of Inorganic Analytical Chemistry, 2016, 6(3): 62-65.

[12]

潘春秀, 王伟, 李德军, 等. 电感耦合等离子体原子发射光谱法同时测定球墨铸铁用稀土镁球化剂中硅、镁、钙、锰、铝、钛及稀土总量[J]. 理化检验(化学分册), 2019, 55(2): 227-230.

Pan C X, Wang W, Li D J, et al. Simultaneous determination of the total amount of silicon, magnesium, calcium, manganese, aluminum, titanium and rare earths in rare earth magnesium spheres for ductile iron by inductively coupled plasma atomic emission spectrometry[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2019, 55(2): 227-230.

[13]

张文娟, 谢玲君, 刘鸿, 等. ICP-AES法测定氟碳铈矿中低含量稀土总量[J]. 有色金属科学与工程, 2016, 7(6): 141-146.

Zhang W J, Xie L J, Liu H, et al. Determination of low content total rare earth in bastnaesite by ICP-AES[J].Nonferrous Metals Science and Engineering, 2016, 7(6): 141-146.

[14]

宋旭东, 樊小伟, 陈文, 等. 电感耦合等离子体质谱法测定离子吸附型稀土矿中全相稀土含量[J]. 冶金分析, 2018, 38(6): 19-24.

Song X D, Fan X W, Chen W, et al. Determination of total-phase rare earth content in ion-adsorption rare earth ore by inductively coupled plasma mass spectrometry[J].Metallurgical Analysis, 2018, 38(6): 19-24.

[15]

倪文山, 刘长淼, 姚明星, 等. 电感耦合等离子体质谱法测定磷灰石中稀土元素分量和总量[J]. 冶金分析, 2016, 36(7): 69-73.

Ni W S, Liu C M, Yao M X, et al. Determination of the total amount of rare earth elements and its component in apatite by inductively coupled plasma mass spectrometry[J].Metallurgical Analysis, 2016, 36(7): 69-73.

[16]

董学林, 何海洋, 储溱, 等. 碱熔沉淀分离-电感耦合等离子体质谱法测定伴生重晶石稀土矿中的稀土元素[J]. 岩矿测试, 2019, 38(6): 620-630.

Dong X L, He H Y, Chu Q, et al. Determination of rare earth elements in barite-associated rare earth ores by alkaline precipitation separation-inductively coupled plasma-mass spectrometry[J].Rock and Mineral Analysis, 2019, 38(6): 620-630.

[17]

Satyanarayanan M, Balaram V, Sawant S S, et al. Rapid determination of REEs, PGEs, and other trace elements in geological and environmental materials by high resolution inductively coupled plasma mass spectrometry[J].Atomic Spectroscopy, 2018, 39(1): 1-15.

[18]

袁静, 沈加林, 刘建坤, 等. 高能偏振能量色散X射线荧光光谱仪测定地质样品中稀土元素[J]. 光谱学与光谱分析, 2018, 38(2): 582-589.

Yuan J, Shen J L, Liu J K, et al. Determination of rare earth elements in geological samples by high energy polarized energy dispersive X-ray fluorescence spectrometry[J].Spectroscopy and Spectral Analysis, 2018, 38(2): 582-589.

[19]

蒋天怡, 吴文琪, 张术杰, 等. 熔融制样-X射线荧光光谱法测定轻稀土精矿中稀土总量[J]. 冶金分析, 2017, 37(12): 27-32.

Jiang T Y, Wu W Q, Zhang S J, et al. Determination of total rare earths in light rare earth concentrate by X-ray fluorescence spectrometry with fusion sample preparation[J].Metallurgical Analysis, 2017, 37(12): 27-32.

[20]

田春霞, 刘文华, 刘璟, 等. 稀土元素分析[J]. 分析试验室, 2018, 37(2): 222-248.

Tian C X, Liu W H, Liu J, et al. Rare earth elements analysis[J].Chinese Journal of Analysis Laboratory, 2018, 37(2): 222-248.

