【引用本文】 周安丽, 武志远, 宁海龙, 等. 高压密闭消解-电感耦合等离子体质谱法测定和田玉中15种稀土元素[J]. 岩矿测试, 2020, 39(3): 451-458. doi: 10.15898/j.cnki.11-2131/td.201907170106
ZHOU An-li, WU Zhi-yuan, NING Hai-long, et al. Determination of 15 Rare Earth Elements in Hetian Jade by Inductively Coupled Plasma-Mass Spectrometry with High-pressure Closed Digestion[J]. Rock and Mineral Analysis, 2020, 39(3): 451-458. doi: 10.15898/j.cnki.11-2131/td.201907170106

高压密闭消解-电感耦合等离子体质谱法测定和田玉中15种稀土元素

1. 

石河子大学化学化工学院, 新疆 石河子 832003

2. 

阿拉山口海关技术中心, 新疆 阿拉山口 833418

3. 

乌鲁木齐海关技术中心阿勒泰分中心, 新疆 阿勒泰 836500

收稿日期: 2019-07-17  修回日期: 2019-09-04  接受日期: 2019-10-21

基金项目: 国家重点研发计划项目“国家质量基础的共性技术研究与应用”(2018YFF0215400)

作者简介: 周安丽, 硕士研究生, 从事岩石矿产品分析检测。E-mail:zhouanli1210@163.com

通信作者: 吕新明, 高级工程师, 从事岩石矿产品分析检测。E-mail:ciqlxm@163.com

Determination of 15 Rare Earth Elements in Hetian Jade by Inductively Coupled Plasma-Mass Spectrometry with High-pressure Closed Digestion

1. 

College of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China

2. 

Alashankou Customs Technology Center, Alashankou 833418, China

3. 

Altay Branch of Urumqi Customs Technical Center, Altay 836500, China

Corresponding author: LÜ Xin-ming, ciqlxm@163.com

Received Date: 2019-07-17
Revised Date: 2019-09-04
Accepted Date: 2019-10-21

摘要:和田玉的稀土元素丰富,准确测定稀土元素含量对于揭示和田玉成矿物质来源、成矿流体的性质和矿床成因具有重要的意义。本文通过比较硝酸-氢氟酸、四硼酸锂-偏硼酸锂碱熔两种前处理方法,确定了使用硝酸-氢氟酸溶样,再采用电感耦合等离子体质谱法(ICP-MS)测定和田玉中钇镧铈镨钕钐铕钆铽镝钬铒铥镱镥15种稀土元素的含量。为降低基体效应,以103Rh和49In作内标补偿基体效应和校正灵敏度漂移,样品检出限为0.0008~0.0091μg/L,回收率为101.0%~120.0%,精密度(RSD)为0.55%~1.83%(n=11)。本方法的用酸量少,空白值低,应用于不同地区和田玉的分析,其稀土元素的配分模式特征为右倾型轻稀土富集,初步探讨的稀土元素丰度特征可为研究主产区宝玉石的矿床成因提供依据。

关键词: 和田玉, 稀土元素, 硝酸-氢氟酸, 酸溶, 电感耦合等离子体质谱法

要点

(1) 比较了硝酸-氢氟酸、四硼酸锂-偏硼酸锂碱熔两种前处理方法。

(2) 本方法用酸量少,溶矿效率高。

(3) 和田玉的稀土元素的配分模式特征为右倾型轻稀土富集。

Determination of 15 Rare Earth Elements in Hetian Jade by Inductively Coupled Plasma-Mass Spectrometry with High-pressure Closed Digestion

ABSTRACT

BACKGROUND:

There are abundant rare earth elements in Hetian jade. The accurate determination of the content of rare earth elements is of great significance for revealing the source of ore-forming materials, the nature of ore-forming fluids and the genesis of the deposit.

OBJECTIVES:

To compare the different acid systems in microware digestion and investigate the elimination test of polyatomic interferences, so as to develop a method for the determination of REE in Hetian jade by inductively coupled plasma-mass spectrometry (ICP-MS) with microwave digestion.

