【引用本文】 戚明辉, 李君军, 曹茜, . 基于扫描电镜和JMicroVision图像分析软件的泥页岩孔隙结构表征研究[J]. 岩矿测试, 2019, 38(3): 260-269. doi: 10.15898/j.cnki.11-2131/td.201901160008
QI Ming-hui, LI Jun-jun, CAO Qian. The Pore Structure Characterization of Shale Based on Scanning Electron Microscopy and JMicroVision[J]. Rock and Mineral Analysis, 2019, 38(3): 260-269. doi: 10.15898/j.cnki.11-2131/td.201901160008

基于扫描电镜和JMicroVision图像分析软件的泥页岩孔隙结构表征研究

1. 

页岩气评价与开采四川省重点实验室, 四川 成都 610091

2. 

四川省科源工程技术测试中心, 四川 成都 610091

3. 

自然资源部复杂构造区页岩气勘探开发工程技术创新中心, 四川 成都 610091

4. 

中石油浙江油田分公司, 浙江 杭州 310023

收稿日期: 2019-01-16  修回日期: 2019-03-18  接受日期: 2019-04-09

基金项目: 四川省科技厅科技支撑计划项目(2017GFW0175);省院省校合作项目(2018JZ0003)

作者简介: 戚明辉, 硕士, 工程师, 主要从事非常规油气储层评价研究。E-mail:158891057@qq.com

The Pore Structure Characterization of Shale Based on Scanning Electron Microscopy and JMicroVision

1. 

Shale Gas Evaluation and Exploitation Key Laboratory of Sichuan Province, Chengdu 610091, China

2. 

Sichuan Keyuan Testing Center of Engineering Technology, Chengdu 610091, China

3. 

Technical Innovation Center for Shale Gas Exploration and Development in Complex Structural Areas, Ministry of Natural Resources, Chengdu 610091, China

4. 

Zhejiang Oilfield Company, China National Petroleum Corporation, Hangzhou 310023, China

Received Date: 2019-01-16
Revised Date: 2019-03-18
Accepted Date: 2019-04-09

摘要:孔隙发育特征是泥页岩储集能力评价的关键参数之一。扫描电镜观察法已普遍用于描述泥页岩的孔隙发育特征,但是目前文献中对泥页岩微孔隙类型划分比较混乱,孔隙结构特征参数的表征以定性描述为主,缺乏定量表征手段。本文选取了18个泥页岩样品为研究对象,通过氩离子抛光和高分辨率扫描电子显微镜图像观察,基于孔隙发育形态、位置及成因,对样品中不同孔隙进行类型划分;结合JMicroVision图像分析软件,应用泥页岩微孔隙描述技术和孔隙尺度分类统计技术,统计不同类型孔隙发育数量、孔径大小、面孔率、形状系数、概率熵等参数,对其分布特征进行评价。研究表明,晶(粒)间孔隙和有机孔隙比较发育,其次为晶(粒)内孔和晶间隙。不同类型孔隙其孔径分布以纳米级为主,不同类型孔隙分布较无序,其概率熵主要分布在0.5~0.7之间,对应的形状系数分布差异也较大。有机质孔隙的形状系数主要分布在0.6~0.7范围内,形状分布以椭圆形或近似圆形为主,晶(粒)间孔隙和晶(粒)内孔隙的形状系数主要分布在0.3~0.7,分析晶(粒)间孔隙和晶(粒)内孔隙形状系数分布特征主要是受原始孔隙形态、压实作用和溶蚀作用的影响。研究认为,SEM与JMicroVision相结合是定量研究不同类型微孔发育特征的有效手段,为研究微孔的形成和演化奠定了基础。

关键词: 孔隙类型划分, 孔隙结构表征, 扫描电镜观察, JMicroVision, 泥页岩

要点

(1) 采用氩离子抛光和高分辨率扫描电镜,对泥页岩微孔隙发育特征进行观察。

(2) 基于发育形态、位置及成因,微孔隙被划分为有机孔隙、基质孔隙和微裂缝。

(3) 结合JMicroVision图像分析软件,定量分析评价孔隙结构特征参数分布特征。

The Pore Structure Characterization of Shale Based on Scanning Electron Microscopy and JMicroVision

ABSTRACT

BACKGROUND:

The pore characteristics of shale are one of the key parameters for evaluation of the shale reservoir capacity. Scanning Electron Microscopy (SEM) has been widely used to describe the pore characteristics of shale. However, the classification of micro-pore types in mud shale reservoirs in the literature was relatively diverse, and the quantitative characterization of pore based on SEM was relatively lacking.

