【引用本文】 殷陶刚, 窦向丽, 张旺强, 等. 应用高频红外碳硫仪测定农用地土壤样品中有机质含量[J]. 岩矿测试, 2020, 39(4): 631-638. doi: 10.15898/j.cnki.11-2131/td.201905110061
YIN Tao-gang, DOU Xiang-li, ZHANG Wang-qiang, et al. Determination of Organic Matter Content in Farm Land Soil by High Frequency Infrared Carbon-Sulfur Analyzer[J]. Rock and Mineral Analysis, 2020, 39(4): 631-638. doi: 10.15898/j.cnki.11-2131/td.201905110061

应用高频红外碳硫仪测定农用地土壤样品中有机质含量

国土资源部兰州矿产资源监督检测中心, 甘肃 兰州 730050

收稿日期: 2019-05-11  修回日期: 2019-09-05  接受日期: 2020-04-24

基金项目: 甘肃矿产资源勘查与综合利用工程技术研究项目(1306FTGA011)

作者简介: 殷陶刚, 硕士, 工程师, 主要从事土壤、矿石及水质分析测试工作。E-mail:275241113@qq.com

Determination of Organic Matter Content in Farm Land Soil by High Frequency Infrared Carbon-Sulfur Analyzer

Lanzhou Testing and Quality Supervision Center for Geological and Mineral Products, Ministry of Land and Resources, Lanzhou 730050, China

Received Date: 2019-05-11
Revised Date: 2019-09-05
Accepted Date: 2020-04-24

摘要:应用高频红外碳硫仪测定农用地土壤样品中的有机质,避免了传统方法中的试样液体转化环节,测定效率高,但存在土壤样品电磁感应低和基体影响较大等问题。本文通过实验优化了样品称样量、助熔剂铁和钨的添加量等测定条件,结果表明:当样品称样量为0.05g、助熔剂铁添加量为0.40g、钨添加量为1.50g时,有机质测定效果最佳。通过土壤标准物质进行验证,方法检出限为0.003%,相对标准偏差(RSD,n=7)小于4%,测定值与认定值的相对误差小于5%,且不同分析人员的测定结果间没有显著差异。采用本法与重铬酸钾容量法对甘肃省农用地土壤样品进行测定,两种方法测定值的绝对误差为-0.25%~0.28%,测定结果之间呈极显著线性正相关(R2=0.9736),表明两种方法的一致性很好。本方法的检出限、精密度、准确度均满足农用地土壤样品有机质测定要求。

关键词: 高频红外碳硫仪, 农用地土壤, 有机质, 助熔剂, ,

要点

(1) 解决了应用高频红外碳硫仪测定土壤样品有机质存在的电磁感应低和基体影响较大等问题。

Determination of Organic Matter Content in Farm Land Soil by High Frequency Infrared Carbon-Sulfur Analyzer

ABSTRACT

BACKGROUND:

The application of high frequency infrared carbon-sulfur analyzer to determine the organic matter in agricultural soil samples avoids the traditional method of sample liquid conversion. The method has a high measurement efficiency, but has problems such as low electromagnetic induction of soil samples and greater influence of the matrix.

OBJECTIVES:

To solve the problems of low electromagnetic induction and large matrix effect in the determination of organic matter in agricultural soil samples.

METHODS:

The iron and tungsten flux was optimized for the sample size. An accurate and efficient method for the determination of soil organic matter content was established by high frequency infrared carbon-sulfur analyzer.

RESULTS:

When the conditions set for a sample size of 0.05g, the flux iron content was 0.40g, and the tungsten content was 1.50g, optimum results of organic content were obtained. The method was verified by soil standard materials. The detection limit of this method was 0.003%, the relative standard deviation (RSD, n=7) was less than 4%, and the error between the analytical result and the standard value was less than 5%. There was no significant difference between the results of different analytical staff. The proposed method and potassium dichromate volumetric method were used to analyze soil samples in farm land of Gansu Province. The absolute error ranges of this method and potassium dichromate volumetric method were from -0.25% to 0.28%. The positively linear correlation between the determination results (R2=0.9736) indicated that the two methods were in good agreement.

CONCLUSIONS:

The detection limit, precision and accuracy of the established method meet the requirements of the soil samples of farm land.

KEY WORDS: high frequency infrared carbon-sulfur analyzer, farmland soil, organic matter, flux aid, iron, tungsten

HIGHLIGHTS

(1) The problems of low electromagnetic induction and large matrix effect in the determination of organic matter content in soil samples were solved.

本文参考文献

[1]

窦森. 土壤有机质[M] . 北京: 科学出版社, 2010

Dou S. Soil organic matter[M] . Beijing: Science Press, 2010
[2]

杨帆, 徐洋, 崔勇, 等. 近30年中国农田耕层土壤有机质含量变化[J]. 土壤学报, 2017, 54(5): 1047-1056.

