【引用本文】 李晓云, 王羽, 金婵, 等. 微波消解-高分辨电感耦合等离子体质谱法测定土壤中8种金属元素[J]. 岩矿测试, 2022, 41(3): 374-383. doi: 10.15898/j.cnki.11-2131/td.202106090073
LI Xiaoyun, WANG Yu, JIN Chan, et al. Determination of 8 Metal Elements in Soil by High-resolution Inductively Coupled Plasma-Mass Spectrometry with Microwave Digestion[J]. Rock and Mineral Analysis, 2022, 41(3): 374-383. doi: 10.15898/j.cnki.11-2131/td.202106090073

微波消解-高分辨电感耦合等离子体质谱法测定土壤中8种金属元素

1. 

中国科学院上海应用物理研究所,上海 201800

2. 

中国科学院大学,北京 100049

收稿日期: 2021-06-09  修回日期: 2021-08-03  接受日期: 2021-11-04

基金项目: 中国科学院战略性先导科技专项变革性洁净能源关键技术与示范(XDA21000000)

作者简介: 李晓云,硕士,工程师,从事核化学与环境化学分析研究。E-mail:xyli@sinap.ac.cn

通信作者: 张林娟,博士,研究员,从事核能材料的先进谱学应用、凝聚态物理研究。E-mail:zhanglinjuan@sinap.ac.cn

Determination of 8 Metal Elements in Soil by High-resolution Inductively Coupled Plasma-Mass Spectrometry with Microwave Digestion

1. 

Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China

2. 

University of Chinese Academy of Sciences, Beijing 100049, China

Corresponding author: ZHANG Linjuan, zhanglinjuan@sinap.ac.cn

Received Date: 2021-06-09
Revised Date: 2021-08-03
Accepted Date: 2021-11-04

摘要:微波消解结合电感耦合等离子体质谱(ICP-MS)是土壤样品中金属元素测定的常用方法,其前处理可以采用不同的消解体系,但是消解体系对分析结果的准确性影响较大。此外,应用ICP-MS测定某些元素时干扰的存在会影响结果的准确性。基于上述问题,本文优选三个酸体系微波消解溶样,采用高分辨电感耦合等离子体质谱(HR-ICP-MS)测定土壤样品中8种金属元素(Cr、Co、Ni、Cu、Zn、Pb、Cd和U)的含量,对比研究了由不同用量硝酸、盐酸、氢氟酸混合组成的三个酸消解体系对国家土壤标准物质的消解效果,确定了最优前处理方法。结果表明:经国家土壤标准物质验证,采用HR-ICP-MS检测,在不需要干扰校正的情况下,酸体系Ⅰ(6mL硝酸+3mL盐酸+3mL氢氟酸)和酸体系Ⅱ(2mL硝酸+6mL盐酸+1mL氢氟酸)的测定值与标准值相吻合,方法检出限为0.001~0.715μg/g,精密度(RSD,n=6)小于7.0%。从消解情况、准确度和精密度比较,酸体系Ⅰ稍优于酸体系Ⅱ;从酸用量比较,酸体系Ⅱ酸用量最少。两种酸体系的样品处理方法均具有较高的适用性和可靠性,都可用于土壤样品中8种金属元素含量的直接测定。

关键词: 土壤, 金属元素, 微波消解, 酸消解, 高分辨电感耦合等离子体质谱法

要点

(1) 采用不同酸体系,微波消解溶样,HR-ICP-MS法测定土壤中金属元素。

(2) HR-ICP-MS能有效地消除干扰,可直接分析土壤中金属元素,无需干扰校正。

(3) 方法检出限为0.001~0.715μg/g,可满足土壤样品中8种金属元素同时测定的要求。

Determination of 8 Metal Elements in Soil by High-resolution Inductively Coupled Plasma-Mass Spectrometry with Microwave Digestion

ABSTRACT

BACKGROUND:

Microwave digestion combined with inductively coupled plasma-mass spectrometry (ICP-MS) is a commonly used method for the determination of metal elements in soil samples. Different solvents can be used in the pretreatment, and the digestion method has a great influence on the accuracy of the analysis results. In addition, the accuracy of the results will be affected by the interference in the determination of some elements by ICP-MS.

OBJECTIVES:

To accurately determine metal elements in soil samples by high resolution-inductively coupled plasma-mass spectrometry (HR-ICP-MS).