OBJECTIVES:

To classify the pore types and quantitatively characterize these pores in shale.

METHODS:

18 shale samples were selected as the research object in this study. Based on the form, position and origin of pores observed by argon ion polishing and Scanning Electron Microscopy, the types of different pores in the sample were classified. By using JMicroVision image analysis software, the pore characteristics including the number of pore types, pore size, face rate, shape coefficient, probability entropy and other parameters were quantitatively described.

RESULTS:

The inter-crystal (particle) pores and organic pores were the most developed, followed by intra-crystal (particle) pores and crystal gap inter-crystal (particle) pores. The sizes of pore were mainly nanometer. The probabilistic entropy of intra-crystal (particle) pores and organic pores were mainly distributed between 0.5 and 0.7, with a different shape coefficient distribution. The shape coefficients of organic pores were mainly distributed between 0.6 and 0.7, and their shape were mainly oval or nearly circular. The shape coefficient of intra-crystal (particle) pores and inter-crystal (particle) pores were mainly between 0.3 and 0.7, which were mainly affected by the original pore morphology, compaction and dissolution.

CONCLUSIONS:

The combination of SEM and JMicroVision is an effective means to quantitatively study the development characteristics of different types of micropores. This work has laid a foundation for the study of the genesis and evolution of micropores.

KEY WORDS: division of pore, characterization of pore structure, Scanning Electron Microscopy, JMicroVision, shale

HIGHLIGHTS

(1) The characteristics of shale pore by using Ar-ion milling and Scanning Electron Microscopy were observated.

(2) The pores based on the morphology, development location and genesis were classified.

(3) Combined with JMicroVision, the distribution characteristics of pores parameters in shale were quantitatively analyzed.

本文参考文献

[1]

Mastalerz M, Schimmelmann A, Drobniak A, et al. Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient:Insights from organic petrology, gas adsorption, and mercury intrusion[J].AAPG Bulletin, 2013, 97(10): 1621-1643. doi: 10.1306/04011312194

[2]

王香增, 张金川, 曹金舟, 等. 陆相页岩气资源评价初探:以延长直罗-下寺湾区中生界长7段为例[J]. 地学前缘, 2012, 19(2): 192-197.

Wang X Z, Zhang J C, Cao J Z, et al. A preliminary discussion on evaluation of continental shale gas resources:A case study of Chang 7 of Mesozoic Yanchang Formation in Zhiluo-Xiasiwan of Yanchang[J]. Earth Science Frontiers, 2012, 19(2): 192-197.

[3]

吴松涛, 朱如凯, 崔京钢, 等. 鄂尔多斯盆地长7湖相泥页岩孔隙演化特征[J]. 石油勘探与开发, 2015, 42(2): 167-176.

Wu S T, Zhu R K, Cui J G, et al. Characteristics of lacustrine shale porosity evolution, Triassic Chang 7 Member, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(2): 167-176.

[4]

李晋宁.泥页岩储层孔隙结构表征和连通方式研究[D].南京: 南京大学, 2017.

Li J N.Study on Pore Structure Characteristics and Connectivity of Shale Reservoir[D].Nanjing: Nanjing University, 2017.

[5]

苑丹丹, 卢双舫, 陈方文, 等. 渝东南地区彭页1井泥页岩微观孔隙结构特征[J]. 特种油气藏, 2016, 23(1): 49-53. doi: 10.3969/j.issn.1006-6535.2016.01.011

Yuan D D, Lu S F, Chen F W, et al. Shale microscopic pore structure characterization in Well Pengye1 of Southeast Chongqing[J].Special Oil and Gas Reservoir, 2016, 23(1): 49-53. doi: 10.3969/j.issn.1006-6535.2016.01.011

[6]

杨峰, 宁正福, 胡昌篷, 等. 页岩储层微观孔隙结构特征[J]. 石油学报, 2013, 34(2): 301-311.

