【引用本文】 陈菲菲, 冉敬, 徐国栋, 等. 碳酸盐岩样品中镍和钪的电感耦合等离子体质谱分析与干扰校正方法[J]. 岩矿测试, 2021, 40(2): 187-195. doi: 10.15898/j.cnki.11-2131/td.202005310079
CHEN Fei-fei , RAN Jing , XU Guo-dong , et al. Inductively Coupled Plasma-Mass Spectrometric Analysis of Nickel and Scandium in Carbonate Rock Samples and Interference Correction Methods[J]. Rock and Mineral Analysis, 2021, 40(2): 187-195. doi: 10.15898/j.cnki.11-2131/td.202005310079

碳酸盐岩样品中镍和钪的电感耦合等离子体质谱分析与干扰校正方法

中国地质调查局成都地质调查中心, 四川 成都 610081

收稿日期: 2020-05-31  修回日期: 2020-09-09 

基金项目: 中国地质调查局地质调查项目“重要非金属矿物谱学特征与定量分析方法研究”(201111028-03)

作者简介: 陈菲菲,硕士,工程师,地球化学,主要从事分析化学及地球化学研究。E-mail:cfffair2008@163.com。

通信作者:

Inductively Coupled Plasma-Mass Spectrometric Analysis of Nickel and Scandium in Carbonate Rock Samples and Interference Correction Methods

Chengdu Geological Survey Center, China Geological Survey, Chengdu 610081, China

Corresponding author: XU Guo-dong , 主要从事岩石矿物分析工作。xgd1230@163.com。

Received Date: 2020-05-31
Revised Date: 2020-09-09

摘要:电感耦合等离子体质谱法(ICP-MS)已在碳酸盐岩微量元素测试中得到了广泛应用。然而,采用ICP-MS分析碳酸盐岩中含量较低的Ni(1.6~50.5μg/g)和Sc(0.3~6μg/g)时,信号值会受到高含量CaO(可高达56%)和MgO(可高达21%)的显著干扰,使测试值远高于真实值,从而无法获得准确的待测元素含量。为解决这一问题,本文通过实验探寻测试中的主要干扰因素,再据此确定相应的校正方法。首先,利用Ca和Mg的单标系列对碳酸盐岩ICP-MS测试中的高含量Ca、Mg对Ni、Sc的干扰分别进行研究,发现高含量Mg对Ni和Sc的测试存在基体效应的非质谱干扰;而高含量Ca则形成氧化物、氢氧化物及多原子离子对Ni和Sc形成质谱干扰,并且这一干扰程度与溶液中Ca含量呈良好的线性关系。然后,进一步选择碳酸盐岩国家一级标准物质作为校正载体以消除Mg的基体效应,同时根据样品溶液中CaO含量与Ni、Sc受干扰程度呈现的良好线性关系,提出了扣除拟合干扰的校正方法。相对于前人仅利用单标对实际样品进行干扰校正而言,本方法采用国家一级标准物质作为校正载体,克服了基体效应的干扰。并经GBW07108等五个碳酸盐岩国家一级标准物质验证,测定值与认定值相符,相对标准偏差(RSD,n=10)小于5.4%。将未知碳酸盐岩样品的校正结果分别与电感耦合等离子体发射光谱法(ICP-OES)及X射线荧光光谱法(XRF)测试结果进行对比,相对偏差均小于15%。该校正方法简单易行,测定结果准确可靠。

关键词: 碳酸盐岩, Ni, Sc, 电感耦合等离子体质谱法, 干扰校正

Inductively Coupled Plasma-Mass Spectrometric Analysis of Nickel and Scandium in Carbonate Rock Samples and Interference Correction Methods

KEY WORDS: carbonate rock, nickle, scandium, inductively coupled plasma-mass spectrometry, interference correction

本文参考文献

[1]

颜佳新,孟琦,王夏,等.碳酸盐工厂与浅水碳酸盐岩台地:研究进展与展望[J].古地理学报,2019,21(2):232-253.

Yan J X,Meng Q,Wang X,et al.Carbonate factory and carbonate platform:Progress and prospects[J].Journal of Palaeogeography (Chinese Edition),2019,21(2):232-253.

[2]

Thomas A L,Daniel P S.The role of authigenic carbonate in Neoproterozoic carbon isotope excursions[J].Earth and Planetary Science Letters,2020,549(116534):1-10.

[3]

Arthur L G,Roger H M,Artur C B N,et al.Mineralogy and geochemistry of the Morro dos Seis Lagos siderite carbonatite,Amazonas,Brazil[J].Lithos,2020,360-361(105433):1-20.