Yang F, Xu Y, Cui Y, et al. Variation of soil organic matter content in croplands of China over the last three decades[J]. Acta Pedologica Sinica, 2017, 54(5): 1047-1056.

[3]

汪景宽, 徐英德, 丁凡, 等. 植物残体向土壤有机质转化过程及其稳定机制的研究进展[J]. 土壤学报, 2019, 56(3): 528-540.

Wang J K, Xu Y D, Ding F, et al. Process of plant residue transforming into soil organic matter and mechanism of its stabilization:A review[J]. Acta Pedologica Sinica, 2019, 56(3): 528-540.

[4]

徐明岗, 卢昌艾, 张文菊, 等. 我国耕地质量状况与提升对策[J]. 中国农业资源与区划, 2016, 37(7): 8-14.

Xu M G, Lu C A, Zhang W J, et al. Situation of the quality of arable land in China and improvement strategy[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2016, 37(7): 8-14.

[5]

郑昊楠, 王秀君, 万忠梅, 等. 华北地区典型农田土壤有机质和养分的空间异质性[J]. 中国土壤与肥料, 2019, (1): 55-61.

Zheng H N, Wang X J, Wan Z M, et al. Spatial heterogeneity of soil organic matter and nutrients in typical farmland in the North China Plain[J]. Soil and Fertilizer Sciences in China, 2019, (1): 55-61.

[6]

夏家淇. 农用地块土壤污染分类标准制订方法探讨[J]. 生态与农村环境学报, 2019, 35(3): 405-408.

Xia J Q. Methods for derivation of site specific standard for management of contaminated agricultural soil[J]. Journal of Ecology and Rural Environment, 2019, 35(3): 405-408.

[7]

于洋, 刘文清, 许人骥, 等. 典型地区农用地污染调查及风险管控标准探讨[J]. 中国环境监测, 2019, 35(3): 1-7.

Yu Y, Liu W Q, Xu R J, et al. Investigation of agricultural land pollution in typical areas and discussion on risk control standards[J]. Environmental Monitoring in China, 2019, 35(3): 1-7.

[8]

陈卫平, 谢天, 李笑诺, 等. 中国土壤污染防治技术体系建设思考[J]. 土壤学报, 2018, 55(3): 557-568.

Chen W P, Xie T, Li X N, et al. Thinking of construction of soil pollution prevention and control technology system in China[J]. Acta Pedologica Sinica, 2018, 55(3): 557-568.

[9]

Salehi M H, Beni O H, Harchegani H B, et al. Refining soil organic matter determination by loss-on-ignition[J].Pedosphere, 2011, 21(4): 473-482. doi: 10.1016/S1002-0160(11)60149-5

[10]

吴才武, 夏建新, 段峥嵘, 等. 土壤有机质测定方法述评与展望[J]. 土壤, 2015, 47(3): 453-460.

Wu C W, Xia J X, Duan Z R, et al. Review on detection methods of soil organic matter[J]. Soils, 2015, 47(3): 453-460.

[11]

徐虎, 申华平, 周世伟, 等. 铝模块消解仪加热法测定土壤中有机质含量[J]. 中国土壤与肥料, 2016, (3): 140-144.

Xu H, Shen H P, Zhou S W, et al. Determination of soil organic matter content by heating method with an aluminum module digesting device[J]. Soil and Fertilizer Sciences in China, 2016, (3): 140-144.

[12]

邱灵佳, 黄国林, 帅琴, 等. 灼烧法中有机质与总有机碳换算关系的重建及其在页岩分析中的应用[J]. 岩矿测试, 2015, 34(2): 218-223.

Qiu L J, Huang G L, Shuai Q, et al. Reconstruction of the conversion relationship between organic matter and total organic carbon in calcination method and its application in shale analysis[J]. Rock and Mineral Analysis, 2015, 34(2): 218-223.

[13]

胡彩莉, 马玉贞, 郭超, 等. 烧失量法测定土壤有机质含量的实验条件探究[J]. 地球与环境, 2016, 44(1): 110-118.

Hu C L, Ma Y Z, Guo C, et al. Optimization of the experiment conditions for estimating organic matter content with loss-on-ignition method[J]. Earth and Environment, 2016, 44(1): 110-118.

[14]

Schumacher B A.Methods for the determination of total organic carbon (TOC) in soils and sediments[R].US Environmental Protection Agency, 2002.

[15]

张明杰, 戴雪峰, 陆荣, 等. 高频燃烧-红外碳硫仪用于农用地土壤质量调查样品中碳硫的快速测定[J]. 岩矿测试, 2010, 29(2): 139-142.