Yang F, Ning Z F, Hu C P, et al. Characterization of microscopic pore structures in shale reservoirs[J]. Acta Petrolei Sinica, 2013, 34(2): 301-311.

[7]

王玉满, 董大忠, 杨桦, 等. 川南下志留统龙马溪组页岩储集空间定量表征[J]. 中国科学(地球科学), 2014, 57(6): 313-322.

Wang Y M, Dong D Z, Yang H, et al. Quantitative characterization of reservoir space in the Lower Silurian Longmaxi Shale, Southern Sichuan, China[J]. Science China:Earth Sciences, 2014, 57(6): 313-322.

[8]

王羽, 金婵, 汪丽华, 等. 应用氩离子抛光-扫描电镜方法研究四川九老洞组页岩微观孔隙特征[J]. 岩矿测试, 2015, 34(3): 278-285.

Wang Y, Jin C, Wang L H, et al. Characterization of pore structures of Jiulaodong Formation shale in the Sichuan Basin by SEM with Ar-ion milling[J]. Rock and Mineral Analysis, 2015, 34(3): 278-285.

[9]

俞雨溪, 罗晓容, 雷裕红, 等. 陆相页岩孔隙结构特征研究——以鄂尔多斯盆地延长组页岩为例[J]. 天然气地球科学, 2016, 27(4): 716-726.

Yu Y X, Luo X R, Lei Y H, et al. Characterization of lacustrine shale pore structure:An example from the Upper-Triassic Yanchang Formation, Ordos Basin[J]. Naural Gas Geoscience, 2016, 27(4): 716-726.

[10]

张林晔, 李钜源, 李政, 等. 北美页岩油气研究进展及对中国陆相页岩油气勘探的思考[J]. 地球科学进展, 2014, 29(6): 700-711.

Zhang L Y, Li J Y, Li Z, et al. Advance in shale oil/gas research in North America and considerations on exploration for continental shale oil/gas in China[J]. Advances in Earth Science, 2014, 29(6): 700-711.

[11]

Keller L M, Schuetz P, Erni R, et al. Characterization of multi-scale microstructural features in Opalinus clay[J]. Microporous and Mesoporous Materials, 2012, 170(4): 84-90.

[12]

张磊磊, 陆正元, 王军, 等. 渤海湾盆地沾化凹陷沙三下亚段页岩油层段微观孔隙结构[J]. 石油与天然气地质, 2016, 37(1): 80-86.

Zhang L L, Lu Z Y, Wang J, et al. Microscopic pore structure of shale oil reservoirs in the Lower 3rd Member of Shahejie Formation in Zhanhua Sag, Bohai Bay Basin[J]. Oil & Gas Geology, 2016, 37(1): 80-86.

[13]

白名岗, 夏响华, 张聪, 等. 场发射扫描电镜及PerGeos系统在安页1井龙马溪组页岩有机质孔隙研究中的联合应用[J]. 岩矿测试, 2018, 37(3): 225-234.

Bai M G, Xia X H, Zhang C, et al. Study on shale organic porosity in the Longmaxi Formation, AnYe -1 Well using field emission-scanning electron microscopy and PerGeos system[J]. Rock and Mineral Analysis, 2018, 37(3): 225-234.

[14]

Jin L X, Mathur R, Rother G, et al. Evolution of porosity and geochemistry in Marcellus Formation black shale during weathering[J]. Chemical Geology, 2013, 256(2): 50-63.

[15]

Chen Q, Zhang J, Tang X, et al. Relationship between pore type and pore size of marine shale:An example from the Sinian-Cambrian Formation, Upper Yangtze region, South China[J].International Journal of Coal Geology, 2016, 158: 13-28. doi: 10.1016/j.coal.2016.03.001

[16]

庞河清, 曾焱, 刘成川, 等. 基于氮气吸附-核磁共振-氩离子抛光场发射扫描电镜研究川西须五段泥质岩储层孔隙结构[J]. 岩矿测试, 2017, 36(1): 66-74.