METHODS:

After comparing the efficiency of HNO3-HF acid dissolution and Li2B4O7-LiBO2 fusion, the Hetian jade samples were digested by HNO3-HF. Fifteen rare earth elements were determined by ICP-MS. 103Rh and 49In are used as internal isotopes to complement matrix effect and correct sensitivity drift, in order to reduce matrix effect.

RESULTS:

The detection limits of the method were 0.0008-0.0091μg/L, whereas the recoveries were 101.0%-120.0%. The relative standard deviation was 0.55%-1.83%(n=11).

CONCLUSIONS:

This method uses less acid and has a low blank value. It is applied to the analysis of Hetian jade in different regions. The distribution pattern of rare earth elements is characterized by right-inclined light rare earth enrichment, which provides constraints on the genesis of the jade deposit.

KEY WORDS: Hetian jade, Trace elements, rare earth elements, inductively coupled plasma-mass spectrometry,

HIGHLIGHTS

(1) Two pretreatment methods were compared to evaluate the dissolution effect of nitric acid-hydrofluoric acid and lithium tetraborate-lithium metaborate alkaline fusion.

(2) The proposed method uses less acid and has higher dissolution efficiency.

(3) The REE pattern of Hetian jade was characterized by light REE enrichment.

本文参考文献

[1]

Yu J, Hou Z, Sheta S, et al. Provenance classification of nephrite jades using multivariate LIBS:A comparative study[J].Analytical Methods, 2018, 3: 10.

[2]

杨萍, 丘志力, 陈炳辉, 等. 现代微区测试技术在确定宝玉石产地来源中的应用及其研究进展[J]. 宝石和宝石学杂志, 2009, 11(1): 1-11. doi: 10.3969/j.issn.1008-214X.2009.01.001

Yang P, Qiu Z L, Chen B H, et al. Application of modern micro-zone testing technology in determining the origin of gemstone and its research progress[J].Journal of Gems & Gemology, 2009, 11(1): 1-11. doi: 10.3969/j.issn.1008-214X.2009.01.001

[3]

鲁力, 魏均启, 王芳, 等. 和田玉物质成分及结构类型对比研究[J]. 资源环境与工程, 2015, 29(1): 85-90. doi: 10.3969/j.issn.1671-1211.2015.01.019

Lu L, Wei J Q, Wang F, et al. Comparative study on material composition and structure type of Hetian jade[J].Resource Environment and Engineering, 2015, 29(1): 85-90. doi: 10.3969/j.issn.1671-1211.2015.01.019

[4]

《岩石矿物分析》编委会. 岩矿物分析(第四版第三分册)[M] . 北京: 地质出版社, 2011: 448-476.

The editorial committee of < Rock and mineral analysis> . Rock and mineral analysis (The fourth edition, Vol.Ⅲ)[M] . Beijing: Geological Publishing House, 2011: 448-476.
[5]

周国兴, 刘玺祥, 崔德松, 等. 碱熔ICP-MS法测定岩石样品中稀土等28种金属元素[J]. 质谱学报, 2010, 31(2): 120-124.

Zhou G X, Liu Y X, Cui D S, et al. Determination of 28 metal elements in rare earths and others by rock melting ICP-MS[J]. Journal of Chinese Mass Spectrometry Society, 2010, 31(2): 120-124.

[6]

杨小丽, 崔森, 杨梅, 等. 碱熔离子交换-电感耦合等离子体质谱法测定多金属矿中痕量稀土元素[J]. 冶金分析, 2011, 31(3): 11-16. doi: 10.3969/j.issn.1000-7571.2011.03.003

Yang X L, Cui S, Yang M, et al. Determination of trace rare earth elements in polymetallic ore by alkali fusion ion exchange-inductively coupled plasma mass spectrometry[J].Metallurgical Analysis, 2011, 31(3): 11-16. doi: 10.3969/j.issn.1000-7571.2011.03.003

[7]