[21]

白英彬, 白英奇. ICP-OES法测定铝厂赤泥中的稀土元素[J]. 分析仪器, 2011, (6): 30-33.

Bai Y B, Bai Y Q. Determination of rare earth elements in red mud by ICP-OES[J].Analytical Instrumentation, 2011, (6): 30-33.

[22]

吴伟明. 赤泥矿中的稀土元素测定方法的研究[J]. 有色金属科学与工程, 2011, 2(3): 76-80.

Wu W M. Determination methods of rare earth elements in mud-mineral[J].Nonferrous Metals Science and Engineering, 2011, 2(3): 76-80.

[23]

王克勤, 于永波, 王皓, 等. 赤泥盐酸浸出提取钪的试验研究[J]. 稀土, 2010, 31(1): 95-99.

Wang K Q, Yu Y B, Wang H, et al. Experimental investigation on leaching scandium from red mud by hydrochloric acid[J].Chinese Rare Earths, 2010, 31(1): 95-99.

[24]

门倩妮, 沈平, 甘黎明, 等. 敞开酸溶和偏硼酸锂碱熔ICP-MS法测定多金属矿中的稀土元素及铌钽锆铪[J]. 岩矿测试, 2020, 39(1): 59-67.

Men Q N, Shen P, Gan L M, et al. Determination of rare earth elements and Nb, Ta, Zr, Hf in polymetallic mineral survey samples by inductively coupled plasma-mass spectrometry coupled with open acid dissolution and lithium metaborate alkali fusion[J].Rock and Mineral Analysis, 2020, 39(1): 59-67.

[25]

胡璇, 刘万超, 石磊, 等. 电感耦合等离子体发射光谱法测定赤泥中6种稀土元素[J]. 理化检验(化学分册), 2017, 53(11): 1304-1307.

Hu X, Liu W C, Shi L, et al. ICP-AESdetermination of 6 rare earth elements in red mud[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2017, 53(11): 1304-1307.

[26]

黎卫亮, 程秀花, 李忠煜, 等. 碱熔共沉淀-电感耦合等离子体质谱法测定橄榄岩中的稀土元素[J]. 岩矿测试, 2017, 36(5): 468-473.

Li W L, Cheng X H, Li Z Y, et al. Determination of rare earth elements in peridotite by inductively coupled plasma mass spectrometry after alkali fusion and Mg(OH)2 and Fe(OH)3 coprecipitation[J].Rock and Mineral Analysis, 2017, 36(5): 468-473.

[27]

吴葆存, 于亚辉, 闫红岭, 等. 碱熔-电感耦合等离子体质谱法测定钨矿石和钼矿石中稀土元素[J]. 冶金分析, 2016, 36(7): 39-45.

Wu B C, Yu Y H, Yan H L, et al. Determination of rare earth elements in tungsten ore and molybdenum ore by inductively coupled plasma mass spectrometry with alkali fusion[J].Metallurgical Analysis, 2016, 36(7): 39-45.

[28]

杜宝华, 盛迪波, 宋平, 等. ICP-OES法测定地质样品中稀土元素[J]. 世界核地质科学, 2019, 36(1): 57-62.

Du B H, Sheng D B, Song P, et al. Determination of rare earth elements in geological samples by ICP-OES[J].World Nuclear Geoscience, 2019, 36(1): 57-62.

[29]

李文玉.代用茶稀土元素含量检测的研究[D].南宁: 广西大学, 2017.

Li W Y.Study on the content determination of rare earth elements in substitute tea[D].Nanning: Guangxi University, 2017.

相似文献(共18条)

[1]

钟代果. 铝土矿中主成分的X射线荧光光谱分析. 岩矿测试, 2008, 27(1): 71-73.

[2]

董学林, 何海洋, 储溱, 仇秀梅, 唐兴敏. 碱熔沉淀分离-电感耦合等离子体质谱法测定伴生重晶石稀土矿中的稀土元素. 岩矿测试, 2019, 38(6): 620-630. doi: 10.15898/j.cnki.11-2131/td.201901090004

[3]

胡璇, 石磊, 张炜华. 碱熔融-电感耦合等离子体发射光谱法测定高硫铝土矿中的硫. 岩矿测试, 2017, 36(2): 124-129. doi: 10.15898/j.cnki.11-2131/td.2017.02.005

[4]

王琰, 孙洛新, 张帆, 张华, 陈志慧. 电感耦合等离子体发射光谱法测定含刚玉的铝土矿中硅铝铁钛. 岩矿测试, 2013, 32(5): 719-723.

