【引用本文】 刘婉, 李丹丹, 刘盛遨, . 多接收器电感耦合等离子体质谱法测定土壤标准物质铜同位素组成[J]. 岩矿测试, 2021, 40(4): 561-569. doi: 10.15898/j.cnki.11-2131/td.202012130163
LIU Wan, LI Dan-dan, LIU Sheng-ao. Determination of Copper Isotope Composition of Soil Reference Materials by MC-ICP-MS[J]. Rock and Mineral Analysis, 2021, 40(4): 561-569. doi: 10.15898/j.cnki.11-2131/td.202012130163

多接收器电感耦合等离子体质谱法测定土壤标准物质铜同位素组成

中国地质大学(北京)科学研究院, 地质过程与矿产资源国家重点实验室, 北京 100083

收稿日期: 2020-12-13  修回日期: 2021-05-17  接受日期: 2021-07-02

基金项目: 国家重点研发计划项目重点专项"变革性技术关键科学问题"(2019YFA0708400)

作者简介: 刘婉, 硕士研究生, 地质工程专业。E-mail: 2157190006@cugb.edu.cn

通信作者: 李丹丹, 博士, 讲师, 研究方向为非传统稳定同位素地球化学及同位素分馏实验研究。E-mail: ldd@cugb.edu.cn

Determination of Copper Isotope Composition of Soil Reference Materials by MC-ICP-MS

Institute of Earth Science, State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences(Beijing), Beijing 100083, China

Corresponding author: LI Dan-dan, ldd@cugb.edu.cn

Received Date: 2020-12-13
Revised Date: 2021-05-17
Accepted Date: 2021-07-02

摘要:近年来,铜同位素在表生环境和生物地球化学中的应用越来越广泛,尤其是土壤的铜同位素组成可以示踪环境污染物来源及生物地球化学过程。目前,对土壤铜同位素进行研究时,主要以硅酸岩标准物质为标样来衡量土壤样品铜同位素测定的准确性和精确性。但土壤与硅酸岩中铜、基质离子及有机质的含量等存在很大差异(如:硅酸岩中的铜含量>80μg/g,一些土壤中的铜含量很低, < 20μg/g),将硅酸岩标准物质作为标样来监测土壤样品的数据质量缺乏代表性。为了弥补这一缺陷,本文精确测定4个国家土壤标准物质(GBW07443、GBW07425、GBW07427、GBW07389)的铜同位素组成,并将其作为检验土壤样品铜同位素测定过程中的标准。实验中采用高温高压反应釜消解样品,利用AG MP-1M树脂进行纯化,全流程空白 < 2ng,回收率≥ 98%,通过多接收器电感耦合等离子体质谱仪(MC-ICP-MS)采用标样-样品-标样间插法进行仪器分馏校正,δ65Cu的长期测试外精度优于0.05‰(n=306,2SD)。GBW07443、GBW07425、GBW07427和GBW07389的铜同位素组成分别为-0.04‰±0.04‰(n=9,2SD)、-0.07‰±0.05‰(n=12,2SD)、-0.06‰±0.04‰(n=12,2SD)、-0.02‰±0.06‰(n=12,2SD)。这些土壤标准物质的铜同位素组成均位于0附近,大致为自然界土壤铜同位素比值变化范围(-0.5‰~+0.5‰)的中间值,且样品容易获得,其化学和铜同位素组成均一,适合作为监控土壤铜同位素化学及质谱分析数据可靠性的标准物质。

关键词: 土壤标准物质, 铜同位素, AG MP-1M树脂, 标样-样品-标样间插法, 多接收器电感耦合等离子体质谱法

要点

(1) 合适的土壤标准物质是研究土壤样品铜同位素组成的关键。

(2) 精确测定了中国4个国家土壤标准物质的铜同位素组成。

(3) 这些土壤标准物质为土壤铜同位素组成数据质量监控提供了参考。

Determination of Copper Isotope Composition of Soil Reference Materials by MC-ICP-MS

ABSTRACT

BACKGROUND:

In recent years, copper isotopes have been widely applied in supergene environments and biogeochemical processes, acting as novel tracers for soil pollution and biogeochemical cycles during pedogenesis. To date, Cu isotope studies on natural soils have commonly analyzed basalt geostandards for monitoring data quality. However, the contents of copper, matrix ions, and organic matter in the soil and silicate rock are very different. For example, the copper content in silicate rock is >80μg/g, and the copper content in some soils is very low, that is, < 20μg/g. The use of silicate standard materials as reference samples to monitor the data quality of soil samples lacks representativeness.

