

双硫腙改性氧化石墨烯/壳聚糖复合微球固相萃取在线富集-原子荧光光谱法测定地质样品中痕量汞
1. | 中国地质大学(武汉)材料与化学学院, 湖北 武汉 430074 |
2. | 江西省地质矿产勘查开发局赣西北大队, 江西 九江 332000 |
On-line Determination of Hg (Ⅱ) in Geological Samples by AFS after Solid Phase Extraction Using Dithizone-modified Graphene Oxide/Chitosan Composite Microspheres
1. | Faculty of Material Science and Chemistry, China University of Geosciences(Wuhan), Wuhan 430074, China |
2. | Northwestern Geological Brigade of Jiangxi Geology & Mineral Resources Development Bureau, Jiujiang 332000, China |
摘要:汞可以指示矿床或矿化存在,是一种重要的地质过程示踪元素,因此汞的测定是十分重要的。由于汞在地质矿床中丰度较低,直接测定存在困难,需要进行预分离富集处理。目前采用的分离富集手段大多数是离线,自动化程度较低。本文将合成的双硫腙改性氧化石墨烯/壳聚糖复合微球制成固相萃取小柱,考察了溶液pH、吸附剂种类和体积对汞的吸附效果的影响,优化了固相萃取在线采样/洗脱时间和速率对汞的吸附/洗脱效果的影响,建立了固相萃取在线富集-原子荧光光谱法测定地质样品中痕量汞的分析方法。结果表明:溶液pH=3.0时,以5 mL/min的采样速率进样5 min,汞的吸附率大于90%;用20 g/L硫脲-1.0 mol/L硝酸混合溶液作洗脱液,以1 mL/min的洗脱速度洗脱1 min,洗脱率大于95%。汞含量在0.050~5.0 μg/L范围内线性关系良好,富集因子为22,检出限为0.0019 μg/L。采用本方法测定了土壤和沉积物国家标准物质样品,Hg的测定值与参考值的相对误差小于±13%。与离线分析相比,本方法具有灵敏度高、操作简单快速等特点。
On-line Determination of Hg (Ⅱ) in Geological Samples by AFS after Solid Phase Extraction Using Dithizone-modified Graphene Oxide/Chitosan Composite Microspheres
ABSTRACT Mercury can indicate the presence of deposits or mineralization, which is an important tracer element of geological processes, thus making the determination of mercury very important. Due to the low abundance of mercury in ore deposits, it is difficult to directly determine and thus pre-separation enrichment is needed. Presently, most of the separation and preconcentration methods are off-line with a low degree of automation. Graphene oxide/chitosan microspheres modified by dithizone were prepared and applied as adsorption materials for solid phase extraction column. The effect of experimental parameters including acidity, adsorbent type, and adsorption volume on the absorption efficiency was evaluated. Sampling/elution time and the sampling/elution rate during solid phase extraction were optimized. Based on these conditions, an analytical method for the determination of trace mercury in geological samples by on-line enrichment-atomic fluorescence spectrometry with solid phase extraction was established. The results show that when the pH value is 3.0, the adsorption rate of mercury is more than 90% at 5 mL/min sampling rate. The elution rate was >95% when 20 g/L of thiourea and 1.0 mol/L HNO3 were used as elution solution and elution for 1 min at the rate of 1 mL/min. The working curve showed a good linear relationship when the concentration was between 0.050 μg/L and 5.0 μg/L. The enrichment factor was 22 and the detection limit was 0.0019 μg/L. The relative error of the measured value of Hg and the reference value was less than ±13% when this method was used to determine soil and sediment national standard materials. Compared with the off-line analysis, this method has advantages such as high sensitivity and simple operation.