METHODS:

Soil samples were digested by microwave using three different solvents, and 8 metal elements (Cr, Co, Ni, Cu, Zn, Pb, Cd and U) were determined by HR-ICP-MS. The digestion effects of the three acid digestion methods using different amounts of nitric acid, hydrochloric acid and hydrofluoric acid on certified soil reference materials were studied, and the optimal pretreatment procedure was determined.

RESULTS:

The proposed procedures have been verified by national soil reference materials. It was found that the measured values of digestion method Ⅰ(6mL HNO3+3mL HCl+3mL HF) and digestion method Ⅱ(2mL HNO3+6mL HCl+1mL HF) were consistent with the certified values, using HR-ICP-MS without interference correction. The detection limits of both procedures were 0.001-0.715μg/g. The relative standard deviations (RSD, n=6) were all less than 7.0%. In terms of digestion, accuracy and precision, acid system Ⅰ was slightly better than acid system Ⅱ, but acid system Ⅱ had the least amount of acid.

CONCLUSIONS:

The two preferred procedures have high applicability and reliability, and can be used for the direct determination of 8 metal elements in soil samples.

KEY WORDS: soil, metal elements, microwave digestion, acid digestion, high resolution-inductively coupled plasma-mass spectrometry

HIGHLIGHTS

(1) The soil samples were digested by microwave using different solvents, and the metal elements in soil were determined by HR-ICP-MS.

(2) HR-ICP-MS can effectively eliminate interferences and directly analyze metal elements in soil without interference correction.

(3) The detection limits are 0.001-0.715μg/g, which meet the simultaneous determination of metals in soil samples.

本文参考文献

[1]

Štofejová L, Fazekaš J, Fazekašová D, et al. Analysis of heavy metal content in soil and plants in the dumping ground of magnesite mining factory Jelšava—Lubeník (Slovakia)[J].Sustainability, 2021, 13(8): 4508-4521. doi: 10.3390/su13084508

[2]

Wang Z H, Qin H Y, Liu X Y, et al. Health risk assessment of heavy metals in the soil-water-rice system around the Xiazhuang uranium mine, China[J].Environmental Science and Pollution Research, 2019, 26(6): 5904-5912. doi: 10.1007/s11356-018-3955-1

[3]

代鹏飞, 黄德娟, 王帅, 等. 某铀矿区农田土壤重金属污染综合评价[J]. 土壤通报, 2021, 52(1): 198-202.

Dai P F, Huang D J, Wang S, et al. Determination and comprehensive evaluation of heavy metal pllution of farmland soil in a uranium mining area[J]. Chinese Journal of Soil Science, 2021, 52(1): 198-202.

[4]

Xu J W, Liu C, Hsu P C, et al. Remediation of heavy metal contaminated soil by asymmetrical alternating current electrochemistry[J].Nature Communications, 2019, 10(1): 2440. doi: 10.1038/s41467-019-10472-x

[5]

任兰, 胡晓乐, 吴丽娟, 等. 石墨消解-火焰原子吸收光谱法测定土壤和沉积物中铜、锌、镍、铬[J]. 化学分析计量, 2018, 27(2): 14-17.

Ren L, Hu X L, Wu L J, et al. Determination of Cu, Zn, Ni, Cr in soil and sediment by graphite digestion-flame atomic absorption spectrometry[J]. Chemical Analysis and Meterage, 2018, 27(2): 14-17.

[6]

杨叶琴, 赵昌平, 赵杰, 等. 微波消解-电感耦合等离子体原子发射光谱法测定土壤中8种金属元素的含量[J]. 理化检验(化学分册), 2019, 55(1): 63-67.

Yang Y Q, Zhao C P, Zhao J, et al. Determination of eight heavy metal elements in soil by microwave digestion-inductively coupled plasma atomic emission spectrometry[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2019, 55(1): 63-67.

[7]

Martins C A, Scheffler G L, Pozebon D, et al. Straight forward determination of U, Th, and Hf at trace levels using ultrasonic nebulization and axial view ICP-OES[J].Analytical Methods, 2016, 8(3): 504-509. doi: 10.1039/C5AY02932E

[8]

赵志飞, 任小荣, 李策, 等. 氧气反应模式-电感耦合等离子体串联质谱法测定土壤中的镉[J]. 岩矿测试, 2021, 40(1): 95-102.