[4]

Chen W,Ying Y C,Bai T,et al.In situ major and trace element analysis of magnetite from carbonatite-related complexes:Implications for petrogenesis and ore genesis[J].Ore Geology Reviews,2019,107:30-40.

[5]

李向东,何幼斌.宁夏香山群徐家圈组顶部石灰岩地球化学特征及其时代意义[J].地球化学,2019,48(4):325-341.

Li X D,He Y B.Geochemical characteristics and their epochal significance of limestones at the top of Xujiajuan Formation,Xiangshan Group in the Ningxia autonomous region,China[J].Geochimica,2019,48(4):325-341.

[6]

陈松,傅学海,桂和荣,等.皖北新元古界望山组灰岩微量元素地球化学特征[J].古地理学报,2012,14(6):813-820.

Chen S,Fu X H,Gui H R,et al.Geochemical characteristics of trace elements in limestone of the Neoproterozoic Wangshan Formation in northern Anhui Province[J].Journal of Palaeogeography,2012,14(6):813-820.

[7]

Ekaterina P R,Anton R C,Laura P,et al.Trace-element composition and zoning in clinopyroxene-and amphibole-group minerals:Implications for element partitioning and evolution of carbonatites[J].Lithos,2012,128-131:27-45.

[8]

王娜,徐铁民,魏双,等.微波消解-电感耦合等离子体质谱法测定超细粒度岩石和土壤样品中的稀土元素[J].岩矿测试,2020,39(1):68-76.

Wang N,Xu T M,Wei S,et al.Determination of rare earth elements in ultra-fine rock and soil samples by ICP-MS using microwave digestion[J].Rock and Mineral Analysis,2020,39(1):68-76.

[9]

Zhu Y B,Jhanis J G,Yang X Y,et al.Calcium fluoride as a dominating matrix for quantitative analysis by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS):A feasibility study[J].Analytica Chimica Acta,2020,1129:24-30.

[10]

Zhao X Y,Zhong H,Mao W,et al.Molybdenite Re-Os dating and LA-ICP-MS trace element study of sulfide minerals from the Zijinshan high-sulfidation epithermal Cu-Au deposit,Fujian Province,China[J].Ore Geology Reviews,2020,118(103363):1-17.

[11]

Zhang W,Hu Z C,Liu Y S,et al.In situ calcium isotopic ratio determination in calcium carbonate materials and calcium phosphate materials using laser ablation-multiple collector-inductively coupled plasma mass spectrometry[J].Chemical Geology,2019,522:16-25.

[12]

Robert B,Martin J W,Lorenzo M,et al.Atmospheric S and lithospheric Pb in sulphides from the 2.06Ga Phalaborwa phoscorite-carbonatite Complex,South Africa[J].Earth and Planetary Science Letters,2020,530(115939):1-14.

[13]

Corinne K,Antonio S,Wei C,et al.Boron isotopic investigation of the Bayan Obo carbonatite complex:Insights into the source of mantle carbon and hydrothermal alteration[J].Chemical Geology,2020,557(119859):1-18.

[14]

Daniel W,Max W S,Hannes B M.Mineral resorption triggers explosive mixed silicate-carbonatite eruptions[J].Earth and Planetary Science Letters,2019,510:219-230.

[15]

Loula M,Kaňa A,Mestek O.Non-spectral inter-ferences in single-particle ICP-MS analysis:An underestimated phenomenon[J].Talanta,2019,202:565-571.

[16]

李冰,杨红霞.电感耦合等离子体质谱原理和应用[M].北京:地质出版社,2005:85-106. Li B,Yang H X.Principle and application of inductively coupled plasma mass spectrometry[M].Beijing:Geology Press,2005:85

-106.

[17]

Klaus P J,Denis S,Brigitte S,et al.Accurate trace ele-ment analysis of speleothems and biogenic calcium carbonates by LA-ICP-MS[J].Chemical Geology,2012,318-319:31-44.

[18]

门倩妮,刘玲,温良,等.电感耦合等离子体质谱法测定碳酸盐岩中30种痕量元素及干扰校正研究[J].岩矿测试,2015,34(4):420-423.

Men Q N,Liu L,Wen L,et al.Determination of thirty trace elements in carbonate rocks by inductively coupled plasma-mass spectrometry and interference correction[J].Rock and Mineral Analysis,2015,34(4):420-423.

[19]

赵志飞,李丹,李策,等.高钙碳酸盐地质样品中铜镍的测定[J].岩矿测试,2010,29(2):187-189.