陈贺海, 荣德福, 付冉冉, 等. 微波消解-电感耦合等离子体质谱法测定铁矿石中15个稀土元素[J]. 岩矿测试, 2013, 32(5): 702-708. doi: 10.3969/j.issn.0254-5357.2013.05.005

Chen H H, Rong D F, Fu R R, et al. Determination of 15 rare earth elements in iron ore by microwave digestion-inductively coupled plasma mass spectrometry[J]. Rock and Mineral Analysis, 2013, 32(5): 702-708. doi: 10.3969/j.issn.0254-5357.2013.05.005

[8]

陈永欣, 黎香荣, 韦新红, 等. 微波消解-电感耦合等离子体质谱法测定土壤和沉积物中痕量稀土元素[J]. 岩矿测试, 2011, 30(5): 560-565. doi: 10.3969/j.issn.0254-5357.2011.05.008

Chen Y X, Li X R, Wei X H, et al. Determination of trace rare earth elements in soil and sediment by microwave digestion-inductively coupled plasma mass spectrometry[J]. Rock and Mineral Analysis, 2011, 30(5): 560-565. doi: 10.3969/j.issn.0254-5357.2011.05.008

[9]

贾双琳, 赵平, 杨刚, 等. 混合酸敞开或高压密闭溶样ICP-MS测定地质样品中稀土元素[J]. 岩矿测试, 2014, 33(2): 186-191. doi: 10.3969/j.issn.0254-5357.2014.02.005

Jia S L, Zhao P, Yang G, et al. Determination of rare earth elements in geological samples by mixed acid open or high pressure sealed sample ICP-MS[J]. Rock and Mineral Analysis, 2014, 33(2): 186-191. doi: 10.3969/j.issn.0254-5357.2014.02.005

[10]

Liang Q, Jing H, Gregoire D C, et al. Determination of trace elements in granites by inductively coupled plasma mass spectrometry[J].Talanta, 2000, 51(3): 507-513. doi: 10.1016/S0039-9140(99)00318-5

[11]

张晨芳, 李墨, 杨颖, 等. 密闭压力酸溶-电感耦合等离子体质谱法测定岩浆岩中稀有元素[J]. 分析科学学报, 2018, 34(6): 99-103.

Zhang C F, Li M, Yang Y, et al. Determination of rare elements in magmatic rocks by closed pressure acid-inductively coupled plasma mass spectrometry[J]. Journal of Analytical Science, 2018, 34(6): 99-103.

[12]

吴葆存, 于亚辉, 闫红岭, 等. 碱熔-电感耦合等离子体质谱法测定钨矿石和钼矿石中稀土元素[J]. 冶金分析, 2016, 36(7): 39-45.

Wu B C, Yu Y H, Yan H L, et al. Determination of rare earth elements in tungsten ore and molybdenum ore by alkali fusion-inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2016, 36(7): 39-45.

[13]

徐静, 李宗安, 李明来, 等. 微波消解-电感耦合等离子体原子发射光谱法测定稀土合金渣中主要稀土氧化物[J]. 冶金分析, 2012, 32(11): 46-50. doi: 10.3969/j.issn.1000-7571.2012.11.010

Xu J, Li Z A, Li M L, et al. Determination of main rare earth oxides in rare earth alloy slag by microwave digestion-inductively coupled plasma atomic emission spectrometry[J].Metallurgical Analysis, 2012, 32(11): 46-50. doi: 10.3969/j.issn.1000-7571.2012.11.010

[14]

Bakircioglu D, Topraksever N, Yurtsever S, et al. ICP-OES determination of some trace elements in herbal oils using a three-phase emulsion method and comparison with conventional methods[J].Atomic Spectroscopy, 2018, 39(1): 38-45. doi: 10.46770/AS.2018.01.005

[15]

Anjos S L D, Alves J C, Soares S A R, et al. Multivariate optimization of a procedure employing microwave-assisted digestion for the determination of nickel and vanadium in crude oil by ICP-OES[J].Talanta, 2018, 178: 842. doi: 10.1016/j.talanta.2017.10.010