本文参考文献
[1] |
赵博, 张德会, 于蕾, 等. 从克拉克值到元素的地球化学性质或行为再到成矿作用[J]. 矿物岩石地球化学通报, 2014, (2): 252-261. Zhao B, Zhang D H, Yu L, et al. From clark values to elemental geochemical properties or behaviors, and to mineralization[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2014, (2): 252-261. |
[2] |
李惠, 张国义, 禹斌, 等. 构造叠加晕找盲矿法及其在矿山深部找矿效果[J]. 地学前缘, 2010, 17(1): 287-293. Li H, Zhang G Y, Yu B, et al. Structural superimposed halos method for prospecting blind ore-body in the deep of ore districts[J]. Earth Science Frontiers, 2010, 17(1): 287-293. |
[3] |
迟清华. 汞在地壳、岩石和疏松沉积物中的分布[J]. 地球化学, 2004, 33(6): 641-648. Chi Q H. Abundance of mercury in crust, rocks and loose sediments[J]. Geochimica, 2004, 33(6): 641-648. |
[4] |
陈静生. 环境地球化学[M] . 北京: 海洋出版社, 1990: 1-69. Chen J S. Environmental Geochemistry[M] . Beijing: Ocean Press House, 1990: 1-69. |
[5] |
Hu B, He M, Chen B, et al. Nanometer-sized materials for solid-phase extraction of trace elements[J].Analytical and Bioanalytical Chemistry, 2015, 407(10): 2685-2710. doi: 10.1007/s00216-014-8429-9 |
[6] |
Seidi S, Yamini Y, Rezazadeh M, et al. Electrochemically assi-sted solid based extraction techniques:A review[J]. Talanta, 2015, 132(10): 339-353. |
[7] |
黄运瑞, 周庆祥. 固相萃取吸附剂的研究进展[J]. 冶金分析, 2012, 32(12): 22-28. doi: 10.3969/j.issn.1000-7571.2012.12.004 Huang Y R, Zhou Q X. Research progress of solid phase extraction and sorbent[J].Metallurgical Analysis, 2012, 32(12): 22-28. doi: 10.3969/j.issn.1000-7571.2012.12.004 |
[8] |
蔡述伟. 黄原酯棉富集-冷原子吸收法测定水和地质样品中的痕量汞[J]. 岩矿测试, 1992, 11(4): 348-349. Cai S W. Derermination of trace mercury in water and geological samples by cold-AAS after enrichment with xanthate cotton[J]. Rock and Mineral Analysis, 1992, 11(4): 348-349. |
[9] |
陈焱, 李勇, 李长青, 等. 巯基棉分离富集-原子荧光光谱法测定重晶石中痕量汞[J]. 岩矿测试, 2008, 27(6): 431-434. Chen Y, Li Y, Li C Q, et al. Separation and enrichment with sulfhydryl cotton-atomic fluorescence spectrometric determination of trace mercury in barit[J]. Rock and Mineral Analysis, 2008, 27(6): 431-434. |
[10] |
Shakerian F, Haji S A, Dadfarnia S, et al. Hydride gene-ration atomic absorption spectrometric determination of bismuth after separation and preconcentration with modified alumina[J].Journal of Separation Science, 2015, 38(4): 677-682. doi: 10.1002/jssc.201401050 |
[11] |
吴芳华. 固相萃取新技术研究进展[J]. 分析测试技术与仪器, 2012, (2): 114-120. Wu F H. Study of new technology on solid phase extraction[J]. Analytical Testing Techniques and Instruments, 2012, (2): 114-120. |
