【引用本文】 熊英, 董亚妮, 裴若会, 等. 电感耦合等离子体发射光谱法应用于锑矿石化学物相分析[J]. 岩矿测试, 2019, 38(5): 497-502. doi: 10.15898/j.cnki.11-2131/td.201809010131
XIONG Ying, DONG Ya-ni, PEI Ruo-hui, et al. Determination of Antimony Content in Antimony Ores by Inductively Coupled Plasma-Optical Emission Spectrometry[J]. Rock and Mineral Analysis, 2019, 38(5): 497-502. doi: 10.15898/j.cnki.11-2131/td.201809010131

电感耦合等离子体发射光谱法应用于锑矿石化学物相分析

陕西省地质矿产实验研究所有限公司, 陕西 西安 710054

收稿日期: 2018-09-01  修回日期: 2019-06-29  接受日期: 2019-07-09

基金项目: 国土资源公益行业科研专项(201211016-2)

作者简介: 熊英, 硕士, 教授级高级工程师, 从事岩石矿物分析方法及标准化研究。E-mail:xianxiongying@sohu.com

Determination of Antimony Content in Antimony Ores by Inductively Coupled Plasma-Optical Emission Spectrometry

Shaanxi Institute of Geology and Mineral Resources Experiment, Xi'an 710054, China

Received Date: 2018-09-01
Revised Date: 2019-06-29
Accepted Date: 2019-07-09

摘要:锑矿石化学物相分析涉及三个矿物相:锑华、辉锑矿和难溶锑酸盐,不同锑矿物相提取的溶剂不同、共存离子复杂、浓度梯度差别大,这些因素影响了电感耦合等离子体发射光谱法(ICP-OES)对锑化学物相的准确测定。本文以锑华、辉锑矿和锑酸盐的选择分离溶剂为研究对象,测试了盐酸、硝酸和硫酸钾-硝酸-硫酸不同介质对ICP-OES测定锑的影响。结果表明:同浓度的盐酸和硝酸介质对锑的测定没有影响,锑华和辉锑矿中锑含量的测定可使用同一标准溶液系列,盐酸或硝酸的浓度控制在15%~20%可避免锑的水解;混合酸介质(4g/L硫酸钾-15%硝酸-3%硫酸)对锑的测定有影响,可采用基体匹配方法解决,在测定锑酸盐相锑含量时,锑校准溶液的配制加入锑酸盐浸出剂相同量的混合酸。选择206.833nm谱线作为分析线,在优化的分析方法流程和测定参数条件下,锑华、辉锑矿和锑酸盐中锑的检出限分别为0.0006%、0.0012%和0.0021%;对不同浓度原生矿和氧化矿12次分析,测定值的相对标准偏差(n=12)为0.16%~5.76%,相态加和与全量的相对偏差绝对值为0.07%~7.38%。本方法精密度和准确度满足锑矿石化学物相分析的质量控制要求,解决了锑矿石化学物相快速准确的测量问题。

关键词: 电感耦合等离子体发射光谱法, 锑矿石, 锑华, 辉锑矿, 锑酸盐

要点

(1) 研究了盐酸、硝酸和硫酸钾-硝酸-硫酸不同介质对ICP-OES测定锑含量的影响。

(2) 在校准溶液中加入与锑酸盐浸出剂相同量的硫酸钾、硝酸和硫酸,消除介质的影响。

Determination of Antimony Content in Antimony Ores by Inductively Coupled Plasma-Optical Emission Spectrometry

ABSTRACT

BACKGROUND:

Chemical phase analysis of antimony ores involves three mineral phases:valentinite, stibnite and insoluble antimonate. Solvents used for extracting various antimony mineral phases are different. In addition, coexisting ions are complex and concentration gradients vary greatly. These factors affect the accurate determination of antimony chemical phases by inductively coupled plasma-optical emission spectrometry (ICP-OES).

OBJECTIVES:

To solve the problem during rapid and accurate measurement of chemical phases of antimony ore.

METHODS:

The effects of hydrochloric acid, nitric acid and potassium sulfate-nitric acid-sulfuric acid on the determination of antimony by ICP-OES were studied with valentinite, stibnite and antimonate as selective separation solvents.