[16]

Zhang N, Li Z, Zheng J, et al. Multielemental analysis of botanical samples by ICP-OES and ICP-MS with focused infrared lightwave ashing for sample preparation[J].Microchemical Journal, 2017, 134: 68-77. doi: 10.1016/j.microc.2017.05.006

[17]

Khorge C R, Patwardhan A A. Separation and determin-ation of REEs and Y in columbite-tantalite mineral by ICP-OES:A rapid approach[J].Atomic Spectroscopy, 2018, 39(2): 75-80. doi: 10.46770/AS.2018.02.004

[18]

Arslan Z, Oymak T, White J, et al. Triethylamine-assisted Mg(OH)2 coprecipitation/preconcentration for deter-mination of trace metals and rare earth elements in seawater by inductively coupled plasma mass spectrometry (ICP-MS)[J].Analytica Chimica Acta, 2018, 1008: 18-28. doi: 10.1016/j.aca.2018.01.017

[19]

Tel-Cayan G, Ullah Z, Ozturk M, et al. Heavy metals, trace and major elements in 16 wild mushroom species determined by ICP-MS[J]. Atomic Spectroscopy, 2018, 39(1): 29-37.

[20]

Kuznetsova O V, Burmii Z P, Orlova T V, et al. Quan-tification of the diagenesis-designating metals in sediments by ICP-MS:Comparison of different sample preparation methods[J].Talanta, 2019, 200: 468-471. doi: 10.1016/j.talanta.2019.03.001

[21]

Satyanarayanan M, Balaram V, Sawant S S, et al. Rapid determination of REEs, PGEs, and other trace elements in geological and environmental materials by high resolution inductively coupled plasma mass spectrometry[J]. Atomic Spectroscopy, 2018, 39(1): 1-15.

[22]

Okina O I, Lyapunov S M, Dubensky A S, et al. Influence of sample treatment after bomb digestion on determination of trace elements in rock samples by ICP-MS[J].Microchemical Journal, 2018, 140: 123-128. doi: 10.1016/j.microc.2018.04.020

[23]

Yin X, Wang X, Chen S, et al. Trace element determin-ation in sulfur samples using a novel digestion bomb prior to ICP-MS analysis[J].Atomic Spectroscopy, 2018, 39(4): 137-141. doi: 10.46770/AS.2018.04.001

[24]

陈永欣, 黎香荣, 韦新红, 等. 微波消解-电感耦合等离子体质谱法测定土壤和沉积物中痕量稀土元素[J]. 岩矿测试, 2011, 30(5): 560-565. doi: 10.3969/j.issn.0254-5357.2011.05.008

Chen Y X, Li X R, Wei X H, et al. Determination of trace rare earth elements in soil and sediment by microwave digestion-inductively coupled plasma mass spectrometry[J]. Rock and Mineral Analysis, 2011, 30(5): 560-565. doi: 10.3969/j.issn.0254-5357.2011.05.008

[25]

马莉, 司晗. 微波消解样品-电感耦合等离子体质谱法同时测定土壤中重金属元素和稀土元素[J]. 环境科学导刊, 2016, (2): 88-91. doi: 10.3969/j.issn.1673-9655.2016.02.019

Ma L, Si H. Simultaneous determination of heavy metals and rare earth elements in soil by microwave digestion sample-inductively coupled plasma mass spectrometry[J].Environmental Science Survey, 2016, (2): 88-91. doi: 10.3969/j.issn.1673-9655.2016.02.019

[26]

戴雪峰, 董利明, 蒋宗明, 等. 电感耦合等离子体质谱(ICP-MS)法测定地质样品中重稀土元素和钍、铀[J]. 中国无机分析化学, 2016, 6(4): 20-25. doi: 10.3969/j.issn.2095-1035.2016.04.006

Dai X F, Dong L M, Jiang Z M, et al. Determination of heavy rare earth elements and lanthanum and uranium in geological samples by inductively coupled plasma mass spectrometry[J].Chinese Journal of Inorganic Analytical Chemistry, 2016, 6(4): 20-25. doi: 10.3969/j.issn.2095-1035.2016.04.006