[12] |
Liu Q, Shi J, Jiang G, et al. Application of graphene in analy-tical sample preparation[J].TrAC Trends in Analytical Chemistry, 2012, 37: 1-11. doi: 10.1016/j.trac.2012.03.011 |
[13] |
Yu J G, Yu L Y, Yang H, et al. Graphene nanosheets as novel adsorbents in adsorption, preconcentration and removal of gases, organic compounds and metal ions[J].Science of the Total Environment, 2015, 502: 70-79. doi: 10.1016/j.scitotenv.2014.08.077 |
[14] |
Chen Y, Chen L, Bai H, et al. Graphene oxide-chitosan composite hydrogels as broad-spectrum adsorbents for water purification[J].Journal of Materials Chemistry A, 2013, 1(6): 1992-2001. doi: 10.1039/C2TA00406B |
[15] |
Hsu S H, Wang M C, Lin J J, et al. Biocompatibility and anti-microbial evaluation of montmorillonite/chitosan nanocomposites[J]. Applied Clay Science, 2012, 56(1): 53-62. |
[16] |
Tang C Y, Chen N X, Zhang Q, et al. Preparation and proper-ties of chitosan nanocomposites with nanofillers of different dimensions[J]. Polymer Degradation & Stability, 2009, 94(1): 124-131. |
[17] |
Yang X M, Tu Y F, Li L, et al. Well-dispersed chitosan/gra-phene oxide nanocomposites[J]. Applied Materials & Interfaces, 2010, 2(6): 1707-1713. |
[18] |
Travlou N A, Kyzas G Z, Lazaridis N K, et al. Graphite oxide/chitosan composite for reactive dye removal[J].Chemical Engineering Journal, 2013, 217: 256-265. doi: 10.1016/j.cej.2012.12.008 |
[19] |
Djerahov L, Vasileva P, Karadjova I, et al. Chitosan film loaded with silver nanoparticles-sorbent for solid phase extraction of Al(Ⅲ), Cd(Ⅱ), Cu(Ⅱ), Co(Ⅱ), Fe(Ⅲ), Ni(Ⅱ), Pb(Ⅱ) and Zn(Ⅱ)[J].Carbohydrate Polymers, 2016, 147: 45-52. doi: 10.1016/j.carbpol.2016.03.080 |
[20] |
Chandio Z A, Talpur F N, Khan H, et al. On-line pre-concentration and determination of ultra trace amounts of mercury using surfactant coated alumina modified by dithizone with cold vapor atomic absorption spectrometry[J].RSC Advances, 2014, 4(7): 3326-3331. doi: 10.1039/C3RA43712D |
[21] |
Carasek E, Tonjes J W, Scharf M, et al. A new method of mic-rovolume back-extraction procedure for enrichment of Pb and Cd and determination by flame atomic absorption spectrometry[J].Talanta, 2002, 56(1): 185-191. doi: 10.1016/S0039-9140(01)00556-2 |
[22] |
Peng Q, Liu M, Zheng J, et al. Adsorption of dyes in aqu-eous solutions by chitosan-halloysite nanotubes composite hydrogel beads[J].Microporous and Mesoporous Materials, 2015, 201: 190-201. doi: 10.1016/j.micromeso.2014.09.003 |