Zhao Z F, Ren X R, Li C, et al. Determination of cadmium in soil samples by ICP-MS/MS using oxygen reaction mode[J]. Rock and Mineral Analysis, 2021, 40(1): 95-102.

[9]

黄金松, 李正鹤, 王佳翰, 等. 微波消解-ICP-MS测定海洋沉积物中的稀土元素[J]. 化学试剂, 2021, 43(4): 515-519.

Huang J S, Li Z H, Wang J H, et al. Determination of rare earth elements in marine sediments by microwave digestion ICP-MS[J]. Chemical Reagents, 2021, 43(4): 515-519.

[10]

邱东平, 姚旭松, 赵丽, 等. 石墨仪消解-ICP-MS法测定土壤中9种金属的方法探讨[J]. 中国测试, 2020, 46(11): 70-75. doi: 10.11857/j.issn.1674-5124.2020020056

Qiu D P, Yao X S, Zhao L, et al. Discussion on detection method of 9 metals in soil by graphite instrument digestion-ICP-MS[J].China Measurement & Test, 2020, 46(11): 70-75. doi: 10.11857/j.issn.1674-5124.2020020056

[11]

Venus M, Puntaric D, Gvozdic V, et al. Determinations of uranium concentrations in soil, water, vegetables and biological samples from inhabitants of war affected areas in eastern Croatia (ICP-MS method)[J].Journal of Environmental Radioactivity, 2019, 203: 147-153. doi: 10.1016/j.jenvrad.2019.03.004

[12]

孙朝阳, 董利明, 贺颖婷, 等. 电感耦合等离子体质谱法测定地质样品中钪镓锗铟镉铊时的干扰及其消除方法[J]. 理化检验(化学分册), 2016, 52(9): 1026-1030.

Sun C Y, Dong L M, He Y T, et al. Elimination of interferences in ICP-MS determination of Sc, Ga, Ge, In, Cd and Tl in geological samples[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2016, 52(9): 1026-1030.

[13]

He D, Zhu Z L, Miao X, et al. Determination of trace cadmium in geological samples by membrane desolvation inductively coupled plasma mass spectrometry[J].Microchemical Journal, 2019, 148: 561-567. doi: 10.1016/j.microc.2019.05.042

[14]

陈菲菲, 冉敬, 徐国栋, 等. 碳酸盐岩样品中镍和钪的电感耦合等离子体质谱分析与干扰校正方法[J]. 岩矿测试, 2021, 40(2): 187-195.

Chen F F, Ran J, Xu G D, et al. Inductively coupled plasma-mass spectrometric analysis of nickel and scandium in carbonate rock samples and interference correction methods[J]. Rock and Mineral Analysis, 2021, 40(2): 187-195.

[15]

金倩, 李晓敬, 陈庆芝, 等. 碱熔-强酸型阳离子交换树脂分离-电感耦合等离子体质谱法测定地质样品中硼锗钼锡碘钨[J]. 冶金分析, 2020, 40(7): 52-59.

Jin Q, Li X J, Chen Q Z, et al. Determination of boron, germanium, molybdenum, tin, iodine and tungsten in geological samples by alkaline fusion-strong acid cation[J]. Metallurrgical Analysis, 2020, 40(7): 52-59.

[16]

程小会, 邓敬颂. ICP-MS法测定土壤中12种金属元素时的样品前处理方法[J]. 化学分析计量, 2019, 28(4): 115-118. doi: 10.3969/j.issn.1008-6145.2019.04.028

Cheng X H, Deng J S. Comparation of pretreatment methods in determination of 12 metal elements in soil by inductively coupled plasma mass spectrometry[J].Chemical Analysis and Meterage, 2019, 28(4): 115-118. doi: 10.3969/j.issn.1008-6145.2019.04.028

[17]

王籼铂, 李义连, 逯雨, 等. 电热板消解不同酸体系对土壤中6种金属元素测定的影响研究[J]. 安全与环境工程, 2019, 26(4): 56-60.

Wang X B, Li Y L, Lu Y, et al. Effect of different acid systems on determination of six heavy metal elements in soil by electrothermal plate digestion[J]. Safety and Environmental Engineering, 2019, 26(4): 56-60.