[27]

孙德忠, 安子怡, 许春雪, 等. 四种前处理方法对电感耦合等离子体质谱测定植物样品中27种微量元素的影响[J]. 岩矿测试, 2012, 31(6): 961-966. doi: 10.3969/j.issn.0254-5357.2012.06.008

Sun D Z, An Z Y, Xu C X, et al. Comparison of different digestion procedures for elemental determination in plant samples by inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2012, 31(6): 961-966. doi: 10.3969/j.issn.0254-5357.2012.06.008

[28]

赵楠楠, 黄慧萍, 李艳玲, 等. 电感耦合等离子体质谱法测定金红石单矿物中痕量稀土元素[J]. 理化检验(化学分册), 2012, 48(7): 781-784.

Zhao N N, Huang H P, Li Y L, et al. Determination of trace rare earth elements in rutile single minerals by inductively coupled plasma mass spectrometry[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2012, 48(7): 781-784.

[29]

刘勤志, 吴堑虹. ICP-MS测定铝土矿中的稀土元素[J]. 煤炭技术, 2010, 29(5): 148-149.

Liu Q Z, Wu Q H. Determination of rare earth elements in bauxite by ICP-MS[J]. Coal Technology, 2010, 29(5): 148-149.

[30]

张楠, 徐铁民, 吴良英, 等. 微波消解-电感耦合等离子体质谱法测定海泡石中的稀土元素[J]. 岩矿测试, 2018, 37(6): 644-649.

Zhang N, Xu T M, Wu L Y, et al. Determination of rare earth elements in sepiolite by ICP-MS using microwave digestion[J]. Rock and Mineral Analysis, 2018, 37(6): 644-649.

[31]

杨小丽, 李小丹, 邹棣华, 等. 溶样方法对电感耦合等离子体质谱法测定铝土矿中稀土元素的影响[J]. 冶金分析, 2016, 36(7): 56-62.

Yang X L, Li X D, Zou D H, et al. Effect of dissolution method on determination of rare earth elements in bauxite by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2016, 36(7): 56-62.

相似文献(共20条)

[1]

熊采华, 储溱, 赵志飞, 熊玉祥, 柳建一. 硝酸-氢氟酸酸溶电感耦合等离子体质谱法测定黑钨矿单矿物中稀土元素. 岩矿测试, 2012, 31(4): 602-606.

[2]

张楠, 徐铁民, 吴良英, 魏双, 方蓬达, 王家松. 微波消解-电感耦合等离子体质谱法测定海泡石中的稀土元素. 岩矿测试, 2018, 37(6): 644-649. doi: 10.15898/j.cnki.11-2131/td.201803160023

[3]

张静梅, 张培新, 高孝礼, 黄光明, 窦银萍. 电感耦合等离子体质谱法同时测定地下水中硼溴碘. 岩矿测试, 2008, 27(1): 25-28.

[4]

尹周澜, 王薇惟, 覃祚明, 黄旭. 电感耦合等离子体质谱法测定高纯铟中铁. 岩矿测试, 2008, 27(3): 193-196.

[5]

李刚, 曹小燕. 电感耦合等离子体质谱法测定地质样品中锗和镉的干扰及校正. 岩矿测试, 2008, 27(3): 197-200.

[6]

侍金敏, 冯廷建, 付鹏飞, 汤勇武, 陈大林, 张春翔, 燕娜. 微波消解-电感耦合等离子体质谱法同时测定金属硫化矿中的稀散元素. 岩矿测试, 2019, 38(6): 631-639. doi: 10.15898/j.cnki.11-2131/td.201805300066

[7]

门倩妮, 沈平, 甘黎明, 冯博鑫. 敞开酸溶和偏硼酸锂碱熔ICP-MS法测定多金属矿中的稀土元素及铌钽锆铪. 岩矿测试, 2020, 39(1): 59-67. doi: 10.15898/j.cnki.11-2131/td.201905100060

[8]

吴磊, 曾江萍, 刘义博, 吴良英, 张莉娟, 郝爽, 王家松. 硼酸溶液敞口酸溶-电感耦合等离子体质谱法测定萤石中稀土元素. 岩矿测试, 2014, 33(1): 20-24.