[23] |
Liu L, Li C, Bao C, et al. Preparation and characteriza-tion of chitosan/graphene oxide composites for the adsorption of Au(Ⅲ) and Pd(Ⅱ)[J]. Talanta, 2012, 93(2): 350-357. |
[24] |
Chen J, Yao B, Li C, et al. An improved Hummers me-thod for eco-friendly synthesis of graphene oxide[J].Carbon, 2013, 64: 225-229. doi: 10.1016/j.carbon.2013.07.055 |
[25] |
Travlou N A, Kyzas G Z, Lazaridis N K, et al. Func-tionalization of graphite oxide with magnetic chitosan for the preparation of a nanocomposite dye adsorbent[J].Langmuir, 2013, 29(5): 1657-1668. doi: 10.1021/la304696y |
[26] |
Kyzas G Z, Travlou N A, Deliyanni E A, et al. The role of chitosan as nanofiller of graphite oxide for the removal of toxic mercury ions[J]. Colloids & Surfaces B Biointerfaces, 2014, 113(1): 467. |
相似文献(共20条)
[1] |
黄园英, 吴淑琪, 佟玲, 张玲金. 土壤中持久性有机污染物分析的前处理方法. 岩矿测试, 2008, 27(2): 81-86. |
[2] |
赵延庆. 微型氢化物发生装置在冷原子吸收分光光度法测汞中的应用. 岩矿测试, 2008, 27(1): 69-70. |
[3] |
林光西. 氢化物发生-原子荧光光谱法直接测定地球化学样品中痕量碲. 岩矿测试, 2008, 27(2): 151-152. |
[4] |
李刚, 苏文峰. 焙烧分离-氢化物发生-原子荧光光谱法测定土壤样品中微量硒. 岩矿测试, 2008, 27(2): 120-122. |
[5] |
孙玮琳, 沈斌, 汪双清, 龚迎莉. 自然水体和土壤中氯代烃和芳香烃类化合物分析测试方法研究. 岩矿测试, 2008, 27(3): 174-178. |
[6] |
李刚, 曹小燕. 电感耦合等离子体质谱法测定地质样品中锗和镉的干扰及校正. 岩矿测试, 2008, 27(3): 197-200. |
[7] |
周丽萍, 李中玺. 断续流动在线分离富集-蒸气发生原子荧光光谱法测定复杂环境样品中痕量镉. 岩矿测试, 2006, 25(3): 233-238. |
[8] |
陈焱, 李勇, 李长青. 巯基棉分离富集-原子荧光光谱法测定重晶石中痕量汞. 岩矿测试, 2008, 27(6): 431-. |
[9] | |
[10] |
赵 斌, 陈志兵, 董 丽. 氢化物发生-原子荧光光谱法测定植物样品中汞硒砷. 岩矿测试, 2010, 29(3): 319-321. |
[11] |
徐爱琴. 原子荧光光谱法测砷锑铋汞中一些问题及解决方法. 岩矿测试, 2001, (1): 79-80. |
[12] |
徐国栋, 葛建华, 贾慧娴, 杜谷, 程江, 董俊. 水浴浸提-氢化物发生-原子荧光光谱法同时测定 地质样品中痕量砷和汞. 岩矿测试, 2010, 29(4): 391-394. |
[13] |
蔡述伟. 黄原酯棉富集—冷原子吸收法测定水和地质.... 岩矿测试, 1992, (4): 348-349353. |
[14] |
叶陆芳, 宋小华, 余代顺, 杨小慢, 谢文根, 吴少尉. 固相萃取掺氧空气-乙炔火焰原子吸收光谱法测定水和植物样品中的痕量镓. 岩矿测试, 2020, 39(2): 243-250. doi: 10.15898/j.cnki.11-2131/td.201905280073 |
[15] |
程先忠, 郑民奇, 林能永, 黄纪雄. 密闭溶样-原子荧光光谱法测定硫磺中微量汞. 岩矿测试, 2008, 27(5): 349-352. |
[16] |
周惠琼, 朱霞萍, 廖余游. 微波消解-氢化物发生原子荧光光谱法同时测定化肥中的砷和汞. 岩矿测试, 2012, 31(2): 268-271. |
[17] |
乔宁强, 薛志伟, 王刚峰, 罗丹. 索氏提取-原子荧光光谱法测定含油岩心中的汞和砷. 岩矿测试, 2019, 38(4): 461-467. doi: 10.15898/j.cnki.11-2131/td.201812030128 |
[18] | |
[19] |
杨红霞, 何红蓼, 李冰, 倪哲明. 环境样品中痕量元素的化学形态分析Ⅱ.砷汞镉锡铅硒铬的形态分析. 岩矿测试, 2005, (2): 118-128. |
[20] |
李淑娟, 于兆水, 张勤. 氢化物发生-原子荧光光谱法测定地球化学样品中痕量铋. 岩矿测试, 2005, (3): 217-220. |
计量
- PDF下载量(53)
- 文章访问量(12917)
- HTML全文浏览量(5282)
- 被引次数(0)