Zhao Z F,Li D,Li C,et al.Determination of copper and nickel in high-calcium carbonate geological samples[J].Rock and Mineral Analysis,2010,29(2):187-189.

[20]

胡圣虹,李清澜,林守麟,等.电感耦合等离子体质谱法直接测定碳酸盐岩中超痕量稀土元素[J].岩矿测试,2000,19(4):249-253.

Hu S H,Li Q L,Lin S L,et al.Determination of ultra-trace rare earth elements in carbonate by ICP-MS[J].Rock and Mineral Analysis,2000,19(4):249-253.

[21]

田梅,韩小元,王江,等.ICP-MS测量环境样品中铀的非质谱干扰内标校正研究[J].分析试验室,2012,31(8):116-120.

Tian M,Han X Y,Wang J,et al.Study on correction of matrix effect with different internal standards during measurement of uranium by ICP-MS[J].Chinese Journal of Analysis Laboratory,2012,31(8):116-120.

[22]

罗策,雷小燕,黄永红,等.电感耦合等离子体质谱法测定锆及锆合金中镉含量的质谱干扰分析[J].分析科学学报,2016,32(4):515-519.

Luo C,Lei X Y,Huang Y H,et al.Mass spectrum interference analysis for inductively coupled plasma mass spectrometry determination of cadmium in zirconium and zirconium alloys[J].Journal of Analytical Science,2016,32(4):515-519.

[23]

Amy L R,Gary M H.Inductively coupled plasma mass spectrometry and electrospray mass spectrometry for speciation analysis:Applications and instrumentation[J].Spectrochimica Acta:Part B,2004,59:135-146.

[24]

Bussweiler Y,Giuliani A,Greig A,et al.Trace element analysis of high-Mg olivine by LA-ICP-MS-Characterization of natural olivine standards for matrix-matched calibration and application to mantle peridotites[J].Chemical Geology,2019,524:136-157.

[25]

Zhang W.Direct lead isotope analysis in Hg-rich sul-fides by LA-MC-ICP-MS with a gas exchange device and matrix-matched calibration[J].Analytica Chimica Acta,2016,948:9-18.

[26]

Hu Y,Chen X Y,Xu Y K,et al.High-precision analysis of potassium isotopes by HR-MC-ICPMS[J].Chemical Geology,2018,493:100-108.

[27]

Doucelance R,Bruand E,Matte S,et al.In-situ deter-mination of Nd isotope ratios in apatite by LA-MC-ICPMS[J].Chemical Geology,2020,550:1-21.

[28]

Qiao L,Wu Z W,Li Y,et al.A novel calibration strategy for the analysis of airborne particulate matter by direct solid sampling ETV-ICP-MS[J].Microchemical Journal,2020,105474:1-17.

[29]

Peter T S,Chen T Y,Laura F R,et al.Rapid uranium-series age screening of carbonates by laser ablation mass spectrometry[J].Quaternary Geochronology,2016,31:28-39.

[30]

Ramon A,Francisco B,Otmar G,et al.Quantification and size characterisation of silver nanoparticles in environmental aqueous samples and consumer products by single particle-ICPMS[J].Talanta,2017,175:200-208.

[31]

Zellmer G F,Kimura J I,Chang Q,et al.Rapid determination of initial 87Sr/86Sr and estimation of the Rb-Sr age of plutonic rocks by LA-ICPMS of variably altered feldspars:An example from the 1.14Ga Great Abitibi Dyke,Ontario,Canada[J].Lithos,2018,314-315:52-58.

[32]

Christoper J M L,Graham P,Pedro W,et al.Element and isotopic signature of re-fertilized mantle peridotite as determined by nanopowder and olivine LA-ICPMS analyses[J].Chemical Geology,2020,635:1-17.

[33]

戴洁.高分辨电感耦合等离子体质谱法测定珊瑚中铅的同位素组成研究[D].上海:华东师范大学,2010. Dai J.Research on measurement of lead isotopes in corals with HR-ICP-MS[D].Shanghai:East China Normal University,2010.

[34]

Lebrato M,Mcclintock J B,Amsler M O,et al.From the Arctic to the Antarctic:The major,minor,and trace elemental composition of echinoderm skeletons[J].Ecology,2013,94(6):1434.

相似文献(共20条)

[1]

李刚, 曹小燕. 电感耦合等离子体质谱法测定地质样品中锗和镉的干扰及校正. 岩矿测试, 2008, 27(3): 197-200.