Zhang M J, Dai X F, Lu R, et al. Rapid determination of carbon and sulfur in farm land soil samples by high frequency infrared carbon sulfur analyzer[J]. Rock and Mineral Analysis, 2010, 29(2): 139-142.

[16]

顾涛, 王迪民, 杨梅, 等. 高频红外碳硫仪测定土壤/沉积物中总有机碳研究[J]. 华南地质与矿产, 2015, 31(3): 306-310.

Gu T, Wang D M, Yang M, et al. Determination of total organic carbon in soil and sediment by high frequency infrared carbon sulfur analyzer[J]. Geology and Mineral Resources of South China, 2015, 31(3): 306-310.

[17]

廖漓文, 董震堃. 红外碳硫仪测定土壤中碳含量的探讨[J]. 价值工程, 2015, (11): 181-182.

Liao L W, Dong Z K. New application of high frequency infrared ray carbon sulphur analyser[J]. Value Engineering, 2015, (11): 181-182.

[18]

李国栋, 解成岩, 赵永哲, 等. 土样制备对土壤有机质测定的影响[J]. 黑龙江环境通报, 2018, 42(3): 16-18.

Li G D, Xie C Y, Zhao Y Z, et al. Influence of soil sample preparation on soil organic matter determination[J]. Heilongjiang Environmental Journal, 2018, 42(3): 16-18.

[19]

钱宝, 刘凌, 肖潇, 等. 土壤有机质测定方法对比分析[J]. 河海大学学报(自然科学版), 2011, 39(1): 34-38.

Qian B, Liu L, Xiao X, et al. Comparative tests on different methods for content of soil organic matter[J]. Journal of Hohai University (Natural Sciences), 2011, 39(1): 34-38.

[20]

鲁如坤. 土壤农业化学分析方法[M] . 北京: 中国农业科技出版社, 2000

Lu R K. Analytical method of soil agricultural chemistry[M] . Beijing: China Agriculture Science and Technique Press, 2000
[21]

张长均, 王蓬, 张之果, 等. 影响高频红外碳硫仪分析结果稳定性因素的探讨[J]. 冶金分析, 2006, 26(6): 90-91.

Zhang C J, Wang P, Zhang Z G, et al. Discussion on the factors affecting the stability of high frequency infrared carbon and sulfur analyzer[J]. Metallurgical Analysis, 2006, 26(6): 90-91.

[22]

于汀汀, 王玮, 许俊玉, 等. 红外碳硫仪测定矿石中高含量硫[J]. 分析试验室, 2016, 35(6): 695-699.

Yu T T, Wang W, Xu J Y, et al. Determination of high-content sulfur in ore by IR-absorption spectrometer[J]. Chinese Journal of Analysis Laboratory, 2016, 35(6): 695-699.

[23]

龚仓, 付桂花, 黄艳波, 等. 高频燃烧-红外碳硫仪测定岩心钻探样品中碳硫[J]. 黄金, 2016, 37(12): 77-80.

Gong C, Fu G H, Huang Y B, et al. Determination of carbon and sulfur in drilling core samples by high frequency combustion-infrared carbon and sulfur analyzer[J]. Gold, 2016, 37(12): 77-80.

[24]

黄启华, 徐志强, 杨玮玮, 等. 高频红外碳硫仪测定重晶石和黄铁矿中的硫[J]. 岩矿测试, 2017, 36(2): 130-135.

Huang Q H, Xu Z Q, Yang W W, et al. Determination of sulfur in barite and pyrite by high infrared carbon-sulfur spectrometer[J]. Rock and Mineral Analysis, 2017, 36(2): 130-135.

[25]

陈伟锐. 高频红外碳硫仪测定土壤和水系沉积物中的硫实验条件改进[J]. 岩矿测试, 2019, 38(1): 123-128.

Chen W R. Improvement of experimental conditions for the determination of sulfur in soil and stream sediments by high frequency infrared carbon and sulfur analyzer[J]. Rock and Mineral Analysis, 2019, 38(1): 123-128.

[26]

和振云, 段九存, 张旺强, 等. 干燥箱烘焙加热法测定土壤有机质的方法改进[J]. 甘肃地质, 2013, 22(3): 77-81.

He Z Y, Duan J C, Zhang W Q, et al. Improved process on drying oven torrefaction heating method to determine soil organic matter[J]. Gansu Geology, 2013, 22(3): 77-81.

[27]

Li G A, Yan L, Chen Z H, et al. Determination of organic carbon in soils and sediments in an automatic method[J]. Journal of Groundwater Science and Engineering, 2017, 5(2): 124-129.

[28]

杨艳明, 李美玉, 赵毅华, 等. 高频燃烧-红外吸收法测定石墨中的固定碳含量[J]. 分析测试技术与仪器, 2018, 24(1): 52-56.

