【引用本文】 任冬, 周小琳, 宗有银, 等. 封闭酸溶-盐酸羟胺还原ICP-MS法测定土壤沉积物岩石中的痕量碘[J]. 岩矿测试, 2019, 38(6): 734-740. doi: 10.15898/j.cnki.11-2131/td.201901170009
REN Dong, ZHOU Xiao-lin, ZONG You-yin, et al. Determination of Trace Iodine in Soils, Sediments and Rocks by ICP-MS after Pressurized Acid Digestion-Hydroxylamine Hydrochloride Reduction[J]. Rock and Mineral Analysis, 2019, 38(6): 734-740. doi: 10.15898/j.cnki.11-2131/td.201901170009

封闭酸溶-盐酸羟胺还原ICP-MS法测定土壤沉积物岩石中的痕量碘

甘肃省有色金属地质勘查局张掖矿产勘查院, 甘肃 张掖 734000

收稿日期: 2019-01-17  修回日期: 2019-06-25  接受日期: 2019-07-16

作者简介: 任冬, 工程师, 从事ICP-MS分析检测工作。E-mail:296536872@qq.com

Determination of Trace Iodine in Soils, Sediments and Rocks by ICP-MS after Pressurized Acid Digestion-Hydroxylamine Hydrochloride Reduction

Zhangye Mineral Exploration Institute, Gansu Nonferrous Metal Geological Exploration Bureau, Zhangye 734000, China

Received Date: 2019-01-17
Revised Date: 2019-06-25
Accepted Date: 2019-07-16

摘要:碘是活跃元素,价态多,各价态间易相互转化,化学性质不稳定,使用ICP-MS测定土壤、沉积物和岩石样品中的痕量碘,样品前处理和测定结果的稳定性是主要问题。本文采用磷酸-高氯酸高压密闭消解处理样品,提高了样品分解效率,也避免了碘的挥发损失,通过加入0.5mL 20g/L盐酸羟胺溶液将碘还原为I-,提高了碘的稳定性,再于100℃烘箱中保温至少20min,以稀氨水作介质,降低了ICP-MS测定过程中的记忆效应。方法相对标准偏差(RSD)为4.88%~9.19%,相对误差为-6.90%~8.33%,回收率为92.5%~109.6%,检出限(3s)为0.012μg/g。本方法的测定数据与半熔法一致,解决了当前方法存在的分析流程长、空白高、岩石样品提取不完全、提取装置繁多等问题,可以作为土壤、沉积物、岩石中痕量碘测定方法的一种补充,适合批量样品分析。

关键词: 土壤, 沉积物, 岩石, 封闭酸溶, 盐酸羟胺, 电感耦合等离子体质谱法,

要点

(1) 高压密闭消解处理样品提高了分解效率,且碘不易挥发损失。

(2) 确定了样品分解条件。

(3) 本法可作为碘测定方法的一种补充。

Determination of Trace Iodine in Soils, Sediments and Rocks by ICP-MS after Pressurized Acid Digestion-Hydroxylamine Hydrochloride Reduction

ABSTRACT

BACKGROUND:

Iodine is an active element with many valences. It is easy to transform each other between valence states and its chemical properties are unstable. In terms of determination of trace iodine in soil, sediment and rock samples by inductively coupled plasma-mass spectrometry (ICP-MS), sample pretreatment and result stability are the main problems.

OBJECTIVES:

To obtain stable results, low blank, a short analysis period and complete extraction.

METHODS:

The sample was digested by phosphoric acid-perchloric acid under high-pressure sealed conditions. The decomposition efficiency of the sample was improved and the volatilization loss of iodine was avoided. The stability of iodine was improved by adding 0.5mL 20g/L hydroxylamine hydrochloride solution to reduce iodine to I-. The iodine was kept in an oven at 10℃ for at least 20 minutes, and the memory effect during ICP-MS analysis was reduced by using dilute ammonia water as the medium.

RESULTS:

The relative standard deviations of the method were 4.88%-9.19%, the relative errors were -6.90%-8.33%, the recoveries were 92.5%-109.6% and the detection limit (3s) was 0.012μg/g.

CONCLUSIONS:

The data obtained by this method are in good agreement with those obtained by the semi-melting method. It solves the problems of long analysis process, high blank, incomplete extraction of rock samples and various extraction devices. It can be used as a supplement to the determination of trace iodine in soil, sediment and rock, and is suitable for batch sample analysis.