OBJECTIVES:

To provide new soil standards for high-precision Cu isotope analysis, this study reports high-precision copper isotope data for four soil reference materials (GBW07443, GBW07425, GBW07427, and GBW07389), expressed as δ65Cu relative to NIST SRM 976, which were measured using a multi-collector inductively coupled plasma-mass spectrometer (MC-ICP-MS).

METHODS:

Soil samples were completely dissolved in high-pressure bombs in a muffle furnace. Complete separation of Cu from the matrices was obtained using a strong anion exchange resin (AG MP-1M). The instrument mass bias was corrected using the standard sample-standard method.

RESULTS:

The long-term external reproducibility was higher than ±0.05‰ (n=306, 2SD). Cu isotopic compositions of the four soil reference materials, GBW07443, GBW07425, GBW07427, and GBW07389, from the China National Bureau of Standards were -0.04‰±0.04‰ (n=9, 2SD); -0.07‰±0.05‰ (n=12, 2SD); -0.06‰±0.04‰ (n=12, 2SD); and -0.02‰±0.06‰ (n=12, 2SD), respectively.

CONCLUSIONS:

The δ65Cu values of these reference materials were close to zero and corresponded to the intermediate values of natural soils. Moreover, the sample was easy to obtain, and the experimental results showed uniformity in its chemical and copper isotopic compositions, making it suitable as a standard material for monitoring the reliability of the soil copper isotope chemistry and the mass spectrometry data.

KEY WORDS: soil reference materials, Cu isotopes, AG MP-1M resin, standard sample-sample-standard sample interpolation method, multi-collector inductively coupled plasma-mass spectrometry

HIGHLIGHTS

(1) Suitable soil standards are vital for studying the Cu isotope compositions of soil samples.

(2) The high-precision Cu isotope compositions of the soil standards were analyzed.

(3) These soil reference materials provided a reference for quality monitoring of the soil copper isotope composition data.

本文参考文献

[1]

Huang J, Liu S A, Gao Y, et al. Copper and zinc isotope systematics of altered oceanic crust at IODP site 1256 in the eastern equatorial Pacific[J].Journal of Geophysical Research Solid Earth, 2016, 121: 7086-7100. doi: 10.1002/2016JB013095

[2]

Moynier F, Vance D, Fujii T, et al. The isotope geochemistry of zinc and copper[J].Reviews in Mineralogy and Geochemistry, 2017, 82: 543-600. doi: 10.2138/rmg.2017.82.13

[3]

Liu S A, Liu P P, Lv Y, et al. Cu and Zn isotope frac-tionation during oceanic alteration: Implications for oceanic Cu and Zn cycles[J].Geochimica Et Cosmochimica Acta, 2019, 257: 191-205. doi: 10.1016/j.gca.2019.04.026

[4]

范飞鹏, 肖惠良, 陈乐柱, 等. 粤东新寮岽铜多金属矿区钻孔深部矿体铜同位素研究[J]. 岩矿测试, 2017, 36(4): 420-429.

Fan F P, Xiao H L, Chen L Z, et al. Copper isotope studies of a deep ore body in the Xinliaodong copper-polymetallic deposit, eastern Guangdong Province[J]. Rock and Mineral Analysis, 2017, 36(4): 420-429.

[5]

赵晨辉, 王成辉, 赵如意, 等. 广东大宝山铜矿英安斑岩的同位素组成与蚀变特征及其找矿意义[J]. 岩矿测试, 2020, 39(6): 908-920.

Zhao C H, Wang C H, Zhao R Y, et al. Isotopic composition and alteration characteristics of dacite pouphy, and their prospecting significance in the Dabaoshan copper deposit of Guangdong Province[J]. Rock and Mineral Analysis, 2020, 39(6): 908-920.