[5]

杜米芳. 电感耦合等离子体发射光谱法同时测定玻璃中铝钙铁钾镁钠钛硫. 岩矿测试, 2008, 27(2): 146-148.

[6]

文加波, 商丹, 宋婉虹, 彭国萍. 电感耦合等离子体发射光谱法测定铝土矿中镓——酸溶和碱熔预处理方法比较. 岩矿测试, 2011, 30(4): 481-485.

[7]

杨载明. 电感耦合等离子体发射光谱法测定铝土矿样品中镓三种前处理方法的比较. 岩矿测试, 2011, 30(3): 315-317.

[8]

袁红战, 祝云军, 武丽平, 张旭. 电感耦合等离子体发射光谱法测天然饱和卤水中的高含量锂. 岩矿测试, 2011, 30(1): 87-89.

[9]

郭振华. 电感耦合等离子体发射光谱法测定磷矿石中常量元素硅磷硫钙镁铝铁钛锰. 岩矿测试, 2012, 31(3): 446-449.

[10]

梁国立, 强小平, 邓赛文, 王有增, 方明渭, 田寅贞. X射线荧光光谱快速分析铝土矿的方法研究. 岩矿测试, 2001, (4): 305-308.

[11]

卜赛斌, 张淑英. x射线荧光光谱无标半定量分析稀土元素方法的改进. 岩矿测试, 2003, (1): 37-39.

[12]

王小强, 夏辉, 秦九红, 王书勤, 杨惠玲, 宋志敏, 杜天军. 过氧化钠碱熔-电感耦合等离子体发射光谱法测定多金属矿中的锡钨钛等主次量成分. 岩矿测试, 2017, 36(1): 52-58. doi: 10.15898/j.cnki.11-2131/td.2017.01.008

[13]

严爽, 黄康俊, 付勇, 包志安, 马龙, 龙克树, 叶远谋, 陈蕤, 陈满志. 铝土矿中锂同位素分离提纯方法的建立. 岩矿测试, 2020, 39(1): 41-52. doi: 10.15898/j.cnki.11-2131/td.2019081201275

[14]

申玉民, 罗治定, 郭小彪, 吴刚, 王趁荣, 付爱瑞, 高树林, 肖凡. 泡塑分离富集-火焰原子荧光光谱法测定地球化学样品中的痕量金. 岩矿测试, 2020, 39(1): 127-134. doi: 10.15898/j.cnki.11-2131/td.201809260108

[15]

王龙山, 胡建平, 王光照, 郝辉. 偏硼酸锂熔矿-超声提取-电感耦合等离子体发射光谱法测定岩石水系沉积物土壤样品中硅铝铁等10种元素. 岩矿测试, 2008, 27(4): 287-290.

[16]

刘晓杰, 李玉梅, 刘丽静. 电感耦合等离子体发射光谱法测定稀土矿石中的三氧化二铝. 岩矿测试, 2013, 32(3): 436-440.

[17]

秦晓丽, 田贵, 李朝长, 蒋智林. 电感耦合等离子体发射光谱法同时测定地质样品中的钍和氧化钾. 岩矿测试, 2019, 38(6): 741-746. doi: 10.15898/j.cnki.11-2131/td.201812290142

[18]

杜梅, 刘晓杰. 电感耦合等离子体发射光谱法测定包头稀土矿中的稀土总量. 岩矿测试, 2014, 33(2): 218-223.

计量
  • PDF下载量(15)
  • 文章访问量(474)
  • HTML全文浏览量(58)
  • 被引次数(0)
目录

Figures And Tables

电感耦合等离子体发射光谱法测定铝土矿中的稀土氧化物

胡璇