KEY WORDS: soils, sediments, rocks, pressurized acid digestion, hydroxylamine hydrochloride, inductively coupled plasma-mass spectrometry, iodine

HIGHLIGHTS

(1) The application of high-pressure sealed digestion technology to sample treatment improved the decomposition efficiency, and iodine was not easy to volatilize.

(2) The decomposition conditions of the sample were determined.

(3) This method could be used as a supplementary method for the determination of iodine.

本文参考文献

[1]

李冰, 何红蓼, 史世云, 等. 电感耦合等离子体质谱同时测定地质样品中痕量碘溴砷硒的研究Ⅰ.不同阴离子形态及不同介质对分析信号的影响[J]. 岩矿测试, 2001, 20(3): 161-166. doi: 10.3969/j.issn.0254-5357.2001.03.001

Li B, He H L, Shi S Y, et al. Determination of trace iodine, bromine, selenium and arsenic in geological samples by inductively coupled plasma mass spectrometry.Ⅰ.Signal response of different anion species in media[J]. Rock and Mineral Analysis, 2001, 20(3): 161-166. doi: 10.3969/j.issn.0254-5357.2001.03.001

[2]

李冰, 史世云, 何红蓼, 等. 电感耦合等离子体质谱同时测定地质样品中痕量碘溴砷硒的研究Ⅱ.土壤及沉积物标准物质分析[J]. 岩矿测试, 2001, 20(4): 241-245. doi: 10.3969/j.issn.0254-5357.2001.04.001

Li B, Shi S Y, He H L, et al. Determination of trace iodine, bromine, selenium and arsenic in geological samples by inductively coupled plasma mass spectrometry.Ⅱ.Standard material analysis of soil and sediment[J]. Rock and Mineral Analysis, 2001, 20(4): 241-245. doi: 10.3969/j.issn.0254-5357.2001.04.001

[3]

Vanhoe H, Allemeersch F V, Versieck J, et al. Effect of solvent type on the determination of total iodine in milk powder and human serum by inductively coupled plasma mass spectrometry[J].Analyst, 1993, 118(8): 1015-1019. doi: 10.1039/an9931801015

[4]

Larsen E H, Ludwigsen M B. Determination of iodine in food-related certified reference materials using wet ashing and determination by inductively coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 1997, 12(6): 435-439.

[5]

Pieoloto R S, Cruz S M, Mello P A, , et al. Combining pyrohydrolysis and ICP-MS for bromine and iodine determination in airborne particulate matter[J].Microchemical Journal, 2014, 116: 225-229. doi: 10.1016/j.microc.2014.05.002

[6]

Tagami K, Uchida S. Sample storage conditions and holding times for the determination of total iodine in natural water samples by ICP-MS[J]. Atomic Spectroscopy, 2005, 26(6): 209-214.

[7]

Michel A, Villemant B. Determination of halogens (F, Cl, Br, I), sulfur and water in seventeen geological reference materials[J].Geostandards and Geoanalytical Research, 2003, 27(2): 163-171. doi: 10.1111/j.1751-908X.2003.tb00643.x

[8]

赵庆令, 李清彩, 蒲军, 等. 电感耦合等离子体发射光谱法同时测定土壤样品中砷硼铈碘铌硫钪锶钍锆等31种元素[J]. 岩矿测试, 2010, 29(4): 455-457. doi: 10.3969/j.issn.0254-5357.2010.04.026

Zhao Q L, Li Q C, Pu J, et al. Simultaneous determination of 31 elements such as arsenic, boron, cerium, iodine, niobium, sulfur, scandium, strontium, thorium and zirconium in soil samples[J]. Rock and Mineral Analysis, 2010, 29(4): 455-457. doi: 10.3969/j.issn.0254-5357.2010.04.026

[9]

程素敏, 王娟, 张岩, 等. 分光光度法测定土壤中碘的方法改进[J]. 中国无机分析化学, 2015, 5(4): 41-43. doi: 10.3969/j.issn.2095-1035.2015.04.009

Cheng S M, Wang J, Zhang Y, et al. Improvement of spectrophotometric method for the determination of iodine in soil[J].China Inorganic Analytical Chemistry, 2015, 5(4): 41-43. doi: 10.3969/j.issn.2095-1035.2015.04.009

[10]

阳国运, 唐裴颖, 张洁, 等. 电感耦合等离子体质谱法测定地球化学样品中的硼碘锡锗[J]. 岩矿测试, 2019, 38(2): 154-159.