[6]

Rouxel O, Fouquet Y, Ludden J N, et al. Copper isotope system-atics of the Lucky Strike, Rainbow, and Logatchev sea-floor hydrothermal fields on the mid-Atlantic ridge[J].Economic Geology, 2004, 99(3): 585-600. doi: 10.2113/gsecongeo.99.3.585

[7]

Mirnejad H, Mathur R, Einali M, et al. A comparative copper isotope study of porphyry copper deposits in Iran[J].Geochemistry: Exploration Environment Analysis, 2010, 10(4): 413-418. doi: 10.1144/1467-7873/09-229

[8]

Ikehata K, Notsu K, Hirata T, et al. Copper isotope chara-cteristics of copper-rich minerals from Besshi-type volcanogenic massive sulfide deposits, Japan, determined using a femtosecond LA-MC-ICP-MS[J].Economic Geology, 2011, 106(2): 307-316. doi: 10.2113/econgeo.106.2.307

[9]

Palacios C, Rouxel O, Reich M, et al. Pleistocene re-cycling of copper at a porphyry system, Atacama Desert, Chile: Cu isotope evidence[J].Mineralium Deposita, 2011, 46(1): 1-7. doi: 10.1007/s00126-010-0315-6

[10]

Mathur R, Ruiz J, Casselman M J, et al. Use of Cu iso-topes to distinguish primary and secondary Cu mineralization in the Cañariaco Norte porphyry copper deposit, Northern Peru[J].Mineralium Deposita, 2012, 47(7): 755-762. doi: 10.1007/s00126-012-0439-y

[11]

Molnar F, Manttari I, O'Brien H, et al. Boron, sulphur and copper isotope systematics in the orogenic gold deposits of the Archaean Hattu schist belt, eastern Finland[J].Ore Geology Reviews, 2016, 77: 133-162. doi: 10.1016/j.oregeorev.2016.02.012

[12]

Wang P, Dong G C, Santosh M, et al. Copper isotopes trace the evolution of skarn ores: A case study from the Hongshan-Hongniu Cu deposit, southwest China[J].Ore Geology Reviews, 2017, 88: 822-831. doi: 10.1016/j.oregeorev.2016.11.023

[13]

Zhao Y, Xue C, Liu S A, et al. Copper isotope fraction-ation during sulfide-magma differentiation in the Tulaergen magmatic Ni-Cu deposit, NW China[J].Lithos, 2017, 286: 206-215.

[14]

Syverson D D, Borrok D M, Niebuhr S, et al. Chalcopyrite-dissolved Cu isotope exchange at hydrothermal-conditions: Experimental constraints at 350℃ and 50MPa[J].Geochimica Et Cosmochimica Acta, 2021, 298: 191-206. doi: 10.1016/j.gca.2021.02.005

[15]

Liu S A, Huang J, Liu J G, et al. Copper isotopic com-position of the silicate earth[J]. Earth & Planetary Science Letters, 2015, 427(1): 95-103.

[16]

Huang J, Huang F, Wang Z C, et al. Copper isotope frac-tionation during partial melting and melt percolation in the upper mantle: Evidence from massif peridotites in Ivrea-Verbano Zone, Italian Alps[J].Geochimica Et Cosmochimica Acta, 2017, 211: 48-63. doi: 10.1016/j.gca.2017.05.007

[17]

Bigalke M, Weyer S, Kobza J, et al. Stable Cu and Zn isotope ratios as tracers of sources and transport of Cu and Zn in contaminated soil[J].Geochimica Et Cosmochimica Acta, 2010, 74(23): 6801-6813. doi: 10.1016/j.gca.2010.08.044

[18]

Bigalke M, Weyer S, Wilcke W, et al. Stable Cu isotope fraction-ation in soils during oxic weathering and podzolization[J].Geochimica Et Cosmochimica Acta, 2011, 75(11): 3119-3134. doi: 10.1016/j.gca.2011.03.005

[19]

Babcsányi I, Imfeld G, Granet M, et al. Copper stable isotopes to trace copper behavior in wetland systems[J].Environmental Science and Technology, 2014, 48(10): 5520-5529. doi: 10.1021/es405688v

[20]

Fekiacova Z, Cornu S, Pichat S, et al. Tracing contamination sources in soils with Cu and Zn isotopic ratios[J].Science of The Total Environment, 2015, 517: 96-105. doi: 10.1016/j.scitotenv.2015.02.046

[21]

Su J, Mathur R, Brumm G, et al. Tracing copper migra-tion in the Tongling area through copper isotope values in soils and waters[J].International Journal of Environmental Research and Public Health, 2018, 15(12): 2661. doi: 10.3390/ijerph15122661

[22]

Zeng J, Han G. Preliminary copper isotope study on particulate matter in Zhujiang River, southwest China: Application for source identification[J]. Ecotoxicology and Environmental Safety, 2020, 196: 110663.