Pang H Q, Zeng Y, Liu C C, et al. Investigation of pore structure of a argillaceous rocks reservoir in the 5th member of Xujiahe Formation in Western Sichuan, using NAM, NMR and AIP-FESEM[J]. Rock and Mineral Analysis, 2017, 36(1): 66-74.

[17]

帅琴, 黄瑞成, 高强, 等. 页岩气实验测试技术现状与研究进展[J]. 岩矿测试, 2012, 31(6): 931-938. doi: 10.3969/j.issn.0254-5357.2012.06.003

Shuai Q, Huang R C, Gao Q, et al. Research development of analytical techniques for shale gas[J]. Rock and Mineral Analysis, 2012, 31(6): 931-938. doi: 10.3969/j.issn.0254-5357.2012.06.003

[18]

焦堃.煤和泥页岩纳米孔隙的成因、演化机制与定量表征[D].南京: 南京大学, 2014.

Jiao K.The Characterization, Genesis and Evolution of Nanopores in Coals[D].Nanjing: Nanjing University, 2014.

[19]

蒋祺, 康志宏, 黄文辉, 等. 富含有机质泥页岩孔隙结构与储集空间类型分析[J]. 辽宁工程技术大学学报(自然科学版), 2016, 35(9): 908-913.

Jiang Q, Kang Z H, Huang W H, et al. Analysis of the organic-rich shale pore structure of reservoir space[J]. Journal of Liaoning Technical University (Natural Science), 2016, 35(9): 908-913.

[20]

聂海宽, 张金川. 页岩气储层类型和特征研究——以四川盆地及其周缘下古生界为例[J]. 石油实验地质, 2011, 33(3): 219-225. doi: 10.3969/j.issn.1001-6112.2011.03.001

Nie H K, Zhang J C. Types and characteristics of shale gas reservoir:A case study of Lower Paleozoic in and around Sichuan Basin[J].Petroleum Geology & Experiment, 2011, 33(3): 219-225. doi: 10.3969/j.issn.1001-6112.2011.03.001

[21]

Loucks R G, Reed R M, Ruppel S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrockpores[J].AAPG Bulletin, 2012, 96(6): 1071-1098. doi: 10.1306/08171111061

[22]

于炳松. 页岩气储层孔隙分类与表征[J]. 地学前缘, 2013, 20(4): 211-220.

Yu B S. Classification and characterization of gas shale pore system[J]. Earth Science Frontiers, 2013, 20(4): 211-220.

[23]

曹茜, 周文, 陈文玲, 等. 鄂尔多斯盆地南部延长组长7段陆相页岩气地层孔隙类型、尺度及成因分析[J]. 矿物岩石, 2015, 35(2): 90-97.

Cao Q, Zhou W, Chen W L, et al. Analysis of pore types, sizes and genesis in continental shale gas reservoir of Chang 7 of Yanchang Formation, Odros Basin[J]. Mineral Petrology, 2015, 35(2): 90-97.

[24]

Cao Q, Zhou W, Deng H, et al. Classification and controlling factors of organic pores in continental shale gas reservoirs based on laboratory experimental results[J].Journal of Natural Gas Science and Engineering, 2015, 27: 1381-1388. doi: 10.1016/j.jngse.2015.10.001

[25]

王香增, 范柏江, 张丽霞, 等. 陆相页岩气的储集空间特征及赋存过程——以鄂尔多斯盆地陕北斜坡构造带延长探区延长组长7段为例[J]. 石油与天然气地质, 2015, 36(4): 651-658.

Wang X Z, Fan B J, Zhang L X, et al. Reservoir space characteristics and charging process of Lacustrine shale gas-A case study of the Chang 7 member in Yanchang Block in Shanbei slope of Ordos Basin[J]. Oil & Gas Geology, 2015, 36(4): 651-658.