[18]

许园园, 刘幽燕, 邓超冰, 等. 水系沉积物金属分析前处理方法[J]. 中国环境监测, 2018, 34(2): 96-102.

Xu Y Y, Liu Y Y, Deng C B, et al. Pretreatment method for heavy metal analysis of stream sediment[J]. Environmental Monitoring in China, 2018, 34(2): 96-102.

[19]

廖菽欢, 赵志南, 严冬, 等. 常压硫酸体系ICP-MS法测定土壤及沉积物中16种稀土元素及Th和U[J]. 环境化学, 2020, 39(1): 271-274.

Liao S H, Zhao Z N, Yan D, et al. Determination of 16 rare earth elements and Th and U in soil and sediment by ICP-MS under atmospheric pressure sulfuric acid[J]. Environmental Chemistry, 2020, 39(1): 271-274.

[20]

孙晓慧, 李章, 刘希良, 等. 微波消解-电感耦合等离子体原子发射光谱法测定土壤和水系沉积物中15种组分[J]. 冶金分析, 2014, 34(11): 56-60.

Sun X H, Li Z, Liu X L, et al. Determination of fifteen components in soil and stream sediment by inductively coupled plasma atomic emission spectrometry after microwave digestion[J]. Metallurgical Analysis, 2014, 34(11): 56-60.

[21]

王佳翰, 李正鹤, 杨峰, 等. 偏硼酸锂碱熔-电感耦合等离子体质谱法同时测定海洋沉积物中48种元素[J]. 岩矿测试, 2021, 40(2): 305-314.

Wang J H, Li Z H, Yang F, et al. Simultaneous determination of 48 elements in marine sediments by ICP-MS with lithium metaborate fusion[J]. Rock and Mineral Analysis, 2021, 40(2): 305-314.

[22]

王佳翰, 李正鹤, 黄金松, 等. 微波消解-ICP-MS同时测定海洋沉积物中50种元素[J]. 海洋环境科学, 2021, 40(4): 611-618.

Wang J H, Li Z H, Huang J S, et al. Simultaneous determination of 50 elements in marine sediments by microwave digestion ICP-MS[J]. Marine Environ-mental Science, 2021, 40(4): 611-618.

[23]

杨辉, 王书言, 黄继勇, 等. 同时检测土壤中铅镉铬汞砷金属元素含量方法的优化[J]. 河南科技大学学报(自然科学版), 2020, 41(1): 74-79.

Yang H, Wang S Y, Huang J Y, et al. Optimization of simultaneous detection method for heavy metal elements content of Pb, Cd, Cr, Hg and As in soil[J]. Journal of Henan University of Science and Technology (Natural Science), 2020, 41(1): 74-79.

[24]

黄晓琴. 微波消解法测试土壤金属含量的方法学研究[J]. 湖北农业科学, 2019, 58(17): 113-115.

Huang X Q. Study on the methodology of determination of heavy metal content in soil by microwave digestion[J]. Hubei Agricultural Sciences, 2019, 58(17): 113-115.

[25]

张祎玮, 蒋俊平, 李浩, 等. 微波消解-电感耦合等离子体质谱法测定土壤中稀土元素条件优化[J]. 岩石矿物学杂志, 2021, 40(3): 605-613. doi: 10.3969/j.issn.1000-6524.2021.03.014

Zhang Y W, Jiang J P, Li H, et al. Optimization of microwave digestion inductively coupled plasma mass spectrometry for determination of rare earth elements in soil[J].Acta Petrologica et Mineralogica, 2021, 40(3): 605-613. doi: 10.3969/j.issn.1000-6524.2021.03.014

[26]

张玲, 叶红梅, 王刚, 等. 微波消解法测定沉积物中5种金属元素的前处理技术研究[J]. 资源与环境科学, 2013, (7): 224-225.

Zhang L, Ye H M, Wang G, et al. Sample pretreatment methods for determination of 5 kind of heavy metal elements in sediment by microwave digestion[J]. Modern Agricultural Science and Technology, 2013, (7): 224-225.

[27]

Kiruba K, Satyanarayanan M, Sawant S S, et al. New soil reference material validation for trace and rare-earth elements by high-resolution inductively coupled plasma mass spectrometry[J].MAPAN—Journal of Metrology Society of India, 2020, 36(1): 147-156.