Yang Y M, Li M Y, Zhao Y H, et al. Determination of fixed carbon content in graphite by high frequency combustion-infrared absorption method[J]. Analysis and Testing Technology and Instruments, 2018, 24(1): 52-56.

[29]

陈宗定, 许春雪, 安子怡, 等. 土壤碳赋存形态及分析方法研究进展[J]. 岩矿测试, 2019, 38(2): 233-244.

Chen Z D, Xu C X, An Z Y, et al. Research progress on fraction and analysis methods of soil carbon[J]. Rock and Mineral Analysis, 2019, 38(2): 233-244.

相似文献(共19条)

[1]

王军学. X射线荧光光谱法测定锌铝硅合金中硅和铁. 岩矿测试, 2008, 27(1): 77-78.

[2]

王中岐, 张敏, 田文辉. 能量色散X射线荧光光谱法测定钼矿石中钼铅铁铜. 岩矿测试, 2008, 27(3): 235-236.

[3]

尹周澜, 王薇惟, 覃祚明, 黄旭. 电感耦合等离子体质谱法测定高纯铟中铁. 岩矿测试, 2008, 27(3): 193-196.

[4]

张明杰, 戴雪峰, 陆丁荣, 王杰. 高频燃烧-红外碳硫仪用于农用地土壤质量调查样品中碳硫的快速测定. 岩矿测试, 2010, 29(2): 139-142.

[5]

邱灵佳, 黄国林, 帅琴, 苏玉. 灼烧法中有机质与总有机碳换算关系的重建及其在页岩分析中的应用. 岩矿测试, 2015, 34(2): 218-223. doi: 10.15898/j.cnki.11-2131/td.2015.02.011

[6]

熊艳, 钟夏阳, 陈金保. 消解炉消解-氧化还原滴定法测定土壤样品中有机质. 岩矿测试, 2006, 25(2): 191-192.

[7]

张兴超, 刘超, 黄艺, 黄方, 于慧敏. 干法灰化处理对含有机质土壤样品铜同位素测量的影响. 岩矿测试, 2018, 37(4): 347-355. doi: 10.15898/j.cnki.11-2131/td.201803290033

[8]

龙梅 裴世桥. 近红外反射光谱学在岩石矿物研究中的应用Ⅱ.快速测定地质样品中有机质. 岩矿测试, 2004, (1): 6-10.

[9]

洪翊, 李鉴伦, 何平, 冯超, 李锡坤. 酸性土壤中20种元素有效态浸提体系浅析. 岩矿测试, 2001, (3): 167-173.

[10]

任冬, 陈宇豪, 张廷忠. 高压密闭消解技术在土壤有效态样品前处理中的应用. 岩矿测试, 2020, 39(1): 143-149. doi: 10.15898/j.cnki.11-2131/td.201902270027

[11]

黄启华, 徐志强, 杨玮玮. 高频红外碳硫仪测定重晶石和黄铁矿中的硫. 岩矿测试, 2017, 36(2): 130-135. doi: 10.15898/j.cnki.11-2131/td.2017.02.006

[12]

杭健, 高若柳. 硫氰酸盐比色法测定钨的改进. 岩矿测试, 2011, 30(2): 226-229.

[13]

马新荣, 王蕾, 温宏利, 巩爱华. 电感耦合等离子体光谱法测定黄铁矿和黄铜矿中的铁铜硫. 岩矿测试, 2011, 30(6): 756-760.

[14]

孙文军. 钼酸铵产品中微量钨的催化极谱测定. 岩矿测试, 2002, (3): 239-240.

[15]

吴小勇, 陈永君, . Si—PIN探测器便携式X荧光分析仪在海洋多金属结核结壳分析中的应用. 岩矿测试, 2002, (1): 33-36.

[16]

耿征, 罗梅英. 巯基棉富集—化学发光法测定钨. 岩矿测试, 1991, (2): 93-96.

[17]

叶淑爱, 王伟, 普旭力, 蔡继杰. 熔融制样X射线荧光光谱法测定碳化钨及其废料中的钨. 岩矿测试, 2015, 34(1): 99-103. doi: 10.15898/j.cnki.11-2131/td.2015.01.013

[18]

荆照政, 张博仪. 滤纸薄样片—X射线荧光光谱法测定钨和锡. 岩矿测试, 1990, (4): 272-273.

[19]

李志良, 李梦龙. 卡尔曼滤波用于钼钨锡锗的同时光度测定. 岩矿测试, 1989, (4): 241-244.

计量
  • PDF下载量(19)
  • 文章访问量(265)
  • HTML全文浏览量(38)
  • 被引次数(0)
目录

Figures And Tables

应用高频红外碳硫仪测定农用地土壤样品中有机质含量

殷陶刚, 窦向丽, 张旺强, 和振云