Yang G Y, Tang P Y, Zhang J, et al. Determination of boron, iodine, tin and germanium in geochemical samples by inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2019, 38(2): 154-159.

[11]

李锦昕, 邵一立, 刘国均, 等. 流动注射G光度法测定地质样品中痕量碘[J]. 岩矿测试, 1993, 12(1): 11-13.

Li J X, Shao Y L, Liu G J, et al. Flow injection G spectrophotometric determination of trace iodine in geological samples[J]. Rock and Mineral Analysis, 1993, 12(1): 11-13.

[12]

张培新, 黄光明, 董丽, 等. 电感耦合等离子体质谱法同时测定地质样品中锗碘[J]. 岩矿测试, 2005, 24(1): 36-38. doi: 10.3969/j.issn.0254-5357.2005.01.008

Zhang P X, Huang G M, Dong L, et al. Simultaneous determination of germanium and iodine in geological samples by inductively coupled plasma mass spectrometry[J]. Rock and Mineral Analysis, 2005, 24(1): 36-38. doi: 10.3969/j.issn.0254-5357.2005.01.008

[13]

万兵, 孙立欣, 贾雨薇, 等. 电感耦合等离子体质谱(ICP-MS)法测定地球化学样品中的碘[J]. 中国无机分析化学, 2017, 7(4): 57-59. doi: 10.3969/j.issn.2095-1035.2017.04.012

Wan B, Sun L X, Jia Y W, et al. Determination of iodine in geochemical samples by inductively coupled plasma mass spectrometry (ICP-MS)[J].China Inorganic Analytical Chemistry, 2017, 7(4): 57-59. doi: 10.3969/j.issn.2095-1035.2017.04.012

[14]

董薇. 催化动力学分光光度法测定区域地球化学样品中的碘[J]. 广州化工, 2018, 46(4): 99-100. doi: 10.3969/j.issn.1001-9677.2018.04.032

Dong W. Catalytic kinetic spectrophotometric determination of iodine in regional geochemical samples[J].Guangzhou Chemical Industry, 2018, 46(4): 99-100. doi: 10.3969/j.issn.1001-9677.2018.04.032

[15]

张学华, 王君玉, 韩敏, 等. 氯胺T-四碱催化分光光度法测定河南省黄淮平原农业地质调查样品中痕量碘[J]. 岩矿测试, 2007, 26(5): 391-394. doi: 10.3969/j.issn.0254-5357.2007.05.011

Zhang X H, Wang J Y, Han M, et al. Catalytic spectrophotometric determination of trace iodine in agricultural geological survey samples of Huanghuai Plain, Henan Province by chloramine T-tetraalkali[J]. Rock and Mineral Analysis, 2007, 26(5): 391-394. doi: 10.3969/j.issn.0254-5357.2007.05.011

[16]

安华娟, 张明杰, 戴雪峰, 等. 电感耦合等离子体质谱法测定地质样品中痕量碘[J]. 理化检验(化学分册), 2010, 46(6): 692-693.

An H J, Zhang M J, Dai X F, et al. Inductively coupled plasma mass spectrometry for the determination of trace iodine in geological samples[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2010, 46(6): 692-693.

[17]

马新荣, 李冰, 韩丽荣, 等. 稀氨水密封溶解-电感耦合等离子体质谱测定土壤沉积物及生物样品中的碘溴[J]. 岩矿测试, 2003, 22(3): 174-178. doi: 10.3969/j.issn.0254-5357.2003.03.004

Ma X R, Li B, Han L R, et al. Determination of total iodine and bromine in soil, sediment and biological samples by inductively coupled plasma mass spectrometry with dilute ammonia pressurizing decomposition[J]. Rock and Mineral Analysis, 2003, 22(3): 174-178. doi: 10.3969/j.issn.0254-5357.2003.03.004

[18]

宋萍, 温宏利. 液氮冷凝吸收热解-电感耦合等离子体质谱法测定岩石土壤沉积物中的溴碘[J]. 岩矿测试, 2016, 35(4): 384-388.

Song P, Wen H L. Determination of bromine and iodine in rock and soil sediments by liquid nitrogen condensation absorption pyrolysis-inductively coupled plasma mass spectrometry[J]. Rock and Mineral Analysis, 2016, 35(4): 384-388.