[9]

郭振华, 何汉江, 田凤英. 混合酸分解-电感耦合等离子体质谱法测定磷矿石中15种稀土元素. 岩矿测试, 2014, 33(1): 25-28.

[10]

成学海, 夏传波, 郑建业, 张文娟, 刘晶. 封闭压力酸溶-电感耦合等离子体质谱法同时测定电气石中29种元素. 岩矿测试, 2017, 36(3): 231-238. doi: 10.15898/j.cnki.11-2131/td.201609220143

[11]

吴石头, 王亚平, 孙德忠, 温宏利, 许春雪, 王伟. 电感耦合等离子体发射光谱法测定稀土矿石中15种稀土元素————四种前处理方法的比较. 岩矿测试, 2014, 33(1): 12-19.

[12]

王娜, 徐铁民, 魏双, 王家松, 曾江萍, 张楠. 微波消解-电感耦合等离子体质谱法测定超细粒度岩石和土壤样品中的稀土元素. 岩矿测试, 2020, 39(1): 68-76. doi: 10.15898/j.cnki.11-2131/td.201904010043

[13]

徐进力, 邢夏, 唐瑞玲, 胡梦颖, 张鹏鹏, 白金峰, 张勤. 动能歧视模式ICP-MS测定地球化学样品中14种痕量元素. 岩矿测试, 2019, 38(4): 394-402. doi: 10.15898/j.cnki.11-2131/td.201812070131

[14]

贾双琳, 赵平, 杨刚, 孙霞, 何海. 混合酸敞开或高压密闭溶样-ICPMS测定地质样品中稀土元素. 岩矿测试, 2014, 33(2): 186-191.

[15]

李志伟, 邰自安, 任文岩, 高志军, 李艳华. 微波消解电感耦合等离子体质谱法测定黑色页岩中稀有稀土元素. 岩矿测试, 2010, 29(3): 259-262.

[16]

陈贺海, 荣德福, 付冉冉, 余清, 廖海平, 任春生, 鲍惠君. 微波消解-电感耦合等离子体质谱法测定铁矿石中15个稀土元素. 岩矿测试, 2013, 32(5): 702-708.

[17]

黎卫亮, 程秀花, 李忠煜, 王鹏. 碱熔共沉淀-电感耦合等离子体质谱法测定橄榄岩中的稀土元素. 岩矿测试, 2017, 36(5): 468-473. doi: 10.15898/j.cnki.11-2131/td.201607130099

[18]

董学林, 何海洋, 储溱, 仇秀梅, 唐兴敏. 碱熔沉淀分离-电感耦合等离子体质谱法测定伴生重晶石稀土矿中的稀土元素. 岩矿测试, 2019, 38(6): 620-630. doi: 10.15898/j.cnki.11-2131/td.201901090004

[19]

陈永欣, 黎香荣, 韦新红, 吕泽娥, 谢毓群, 蔡维专. 微波消解-电感耦合等离子体质谱法测定土壤和沉积物中痕量稀土元素. 岩矿测试, 2011, 30(5): 560-565.

[20]

高晶晶, 刘季花, 张辉, 白亚之, 崔菁菁, 何连花. 高压密闭消解-电感耦合等离子体质谱法测定海洋沉积物中稀土元素. 岩矿测试, 2012, 31(3): 425-429.

计量
  • PDF下载量(13)
  • 文章访问量(272)
  • HTML全文浏览量(60)
  • 被引次数(0)
目录

Figures And Tables

高压密闭消解-电感耦合等离子体质谱法测定和田玉中15种稀土元素

周安丽, 武志远, 宁海龙, 王东, 杨丽, 吕新明