[28]

袁源, 赵平, 陈海杰, 等. 高分辨电感耦合等离子体质谱(HR-ICP-MS)法测定土壤污染状况调查样品中的49种元素[J]. 中国无机分析化学, 2021, 11(1): 12-19.

Yuan Y, Zhao P, Chen H J, et al. Determination of 49 elements in samples of the soil contamination investigation by high resolution inductively coupled plasma mass spectrometry[J].Chinese Journal of Inorganic Analytical Chemistry, 2021, 11(1): 12-19.

[29]

马小玲, 邓凤玉, 刘颖, 等. HR-ICP-MS研究黄河三个连续区域段表层沉积物中金属污染的空间分布和季节变化[J]. 光谱学与光谱分析, 2016, 36(8): 2705-2711.

Ma X L, Deng F Y, Liu Y, et al. Study on spatial distribution and seasonal variations of trace metal contamination in sediments from the three adjacent areas of the Yellow River using HR-ICP-MS[J]. Spectroscopy and Spectral Analysis, 2016, 36(8): 2705-2711.

[30]

Huang Z Y, Ni Y Y, Wang H, et al. Simultaneous determination of ultra-trace level 237Np and Pu isotopes in soil and sediment samples by SF-ICP-MS with a single column chromatographic separation[J].Microchemical Journal, 2019, 148: 597-604. doi: 10.1016/j.microc.2019.05.044

[31]

张彦辉, 张良圣, 常阳, 等. 增压-微波消解电感耦合等离子体质谱法测定含难溶矿物岩石样品中的微量元素[J]. 铀矿地质, 2018, 34(2): 105-111.

Zhang Y H, Zhang L S, Chang Y, et al. Determining trace elements in rock samples containing refractory minerals by pressurize-microwave inductively coupled plasma mass spectrometry[J]. Uranium Geology, 2018, 34(2): 105-111.

[32]

张更宇, 刘静波, 闫锋, 等. 四酸消解-电感耦合等离子体质谱法测定土壤中24种稀有元素的含量[J]. 理化检验(化学分册), 2020, 56(4): 428-437.

Zhang G Y, Liu J B, Yan F, et al. Determination of 24 rare elements in soil by inductively coupled plasma mass spectrometry with four acid digestion[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2020, 56(4): 428-437.

[33]

中国环境监测总站. 土壤元素的近代分析方法[M] . 北京: 中国环境科学出版社, 1992

China National Environmental Monitoring Centre . Modern analytical methods of soil elements[M] . Beijing: China Environmental Press, 1992
[34]

王君玉, 吴葆存, 李志伟, 等. 敞口酸溶-电感耦合等离子体质谱法同时测定地质样品中45个元素[J]. 岩矿测试, 2011, 30(4): 440-445. doi: 10.3969/j.issn.0254-5357.2011.04.010

Wang J Y, Wu B C, Li Z W, et al. Determination of elemental content in geological samples by one-time acid dissolution and inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2011, 30(4): 440-445. doi: 10.3969/j.issn.0254-5357.2011.04.010

[35]

Schnetger B. Trace element analysis of sediments by HR-ICP-MS using low and medium resolution and different acid digestions[J].Fresenius' Journal of Analytical Chemistry, 1997, 359: 468-472. doi: 10.1007/s002160050614

[36]

宣肇菲, 徐少才, 房贤文, 等. 四种酸体系对微波酸溶-电感耦合等离子体质谱法测定固体废物中16种金属元素含量的影响[J]. 岩矿测试, 2015, 34(6): 617-622.

Xuan Z F, Xu S C, Fang X W, et al. Influence of four kinds of acid systems on determination of 16 metal elements in solid wastes by ICP-MS with microwave acid digestion[J]. Rock and Mineral Analysis, 2015, 34(6): 617-622.

相似文献(共20条)

[1]

林立, 周谙非, 张曼玲, 田艳玲, 杨彦丽. 微波消解-电感耦合等离子体发射光谱法分析食品中的总硼. 岩矿测试, 2008, 27(1): 21-24.

[2]

黄园英, 吴淑琪, 佟玲, 张玲金. 土壤中持久性有机污染物分析的前处理方法. 岩矿测试, 2008, 27(2): 81-86.

[3]

方金梅. 福州市土壤硒形态分析及其迁移富集规律. 岩矿测试, 2008, 27(2): 103-107.