RESULTS:

The same concentration of hydrochloric acid and nitric acid medium had no effect on the determination of antimony. The same standard solution series can be used to determine antimony in valentinite and stibnite. Hydrolysis of antimony can be avoided by using 15%-20% hydrochloric acid or nitric acid of. Mixed acid medium (4g/L potassium sulfate-15% nitric acid-3% sulfuric acid) had an effect on the determination of antimony. The matrix matching method can be used to solve the problem. In determining the amount of antimony in antimonate, the calibrated solution was formulated to add the same amount of mixed acid as the antimonate leaching agent. The detection limits of antimony in valentinite, stibnite and antimonate mineral phases by ICP-OES were 0.0006%, 0.0012% and 0.0021%, respectively, by choosing the 206.833nm line as the analytical line, under optimized analytical method flow and measurement parameters. The relative standard deviations (n=12) of the method were 0.16%-5.76%, and the absolute relative deviations of phase addition and total amount were 0.07%-7.38%.

CONCLUSIONS:

The precision and accuracy of the method meet the quality control requirements of antimony ore chemical phase analysis, and provide fast and accurate measurement of antimony ore chemical phase.

KEY WORDS: inductively coupled plasma-optical emission spectrometry, antimony ore, valentinite, stibnite, antimonate

HIGHLIGHTS

(1) The effects of hydrochloric acid, nitric acid and potassium sulfate-nitric acid-sulfuric acid on the determination of antimony by ICP-OES were studied.

(2) It is necessary to add the same amount of potassium sulfate, nitric acid and sulfuric acid as antimonate leaching agent in calibration solution for solving the influence of solution medium on the determination of antimony.

本文参考文献

[1]

岩石矿物分析编委会. 岩石矿物分析(第四版第三分册)[M] . 北京: 地质出版社, 2011: 147

The Editorial Committee of Rock and Mineral Analysis . Rock and Mineral Analysis (Fourth Edition:Volume Ⅲ)[M] . Beijing: Geological Publishing House, 2011: 147
[2]

周淑君. 锑矿物相分析方法探讨[J]. 云南冶金, 1989, (4): 43-45.

Zhou S J. Discussion on antimony mineral phase analysis method[J].Yunnan Metallurgy, 1989, (4): 43-45.

[3]

马玲, 查立新. 电感耦合等离子体原子发射光谱法测定锑矿选冶中的砷锑[J]. 安徽地质, 2010, 20(3): 219-221. doi: 10.3969/j.issn.1005-6157.2010.03.014

Ma L, Zha L X. Determination of As and Sb in antimony ores by ICP-AES[J].Geology of Anhui, 2010, 20(3): 219-221. doi: 10.3969/j.issn.1005-6157.2010.03.014

[4]

魏轶, 窦向丽, 巨力佩, 等. 四酸溶解-电感耦合等离子体发射光谱法测定金锑矿和锑矿石中的锑[J]. 岩矿测试, 2013, 32(5): 715-718. doi: 10.3969/j.issn.0254-5357.2013.05.007

Wei Y, Dou X L, Ju L P, et al. Determination of antimony in gold-antimony ore and antimony ore by inductively coupled plasma-atomic emission spectrometry with four acids dissolution[J]. Rock and Mineral Analysis, 2013, 32(5): 715-718. doi: 10.3969/j.issn.0254-5357.2013.05.007

[5]

温良, 黄北川. ICP-AES同时测定锑矿石样品中的5种伴生元素[J]. 广东化工, 2014, 41(14): 224-226. doi: 10.3969/j.issn.1007-1865.2014.14.114

Wen L, Huang B C. Determination of five kinds of associated elements in stadium ore by inductively coupled plasma atomic emission spectrometry[J].Guangdong Chemical Industry, 2014, 41(14): 224-226. doi: 10.3969/j.issn.1007-1865.2014.14.114

[6]

李皓, 张尼, 马熠罡, 等. 碱熔样电感耦合等离子体发射光谱法测定锑矿石中锑[J]. 化学分析计量, 2016, 25(2): 69-71. doi: 10.3969/j.issn.1008-6145.2016.02.020

Li H, Zhang N, Ma Y G, et al. Determination of antimony in antimony ore by inductively coupled plasma emission spectrometry combined with alkali fusion pretreatment[J].Chemical Analysis and Meterage, 2016, 25(2): 69-71. doi: 10.3969/j.issn.1008-6145.2016.02.020