[23]

Liu S A, Teng F Z, Li S, et al. Copper and iron isotope fractionation during weathering and pedogenesis: Insights from saprolite profiles[J].Geochimica Et Cosmochimica Acta, 2014, 146: 59-75. doi: 10.1016/j.gca.2014.09.040

[24]

Vareda J P, Valente A J M, Duraes L, et al. Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: A review[J].Journal of Environmental Management, 2019, 246: 101-118. doi: 10.1016/j.jenvman.2019.05.126

[25]

Mathur R, Munk L, Nguyen M, et al. Modern and paleofluid pathways revealed by Cu isotope compositions in surface waters and ores of the Pebble porphyry Cu-Au-Mo deposit, Alaska[J].Economic Geology, 2013, 108(3): 529-541. doi: 10.2113/econgeo.108.3.529

[26]

Wang Q, Zhou L, Little S H, et al. The geochemical behavior of Cu and its isotopes in the Yangtze River[J].Science of The Total Environment, 2020, 728: 138428. doi: 10.1016/j.scitotenv.2020.138428

[27]

Kříbek B, Sípková A, Vojtěch E, et al. Variability of the copper isotopic composition in soil and grass affected by mining and smelting in Tsumeb, Namibia[J].Chemical Geology, 2018, 493: 121-135. doi: 10.1016/j.chemgeo.2018.05.035

[28]

Kusonwiriyawong C, Bigalke M, Cornu S, et al. Response of copper concentrations and stable isotope ratios to artificial drainage in a French Retisol[J].Geoderma, 2017, 300: 44-54. doi: 10.1016/j.geoderma.2017.04.003

[29]

Kíbek B, Míková J, Knésl I, et al. Uptake of trace elements and isotope fractionation of Cu and Zn by birch (Betula pendula) growing on mineralized coal waste pile[J]. Applied Geochemistry, 2020, : 104741.

[30]

Masbou J, Viers J, Grande J A, et al. Strong temporal and spatial variation of dissolved Cu isotope composition in acid mine drainage under contrasted hydrological conditions[J]. Environmental Pollution, 2020, 266(Part 2): 115104.

[31]

张兴超, 刘超, 黄艺, 等. 干法灰化处理对含有机质土壤样品铜同位素测量的影响[J]. 岩矿测试, 2018, 37(4): 347-355.

Zhang X C, Liu C, Huang Y, et al. The effect of dry-ashing method on copper isotopic analysis of soil samples with organic matter[J]. Rock and Mineral Analysis, 2018, 37(4): 347-355.

[32]

Mathur R, Jin L, Prush V, et al. Cu isotopes and concen-trations during weathering of black shale of the Marcellus Formation, Huntingdon County, Pennsylvania (USA)[J].Chemical Geology, 2012, 304-305: 175-184. doi: 10.1016/j.chemgeo.2012.02.015

[33]

Liu S A, Li D, Li S, et al. High-precision copper and iron isotope analysis of igneous rock standards by MC-ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2014, 29(1): 122-133. doi: 10.1039/C3JA50232E

[34]

Dideriksen K, Baker J A, Stipp S L S, et al. Iron isotopes in natural carbonate minerals determined by MC-ICP-MS with a 58Fe-54Fe double spike[J].Geochimica Et Cosmochimica Acta, 2006, 70(1): 118-132. doi: 10.1016/j.gca.2005.08.019

[35]

Amet Q, Fitoussi C. Chemical procedure for Zn purification and double spike method for high precision measurement of Zn isotopes by MC-ICPMS[J].International Journal of Mass Spectrometry, 2020, 457: 116413. doi: 10.1016/j.ijms.2020.116413

[36]

Zhu X K, O'Nions R K, Guo Y, et al. Determination of natural Cu-isotope variation by plasma-source mass spectrometry: Implications for use as geochemical tracers[J]. Chemical Geology, 2000, 163(1): 139-149.

[37]

Sossi P A, Halverson G P, Nebel O, et al. Combined separation of Cu, Fe and Zn from rock matrices and improved analytical protocols for stable isotope determination[J].Geostandards and Geoanalytical Research, 2015, 39(2): 129-149. doi: 10.1111/j.1751-908X.2014.00298.x

[38]

Hou Q H, Zhou L, Gao S, et al. Use of Ga for mass bias correction for the accurate determination of copper isotope ratio in the NIST SRM 3114 Cu standard and geological samples by MC-ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2016, 31(1): 280-287. doi: 10.1039/C4JA00488D

[39]