[4]

奥地利安东帕有限公司. 密闭微波消解-ICPOES法测定钢铁样品中硅. 岩矿测试, 2008, 27(2): I-I.

[5]

王娜, 徐铁民, 魏双, 王家松, 曾江萍, 张楠. 微波消解-电感耦合等离子体质谱法测定超细粒度岩石和土壤样品中的稀土元素. 岩矿测试, 2020, 39(1): 68-76. doi: 10.15898/j.cnki.11-2131/td.201904010043

[6]

江林, 刘晓端, 张静. 土壤中不同形态砷的分析方法. 岩矿测试, 2008, 27(3): 179-183.

[7]

齐璐璐, 赵会芹, 陈子学, 郑育锁, 孟凡辉, 肖波, 张颖. 连续光源原子吸收光谱法测定土壤水溶性盐中钙镁. 岩矿测试, 2008, 27(2): 95-98.

[8]

刘向磊, 孙文军, 文田耀, 李永新, 王腾飞, 刘学理, 闫宇, 李怀超. 三酸分步消解-电感耦合等离子体质谱法测定土壤详查样品中23种金属元素. 岩矿测试, 2020, 39(5): 793-800. doi: 10.15898/j.cnki.11-2131/td.201902270026

[9]

陈永欣, 黎香荣, 韦新红, 吕泽娥, 谢毓群, 蔡维专. 微波消解-电感耦合等离子体质谱法测定土壤和沉积物中痕量稀土元素. 岩矿测试, 2011, 30(5): 560-565.

[10]

蒯丽君, 樊兴涛, 詹秀春, 高亚美, 李吉生, 鞠青海. 酸消解-车载偏振能量色散X射线荧光法现场测定祁曼塔格多金属矿中高品位铜铅锌. 岩矿测试, 2013, 32(4): 538-546.

[11]

赵雷, 邱会东, 原金海. 微波消解-原子吸收光谱法测定岩芯中的8种金属元素. 岩矿测试, 2011, 30(4): 461-464.

[12]

刘广民, 尹莉莉, 董永亮, 肖宇芳. 土壤中五氯酚的快速测定. 岩矿测试, 2008, 27(2): 117-119.

[13]

李刚, 苏文峰. 焙烧分离-氢化物发生-原子荧光光谱法测定土壤样品中微量硒. 岩矿测试, 2008, 27(2): 120-122.

[14]

侍金敏, 冯廷建, 付鹏飞, 汤勇武, 陈大林, 张春翔, 燕娜. 微波消解-电感耦合等离子体质谱法同时测定金属硫化矿中的稀散元素. 岩矿测试, 2019, 38(6): 631-639. doi: 10.15898/j.cnki.11-2131/td.201805300066

[15]

奥地利安东帕. HPA—S高温高压消解铂族金属. 岩矿测试, 2007, 26(3): 文后I-文后I.

[16]

龚仓, 丁洋, 陆海川, 卜道露, 王立华, 熊韬, 张志翔. 五酸溶样-电感耦合等离子体质谱法同时测定地质样品中的稀土等28种金属元素. 岩矿测试, 2021, 40(3): 340-348. doi: 10.15898/j.cnki.11-2131/td.202011030136

[17]

鲁照玲, 胡红云, 姚洪. 土壤中重金属元素电感耦合等离子体质谱定量分析方法的研究. 岩矿测试, 2012, 31(2): 241-246.

[18]

李景喜, 陈发荣, 杨春茹, 崔维刚, 郑立, 王小如. 有机溶剂辅助微波消解-电感耦合等离子体质谱法测定多种原油中微量金属元素. 岩矿测试, 2011, 30(1): 12-16.

[19]

燕娜, 赵生国, 赵伟, 郑红文. 微波消解-电感耦合等离子体质谱测定铜精矿中7种稀有金属元素. 岩矿测试, 2014, 33(2): 197-202.

[20]

刘洪青, 孙月婷, 时晓露, 章勇. 微波消解-电感耦合等离子体质谱法测定生物样品中14个微量元素. 岩矿测试, 2008, 27(6): 427-430.

计量
  • PDF下载量(7)
  • 文章访问量(80)
  • HTML全文浏览量(17)
  • 被引次数(0)
目录

Figures And Tables

微波消解-高分辨电感耦合等离子体质谱法测定土壤中8种金属元素

李晓云, 王羽, 金婵, 张林娟, 王建强