[26]

于炳松. 页岩气储层孔隙分类与表征[J]. 地学前缘, 2013, 20(4): 211-220.

Yu B S. Classification and characterization of gas shale pore system[J]. Earth Science Frontiers, 2013, 20(4): 211-220.

[27]

张盼盼, 刘小平, 王雅杰, 等. 页岩纳米孔隙研究新进展[J]. 地球科学进展, 2014, 29(11): 1242-1249. doi: 10.11867/j.issn.1001-8166.2014.11.1242

Zhang P P, Liu X P, Wang Y J, et al. Research progress in shale nanopores[J].Advances in Earth Science, 2014, 29(11): 1242-1249. doi: 10.11867/j.issn.1001-8166.2014.11.1242

[28]

焦淑静, 张慧, 薛东川, 等. 泥页岩孔隙类型、形态特征及成因研究[J]. 电子显微学报, 2015, 34(5): 422-427.

Jiao S J, Zhang H, Xue D C, et al. Study on morphological characteristics of micropores and microcracks in shale[J]. Journal of Chinese Electron Microscopy Society, 2015, 34(5): 422-427.

[29]

伍岳, 樊太亮, 蒋恕, 等. 海相页岩储层微观孔隙体系表征技术及分类方案[J]. 地质科技情报, 2014, 33(4): 92-97.

Wu Y, Fan T L, Jiang S, et al. Characterizing techniques and classification methods for microscope pore system in marine shale reservoir[J]. Geological Science and Technology Information, 2014, 33(4): 92-97.

[30]

Clarkson C R, Solano N, Bustin R M, et al. Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion[J].Fuel, 2013, 103: 606-616. doi: 10.1016/j.fuel.2012.06.119

[31]

耳闯, 赵靖舟, 王芮, 等. 鄂尔多斯盆地三叠系延长组页岩孔隙特征及发育机制[J]. 天然气地球科学, 2016, 27(7): 1202-1214.

Er C, Zhao J Z, Wang R, et al. Characteristics and occurrence mechanism of organic-rich shale in the Triassic Yanchang Formation, Ordos Basin, China[J]. Natural Gas Geoscience, 2016, 27(7): 1202-1214.

[32]

Pommer M, Milliken K. Pore types and pore-size distributions across thermal maturity, Eagle Ford Formation, Southern Texas[J].AAPG Bulletin, 2015, 99(9): 1713-1744. doi: 10.1306/03051514151

[33]

姚军,赵秀才. 数字岩心及孔隙级渗流模拟理论[M] . 北京: 石油工业出版社, 2010: 125-128.

Yao J,Zhao X C. Digital Core and Pore Level Percolation Simulation Theory[M] . Beijing: Petroleum Industry Press, 2010: 125-128.

相似文献(共17条)

[1]

张茜, 余谦, 王剑, 肖渊甫, 程锦翔, 赵安坤, 张彬. 应用ICP-MS研究川西南龙马溪组泥页岩稀土元素特征及沉积环境. 岩矿测试, 2018, 37(2): 217-224. doi: 10.15898/j.cnki.11-2131/td.201705090078

[2]

陈生蓉, 帅琴, 高强, 田亚, 徐生瑞, 黄云杰. 基于扫描电镜-氮气吸脱附和压汞法的页岩孔隙结构研究. 岩矿测试, 2015, 34(6): 636-642. doi: 10.15898/j.cnki.11-2131/td.2015.06.006

[3]

庞河清, 曾焱, 刘成川, 黎华继, 彭军, 严焕榕, 陈俊. 基于氮气吸附-核磁共振-氩离子抛光场发射扫描电镜研究川西须五段泥质岩储层孔隙结构. 岩矿测试, 2017, 36(1): 66-74. doi: 10.15898/j.cnki.11-2131/td.2017.01.010

[4]

王羽, 金婵, 汪丽华, 王建强, 姜政, 王彦飞, 普洁. 应用氩离子抛光-扫描电镜方法研究四川九老洞组页岩微观孔隙特征. 岩矿测试, 2015, 34(3): 278-285. doi: 10.15898/j.cnki.11-2131/td.2015.03.003

[5]

王坤阳, 杜谷, 杨玉杰, 董世涛, 喻晓林, 郭建威. 应用扫描电镜与X射线能谱仪研究黔北黑色页岩储层孔隙及矿物特征. 岩矿测试, 2014, 33(5): 634-639.