Bao Z, Zong C, Liang P, et al. Direct measurement of Cu and Pb isotopic ratios without column chemistry for bronze materials using MC-ICP-MS[J].Analytical Methods, 2020, 12: 2599-2607. doi: 10.1039/D0AY00561D

[40]

Zhang Y, Bao Z, Lv N, et al. Copper isotope ratio mea-surements of Cu-dominated minerals without column chromatography using MC-ICP-MS[J].Frontiers in Chemistry, 2020, 8: 609. doi: 10.3389/fchem.2020.00609

[41]

Wang Q, Zhou L, Feng L, et al. Use of a Cu-selective resin for Cu preconcentration from seawater prior to its isotopic analysis by MC-ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2020, 35: 2732-2739. doi: 10.1039/D0JA00096E

[42]

Lv N, Bao Z, Chen L, et al. Accurate determination of Cu isotope compositions in Cu-bearing minerals using microdrilling and MC-ICP-MS[J].International Journal of Mass Spectrometry, 2020, 457: 116414. doi: 10.1016/j.ijms.2020.116414

[43]

Yuan H, Yuan W, Bao Z, et al. Development of two new copper isotope standard solutions and their copper isotopic compositions[J]. Geostandards and Geoanalytical Research, 2016, 41: 77-84.

[44]

Sullivan K, Layton-Matthews D, Leybourne M, et al. Copper isotopic analysis in geological and biological reference materials by MC-ICP-MS[J].Geostandards and Geoanalytical Research, 2020, 44: 349-362. doi: 10.1111/ggr.12315

[45]

唐索寒, 闫斌, 朱祥坤, 等. 玄武岩标准样品铁铜锌同位素组成[J]. 岩矿测试, 2012, 31(2): 218-224. doi: 10.3969/j.issn.0254-5357.2012.02.004

Tang S H, Y B, Zhu X K, et al. Iron, copper and zinc isotopic compositions of basaltic standard reference materials[J].Rock and Mineral Analysis, 2012, 31(2): 218-224. doi: 10.3969/j.issn.0254-5357.2012.02.004

[46]

Feng C X, Liu S, Chi G X, et al. Zinc, copper, and strontium isotopic variability in the Baiyangping Cu-Pb-Zn-Ag polymetallic ore field, Lanping Basin, southwest China[J].Acta Geochimica, 2021, 16: 1-18.

[47]

李丹丹. 低温过程中Cu-Zn同位素分馏的实验地球化学研究[D]. 北京: 中国地质大学(北京), 2015.

Li D D. Experimental study of Cu and Zn isotope fractionation at low temperature[D]. Beijing: China University of Geosciences (Beijing), 2015.

[48]

Hu Y, Teng F Z. Optimization of analytical conditions for precise and accurate isotope analyses of Li, Mg, Fe, Cu, and Zn by MC-ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2019, 34(2): 338-346. doi: 10.1039/C8JA00335A

[49]

Moynier F, Koeberl C, Beck P, et al. Isotopic fraction-ation of Cu in tektites[J].Geochimica Et Cosmochimica Acta, 2010, 74(2): 799-807. doi: 10.1016/j.gca.2009.10.012

[50]

Moeller K, Schoenberg R, Pedersen R B, et al. Calibra-tion of the new certified reference materials ERM-AE633 and ERM-AE647 for copper and IRMM-3702 for zinc isotope amount ratio determinations[J].Geostandards and Geoanalytical Research, 2012, 36(2): 177-199. doi: 10.1111/j.1751-908X.2011.00153.x

[51]

Li W Q, Jackson S E, Pearson N J, et al. The Cu isotopic signature of granites from the Lachlan Fold Belt, SE Australia[J].Chemical Geology, 2009, 258(1-2): 38-49. doi: 10.1016/j.chemgeo.2008.06.047

相似文献(共20条)

[1]

高博, 梁细荣, 刘颖, 胡光黔, 曾文, 涂湘林. 多接收器电感耦合等离子体质谱法测定镉标准溶液中镉的同位素组成. 岩矿测试, 2008, 27(5): 321-324.