[2]

门倩妮, 刘玲, 温良, 黄北川, 周远洋, 许东东. 电感耦合等离子体质谱法测定碳酸盐岩中30种痕量元素及干扰校正研究. 岩矿测试, 2015, 34(4): 420-423. doi: 10.15898/j.cnki.11-2131/td.2015.04.007

[3]

张静梅, 张培新, 高孝礼, 黄光明, 窦银萍. 电感耦合等离子体质谱法同时测定地下水中硼溴碘. 岩矿测试, 2008, 27(1): 25-28.

[4]

尹周澜, 王薇惟, 覃祚明, 黄旭. 电感耦合等离子体质谱法测定高纯铟中铁. 岩矿测试, 2008, 27(3): 193-196.

[5]

张保科, 王蕾, 马生凤, 温宏利, 巩爱华. 电感耦合等离子体质谱法测定地质样品中铜锌铕钆铽的干扰及校正. 岩矿测试, 2012, 31(2): 253-257.

[6]

郭振华, 何汉江, 田凤英. 混合酸分解-电感耦合等离子体质谱法测定磷矿石中15种稀土元素. 岩矿测试, 2014, 33(1): 25-28.

[7]

戢朝玉, 李剑昌. 1:20万岩石化探测量碳酸盐岩分析方法研究—等离子体质谱为主的配套分析方法. 岩矿测试, 1998, (2): 99-106.

[8]

李清澜, 胡圣虹. 感耦等离子体质谱法直接测定碳酸盐岩中超痕量稀土元素. 岩矿测试, 2000, (4): 249-253.

[9]

沈宇, 张尼, 高小红, 李皓, 马怡飞. 微波消解电感耦合等离子体质谱法测定地球化学样品中钒铬镍锗砷. 岩矿测试, 2014, (5): 649-654.

[10]

洪飞, 刘耀华, 金平. 微堆中子活化分析测定碳酸盐岩中痕量元素. 岩矿测试, 2003, (1): 28-32.

[11]

陈江峰, 杨刚, 杜安道, 屈文俊, 杨胜洪. 电感耦合等离子体质谱法测量铼和锇同位素比值的质量分馏校正. 岩矿测试, 2007, 26(1): 4-8.

[12]

黎卫亮, 程秀花, 李忠煜, 王鹏. 碱熔共沉淀-电感耦合等离子体质谱法测定橄榄岩中的稀土元素. 岩矿测试, 2017, 36(5): 468-473. doi: 10.15898/j.cnki.11-2131/td.201607130099

[13]

熊英, 吴赫, 王龙山. 电感耦合等离子体质谱法同时测定铜铅锌矿石中微量元素镓铟铊钨钼的干扰消除. 岩矿测试, 2011, 30(1): 7-11.

[14]

傅碧宏. 碳酸盐岩的反射光谱特征的研究及应用. 岩矿测试, 1996, (3): 207-209.

[15]

郭建卿, 周瑶琪, 刘超英, 陈勇. 人工合成碳酸盐岩流体包裹体实验与定量分析. 岩矿测试, 2004, (3): 161-167.

[16]

张其春, 张志军, 尹观, 周蓉生. 碳酸盐岩锶同位素比值测定中的残渣分析. 岩矿测试, 2003, (2): 151-153.

[17]

黎卫亮, 程秀花, 余娟, 刘欢. 高压密闭酸溶-电感耦合等离子体质谱法测定花岗闪长岩中的微量锆. 岩矿测试, 2016, 35(1): 32-36. doi: 10.15898/j.cnki.11-2131/td.2016.01.006

[18]

把立强, 陶成, 李广友, 杨华敏. GasBench-IRMS在碳酸盐岩δ^13C和δ^18O在线连续分析中的应用. 岩矿测试, 2006, 25(4): 334-336.

[19]

徐国栋, 金斌, 葛建华, 董俊, 程江. 草酸铵为基体改进剂石墨炉原子吸收光谱法测定碳酸盐岩中的痕量银. 岩矿测试, 2016, 35(2): 134-137. doi: 10.15898/j.cnki.11-2131/td.2016.02.004

[20]

秦燕, 王登红, 梁婷, 李建康, 侯可军. 广西大厂锡多金属矿区深部碳酸盐岩的稀土元素特征及其地质意义. 岩矿测试, 2014, 33(2): 296-301.

计量
  • PDF下载量(13)
  • 文章访问量(557)
  • 被引次数(0)
目录

Figures And Tables

碳酸盐岩样品中镍和钪的电感耦合等离子体质谱分析与干扰校正方法

陈菲菲, 冉敬, 徐国栋, 程江, 陈瑜