[19]

吴磊, 刘义博, 王家松, 等. 高压密闭消解-电感耦合等离子体质谱法测定锰矿石中的稀土元素前处理方法研究[J]. 岩矿测试, 2018, 37(6): 637-643.

Wu L, Liu Y B, Wang J S, et al. Study on the pretreatment method for determination of rare earth elements in manganese ores by high pressure sealed digestion-inductively coupled plasma mass spectrometry[J]. Rock and Mineral Analysis, 2018, 37(6): 637-643.

[20]

贾双琳, 赵平, 杨刚, 等. 混合酸敞开或高压密闭溶样-ICP-MS测定地质样品中稀土元素[J]. 岩矿测试, 2014, 33(2): 186-191. doi: 10.3969/j.issn.0254-5357.2014.02.005

Jia S L, Zhao P, Yang G, et al. Determination of rare earth elements in geological samples by ICP-MS with mixed acid open or high pressure closed solution samples[J]. Rock and Mineral Analysis, 2014, 33(2): 186-191. doi: 10.3969/j.issn.0254-5357.2014.02.005

[21]

王祝, 苏思强, 邵蓓, 等. 高压密闭消解-电感耦合等离子体原子发射光谱/质谱法测定鸡蛋中16种元素的含量[J]. 理化检验(化学分册), 2017, 52(4): 108-112.

Wang Z, Su S Q, Shao B, et al. Determination of 16 elements in eggs by high pressure closed digestion-inductively coupled plasma atomic emission spectrometry/mass spectrometry[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2017, 52(4): 108-112.

[22]

张兴超, 刘超, 黄艺, 等. 干法灰化处理对含有机质土壤样品铜同位素测量的影响[J]. 岩矿测试, 2018, 37(4): 347-355.

Zhang X C, Liu C, Huang Y, et al. The effect of dry-ashing method on copper isotopic analysis of soil samples with organic matter[J]. Rock and Mineral Analysis, 2018, 37(4): 347-355.

[23]

任冬, 刘彤彤, 刘安安, 等. 高压密闭消解处理草酸-草酸铵浸提剂方法的改进[J]. 中国土壤与肥料, 2019, (3): 198-201.

Ren D, Liu T T, Liu A A, et al. Improvement of high pressure sealed digestion method for treating oxalic acid-ammonium oxalate extractant[J]. Soil and Fertilizer Sciences in China, 2019, (3): 198-201.

[24]

田娟娟, 杜慧娟, 潘秋红, 等. 电热板消解与密闭罐消解对土壤中49种矿质元素ICP-MS法检测的影响[J]. 分析测试学报, 2009, 28(3): 319-325. doi: 10.3969/j.issn.1004-4957.2009.03.014

Tian J J, Du H J, Pan Q H, et al. Effects of electrothermal plate digestion and closed tank digestion on the determination of 49 mineral elements in soil by ICP-MS[J].Journal of Instrumental Analysis, 2009, 28(3): 319-325. doi: 10.3969/j.issn.1004-4957.2009.03.014

[25]

EN 13656: 2002.Characterization of Waste-microwave Assisted Digestion with Hydrofluoric (HF), Nitric (HNO3), and Hydrochloric (HCl) Acid Mixture for Subsequent Determination of Elements[S].

[26]

Link D D, Kingston H M S, Harrilla G J, et al. Develop-ment of microwave-assisted drying methods for sample preparation for dried spot micro-X-ray fluorescence analysis[J].Analytical Chemistry, 2002, 74(5): 1165-1170. doi: 10.1021/ac010726t

[27]

高孝礼, 黄光明, 张培新, 等. 电感耦合等离子体质谱法测定磷矿石中的碘[J]. 岩矿测试, 2009, 28(5): 423-426. doi: 10.3969/j.issn.0254-5357.2009.05.005

Gao X L, Huang G M, Zhang P X, et al. Determination of iodine in phosphate ore by inductively coupled plasma mass spectrometry[J]. Rock and Mineral Analysis, 2009, 28(5): 423-426. doi: 10.3969/j.issn.0254-5357.2009.05.005

相似文献(共19条)

[1]

孙可, 刘颖, 高博, 涂湘林, 曾文, 胡光黔, 傅家谟, 盛国英, 梁细荣. AG-MP-1M阴离子交换树脂分离-表面热电质谱法测定沉积物中的铅同位素组成. 岩矿测试, 2008, 27(1): 9-11.