[7]

杨旭东. 王水提取-ICP-AES直接测定多金属矿石中砷、锑、铋[J]. 福建分析测试, 2018, 27(1): 39-41. doi: 10.3969/j.issn.1009-8143.2018.01.08

Yang X D. The aqua regia extraction ICP-AES direct determination of arsenic, antimony and bismuth in ores[J].Fujian Analysis & Testing, 2018, 27(1): 39-41. doi: 10.3969/j.issn.1009-8143.2018.01.08

[8]

熊英, 董亚妮, 裴若会, 等. 锑矿石化学物相分析方法选择性分离条件验证及准确度评估[J]. 岩矿测试, 2017, 36(2): 169-175.

Xiong Y, Dong Y N, Pei R H, et al. Antimony ore chemical phase analysis method for selective separation condition verification and accuracy evaluation[J]. Rock and Mineral Analysis, 2017, 36(2): 169-175.

[9]

裴原平, 许祖银, 李明礼, 等. 西藏锑矿中金和锑的测定方法研究[J]. 西藏地质, 2001, (1): 100-105.

Pei Y P, Xu Z Y, Li M L, et al. Determination of Au and Sb in Sb ore[J]. Tibet Geology, 2001, (1): 100-105.

[10]

任志海, 牟思名, 程功, 等. 王水密闭溶矿-电感耦合等离子体原子发射光谱法测定锑矿石中的锑[J]. 中国无机分析化学, 2014, 4(1): 53-55. doi: 10.3969/j.issn.2095-1035.2014.01.014

Ren Z H, Mu S M, Cheng G, et al. Determination of Sb in stadium ore by inductively coupled plasma-atomic emission spectrometry with closed digestion using agua regia[J].Chinese Journal of Inorganic Analytical Chemistry, 2014, 4(1): 53-55. doi: 10.3969/j.issn.2095-1035.2014.01.014

[11]

魏灵巧, 付胜波, 罗磊, 等. 电感耦合等离子体发射光谱法多向观测同时测定锑矿石中锑砷铜铅锌[J]. 岩矿测试, 2012, 31(6): 967-970. doi: 10.3969/j.issn.0254-5357.2012.06.009

Wei L Q, Fu S B, Luo L, et al. Simultaneous determination of Sb, As, Cu, Pb and Zn in antimony ores by inductively coupled plasma atomic emission spectrometry with a multi directional observation mode[J]. Rock and Mineral Analysis, 2012, 31(6): 967-970. doi: 10.3969/j.issn.0254-5357.2012.06.009

[12]

夏辉, 王小强, 杜天军, 等. 五酸和硝酸微波消解法结合ICP-OES技术测定多金属矿中多元素的对比研究[J]. 岩矿测试, 2015, 34(3): 297-301.

Xia H, Wang X Q, Du T J, et al. Determination of multi-elements in polymetallic ores by ICP-OES with mixed acids and nitric acid microwave digestion[J]. Rock and Mineral Analysis, 2015, 34(3): 297-301.

[13]

严慧, 王干珍, 汤行, 等. 电感耦合等离子体原子发射光谱法同时测定锑矿石中14种元素的含量[J]. 理化检验(化学分册), 2017, 53(1): 34-38.

Yan H, Wang G Z, Tang X, et al. Simultaneous determination of 14 elements in antimony ores by inductively coupled plasma-atomic emission spectrometry[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2017, 53(1): 34-38.

[14]

施小英. 电感耦合等离子体原子发射光谱法应用于钼矿石物相分析[J]. 理化检验(化学分册), 2010, 46(1): 79-83.

Shi X Y. Use of ICP-AES in phase analysis of molybdenum ores[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2010, 46(1): 79-83.

相似文献(共18条)

[1]

魏灵巧, 付胜波, 罗磊, 黄小华, 龙安应, 帅琴. 电感耦合等离子体发射光谱法多向观测同时测定锑矿石中锑砷铜铅锌. 岩矿测试, 2012, 31(6): 967-970.