[6]

白名岗, 夏响华, 张聪, 孟凡洋, 杨玉茹, 张春贺, 代峰, 熊杰, 王向华, 于伟欣. 场发射扫描电镜及PerGeos系统在安页1井龙马溪组页岩有机质孔隙研究中的联合应用. 岩矿测试, 2018, 37(3): 225-234. doi: 10.15898/j.cnki.11-2131/td.201803260030

[7]

王羽, 汪丽华, 王建强, 姜政, 金婵, 王彦飞. 基于聚焦离子束-扫描电镜方法研究页岩有机孔三维结构. 岩矿测试, 2018, 37(3): 235-243. doi: 10.15898/j.cnki.11-2131/td.201612210188

[8]

王羽, 金婵, 汪丽华, 王建强, 姜政, 王彦飞. 基于SEM图像灰度水平的页岩孔隙分割方法研究. 岩矿测试, 2016, 35(6): 595-602. doi: 10.15898/j.cnki.11-2131/td.2016.06.005

[9]

张涛, 王小飞, 黎爽, 邓平晔. 压汞法测定页岩孔隙特征的影响因素分析. 岩矿测试, 2016, 35(2): 178-185. doi: 10.15898/j.cnki.11-2131/td.2016.02.010

[10]

李回贵, 李化敏, 李长兴, 陈善乐. 应用扫描电镜-X射线能谱研究神东矿区砂岩中结构面的微观结构及元素特征. 岩矿测试, 2018, 37(1): 70-78. doi: 10.15898/j.cnki.11-2131/td.201705120080

[11]

范瑶瑶, 胡宗超, 郝宏艳, 刘政平, 覃汉清. X射线衍射-红外光谱-扫描电镜表征超声辅助合成GdPO4:Ce, Tb纳米材料形貌及光学性质. 岩矿测试, 2016, 35(2): 152-158. doi: 10.15898/j.cnki.11-2131/td.2016.02.007

[12]

蔡芃睿, 王春连, 刘成林, 杨飞, 徐海明, 谢腾骁, 余小灿, 孟令阳. 运用扫描电镜和压汞法研究江汉盆地古新统—白垩系砂岩储层孔喉结构及定量参数特征. 岩矿测试, 2017, 36(2): 146-155. doi: 10.15898/j.cnki.11-2131/td.2017.02.008

[13]

董树屏, , 刘涛. 用扫描电镜技术识别广州市大气颗粒物主要种类. 岩矿测试, 2001, (3): 202-207.

[14]

陆红锋, 程思海. 海洋沉积物孔隙水的制备方法. 岩矿测试, 2005, (2): 102-104.

[15]

任英忱, 林天辉, 蔡新兴, 马凤俊, 孙未君, 陈义星, 程敏清. 用扫描电镜-图象分析方法研究某区稀土、铌矿石的元素赋存状态. 岩矿测试, 1985, (1): 45-50.

[16]

盛东, 胡忻, 刘锡尧. 水体悬浮颗粒物的扫描电镜与X射线能谱显微分析. 岩矿测试, 2010, 29(6): 683-686.

[17]

王含, 周征宇, 钟倩, 刘瑞婷, 刘琦, 李英博. 电子微探针-X射线衍射-扫描电镜研究老挝石岩石矿物学特征. 岩矿测试, 2016, 35(1): 56-61. doi: 10.15898/j.cnki.11-2131/td.2016.01.010

计量
  • PDF下载量(16)
  • 文章访问量(102)
  • HTML全文浏览量(34)
  • 被引次数(0)
目录

Figures And Tables

基于扫描电镜和JMicroVision图像分析软件的泥页岩孔隙结构表征研究

戚明辉, 李君军, 曹茜