[2]

赵悦, 侯可军, 田世洪, 杨丹, 苏嫒娜. 常用锂同位素地质标准物质的多接收器电感耦合等离子体质谱分析研究. 岩矿测试, 2015, 34(1): 28-39. doi: 10.15898/j.cnki.11-2131/td.2015.01.004

[3]

唐索寒, 朱祥坤, 李津, 闫斌, 李世珍, 李志红, 王跃, 孙剑. 用于多接收器等离子体质谱测定的铁铜锌同位素标准溶液研制. 岩矿测试, 2016, 35(2): 127-133. doi: 10.15898/j.cnki.11-2131/td.2016.02.003

[4]

何学贤, 李世珍, 王进辉, 唐索寒, 朱祥坤, 蔡俊军. 用于多接收器等离子体质谱铜铁锌同位素测定的离子交换分离方法. 岩矿测试, 2006, 25(1): 5-8.

[5]

侯可军, 秦燕, 李延河, 范昌福. 磷灰石Sr-Nd同位素的激光剥蚀-多接收器电感耦合等离子体质谱微区分析. 岩矿测试, 2013, 32(4): 547-554.

[6]

闫斌, 朱祥坤, 陈岳龙. 样品量的大小对铜锌同位素测定值的影响. 岩矿测试, 2011, 30(4): 400-405.

[7]

张兴超, 刘超, 黄艺, 黄方, 于慧敏. 干法灰化处理对含有机质土壤样品铜同位素测量的影响. 岩矿测试, 2018, 37(4): 347-355. doi: 10.15898/j.cnki.11-2131/td.201803290033

[8]

袁永海, 杨锋, 余红霞, 刘希军, 许继峰. 微波消解-多接收电感耦合等离子体质谱高精度测定锶钕同位素组成. 岩矿测试, 2018, 37(4): 356-363. doi: 10.15898/j.cnki.11-2131/td.201707290122

[9]

Belshaw, Nick. 多接收器电感耦合等离子体质谱的新应用. 岩矿测试, 2007, 26(1): 55-60.

[10]

王烨, 陈爱平. 分析系数法用于评价农业地质调查样品52个项目分析质量等级. 岩矿测试, 2012, 31(2): 355-360.

[11]

王烨. 应用6σ质量管理方法尝试评价多目标样品氯等项目检测质量水平. 岩矿测试, 2011, 30(3): 281-284.

[12]

范飞鹏, 肖惠良, 陈乐柱, 李海立, 刘建雄, 邓中林, 李少斌, 林梗伟, 周霞. 粤东新寮岽铜多金属矿区钻孔深部矿体铜同位素研究. 岩矿测试, 2017, 36(4): 420-429. doi: 10.15898/j.cnki.11-2131/td.201609010133

[13]

张乐, 任钟元, 钱生平, 丁相礼, 吴亚东. LA-MC-ICPMS分析古老熔体包裹体Pb同位素组成中的误差评价. 岩矿测试, 2015, 34(4): 399-407. doi: 10.15898/j.cnki.11-2131/td.2015.04.004

[14]

孙可, 刘颖, 高博, 涂湘林, 曾文, 胡光黔, 傅家谟, 盛国英, 梁细荣. AG-MP-1M阴离子交换树脂分离-表面热电质谱法测定沉积物中的铅同位素组成. 岩矿测试, 2008, 27(1): 9-11.

[15]

梁细荣 李杰 漆亮 马金龙. 多接收器等离子体质谱精确测定铼含量及其同位素丰度. 岩矿测试, 2005, (1): 1-6.

[16]

李子夏, 逯海. 一步离子交换-多接收电感耦合等离子体质谱法测定高钙生物样品的硼同位素组成. 岩矿测试, 2020, 39(3): 417-424. doi: 10.15898/j.cnki.11-2131/td.201909290141

[17]

李冰, , 史世云. 电感耦合等离子体质谱法同时测定地质样品中痕量碘溴硒砷的研究:Ⅱ.土壤及沉积物标准物质分析. 岩矿测试, 2001, (4): 241-246.

[18]

刘敬秀. 硅酸盐氧同位素标样研制. 岩矿测试, 1990, (4): 276-282.

[19]

戴梦宁, 宗春蕾, 袁洪林. 高Rb/Sr岩石样品中Sr同位素多接收等离子体质谱分析校正方法研究. 岩矿测试, 2012, 31(1): 95-102.

[20]

唐索寒, 闫斌, 朱祥坤, 李津, 李世珍. 玄武岩标准样品铁铜锌同位素组成. 岩矿测试, 2012, 31(2): 218-224.

计量
  • PDF下载量(8)
  • 文章访问量(994)
  • HTML全文浏览量(31)
  • 被引次数(0)
目录

Figures And Tables

多接收器电感耦合等离子体质谱法测定土壤标准物质铜同位素组成

刘婉, 李丹丹, 刘盛遨