[2]

魏轶, 窦向丽, 巨力佩, 张旺强, 赵伟华, 余志峰, 毛振才. 四酸溶解-电感耦合等离子体发射光谱法测定金锑矿和锑矿石中的锑. 岩矿测试, 2013, 32(5): 715-718.

[3]

马新荣, 马生凤, 王蕾, 温宏利, 巩爱华, 许俊玉. 王水溶矿-等离子体光谱法测定砷矿石和锑矿石中砷锑硫铜铅锌. 岩矿测试, 2011, 30(2): 190-194.

[4]

曾惠芳. ICP—AES法分析辉锑矿. 岩矿测试, 1990, (2): 93-99.

[5]

杜米芳. 电感耦合等离子体发射光谱法同时测定玻璃中铝钙铁钾镁钠钛硫. 岩矿测试, 2008, 27(2): 146-148.

[6]

刘江斌, 余宇, 段九存, 赵伟华, 李瑞仙, 黄兴华, 和振云, 党亮. 熔融制样X射线荧光光谱法测定锑矿石中的锑和14种微量元素. 岩矿测试, 2014, 33(6): 828-833.

[7]

包生样. 锑矿石中14种主量和痕量元素的XRF法分析. 岩矿测试, 1989, (3): 199-201.

[8]

张志刚, 刘凯, 陈泓, 冯瑞, 黄劲, 魏晶晶, 詹宝. 酒石酸络合掩蔽锑-氢醌容量法测定锑矿石样品中的常量金. 岩矿测试, 2015, 34(4): 454-458. doi: 10.15898/j.cnki.11-2131/td.2015.04.013

[9]

徐洛 章勇 马玲 胡浩. 盐酸除锑—原子吸收测定锑矿中的金. 岩矿测试, 2001, (2): 142-144.

[10]

熊英, 董亚妮, 裴若会, 崔长征, 李映琴, 杨艳芳, 谢光晋. 锑矿石化学物相分析方法选择性分离条件验证及准确度评估. 岩矿测试, 2017, 36(2): 156-162. doi: 10.15898/j.cnki.11-2131/td.2017.02.009

[11]

贺攀红, 吴领军, 杨珍, 张伟, 荣耀, 龚治湘. 氢化物发生-电感耦合等离子体发射光谱法同时测定土壤中痕量砷锑铋汞. 岩矿测试, 2013, 32(2): 240-243.

[12]

徐进力, 邢夏, 张勤, 白金峰. 电感耦合等离子体发射光谱法直接测定铜矿石中银铜铅锌. 岩矿测试, 2010, 29(4): 377-382.

[13]

杨惠玲, 夏辉, 杜天军, 白露, 秦九红, 铁锦林. 电感耦合等离子体发射光谱法同时测定锡矿石中锡钨钼铜铅锌. 岩矿测试, 2013, 32(6): 887-892.

[14]

张超, 李享. 电感耦合等离子体发射光谱法测定镍矿石中镍铝磷镁钙. 岩矿测试, 2011, 30(4): 473-476.

[15]

吴迎春, 岳宇超, 聂峰. 电感耦合等离子体发射光谱法测定磷矿石中磷镁铝铁. 岩矿测试, 2014, 33(4): 497-500.

[16]

吴峥, 熊英, 王龙山. 自制氢化物发生系统与电感耦合等离子体发射光谱法联用测定土壤和水系沉积物中的砷锑铋. 岩矿测试, 2015, 34(5): 533-538. doi: 10.15898/j.cnki.11-2131/td.2015.05.006

[17]

姚玉玲, 吴丽琨, 刘卫, 李刚. 乙醇增敏-电感耦合等离子体发射光谱法测定矿石及选冶样品中的铌钽. 岩矿测试, 2015, 34(2): 224-228. doi: 10.15898/j.cnki.11-2131/td.2015.02.012

[18]

熊英, 王晓雁, 胡建平. 电感耦合等离子体发射光谱法同时测定铜铅锌矿石中铜铅锌钴镍等元素方法确认. 岩矿测试, 2011, 30(3): 299-304.

计量
  • PDF下载量(21)
  • 文章访问量(247)
  • HTML全文浏览量(22)
  • 被引次数(0)
目录

Figures And Tables

电感耦合等离子体发射光谱法应用于锑矿石化学物相分析

熊英, 董亚妮, 裴若会, 崔长征