[2]

黄园英, 吴淑琪, 佟玲, 张玲金. 土壤中持久性有机污染物分析的前处理方法. 岩矿测试, 2008, 27(2): 81-86.

[3]

张静梅, 张培新, 高孝礼, 黄光明, 窦银萍. 电感耦合等离子体质谱法同时测定地下水中硼溴碘. 岩矿测试, 2008, 27(1): 25-28.

[4]

李冰, , 史世云. 电感耦合等离子体质谱法同时测定地质样品中痕量碘溴硒砷的研究:Ⅱ.土壤及沉积物标准物质分析. 岩矿测试, 2001, (4): 241-246.

[5]

杨红霞, 刘崴, 李冰. 碘分析方法研究进展. 岩矿测试, 2008, 27(2): 127-136.

[6]

李刚, 苏文峰. 焙烧分离-氢化物发生-原子荧光光谱法测定土壤样品中微量硒. 岩矿测试, 2008, 27(2): 120-122.

[7]

徐婷婷, 夏宁, 张波. 熔片制样-X射线荧光光谱法测定海洋沉积物样品中主次量组分. 岩矿测试, 2008, 27(1): 74-76.

[8]

张剑, 胡高伟, 刁少波, 陈强, 岳英杰, 业渝光. 多孔介质中水合物的热物理参数测量. 岩矿测试, 2008, 27(3): 165-168.

[9]

方金梅. 福州市土壤硒形态分析及其迁移富集规律. 岩矿测试, 2008, 27(2): 103-107.

[10]

江林, 刘晓端, 张静. 土壤中不同形态砷的分析方法. 岩矿测试, 2008, 27(3): 179-183.

[11]

钟立峰, 涂相林, 崔学军, 梁细荣, 李杰, 许继峰. Carius管溶样-标准加入电感耦合等离子体质谱法测定土壤中碘. 岩矿测试, 2006, 25(1): 19-21.

[12]

宋萍, 温宏利. 液氮冷凝吸收热解-电感耦合等离子体质谱法测定岩石土壤沉积物中的溴碘. 岩矿测试, 2016, 35(4): 384-388. doi: 10.15898/j.cnki.11-2131/td.2016.04.008

[13]

刘晔, 第五春荣, 柳小明, 袁洪林. 密闭高温高压溶样ICP-MS测定56种国家地质标准物质中的36种痕量元素——对部分元素参考值修正和定值的探讨. 岩矿测试, 2013, 32(2): 221-228.

[14]

张信贵, 龚琦. 盐酸羟胺—柠檬酸体系提取土壤中的游离氧化铁. 岩矿测试, 1998, (4): 299-302.

[15]

齐璐璐, 赵会芹, 陈子学, 郑育锁, 孟凡辉, 肖波, 张颖. 连续光源原子吸收光谱法测定土壤水溶性盐中钙镁. 岩矿测试, 2008, 27(2): 95-98.

[16]

王娜, 徐铁民, 魏双, 王家松, 曾江萍, 张楠. 微波消解-电感耦合等离子体质谱法测定超细粒度岩石和土壤样品中的稀土元素. 岩矿测试, 2020, 39(1): 68-76. doi: 10.15898/j.cnki.11-2131/td.201904010043

[17]

王龙山, 胡建平, 王光照, 郝辉. 偏硼酸锂熔矿-超声提取-电感耦合等离子体发射光谱法测定岩石水系沉积物土壤样品中硅铝铁等10种元素. 岩矿测试, 2008, 27(4): 287-290.

[18]

刘广民, 尹莉莉, 董永亮, 肖宇芳. 土壤中五氯酚的快速测定. 岩矿测试, 2008, 27(2): 117-119.

[19]

尹周澜, 王薇惟, 覃祚明, 黄旭. 电感耦合等离子体质谱法测定高纯铟中铁. 岩矿测试, 2008, 27(3): 193-196.

计量
  • PDF下载量(26)
  • 文章访问量(214)
  • HTML全文浏览量(26)
  • 被引次数(0)
目录

Figures And Tables

封闭酸溶-盐酸羟胺还原ICP-MS法测定土壤沉积物岩石中的痕量碘

任冬, 周小琳, 宗有银, 张廷忠