【引用本文】 周莉莉, 董礼男, 朱春要, 等. 硼酸衬底压片制样-X射线荧光光谱法测定除尘灰中14种主次量元素[J]. 岩矿测试, 2021, 40(4): 612-618. doi: 10.15898/j.cnki.11-2131/td.202002280021
ZHOU Li-li, DONG Li-nan, ZHU Chun-yao, et al. Determination of 14 Major and Minor Elements in Dust Ash by X-ray Fluorescence Spectrometry with Powder-Pelleting-Lined Boric Acid Preparation[J]. Rock and Mineral Analysis, 2021, 40(4): 612-618. doi: 10.15898/j.cnki.11-2131/td.202002280021

硼酸衬底压片制样-X射线荧光光谱法测定除尘灰中14种主次量元素

江苏省(沙钢)钢铁研究院, 江苏 张家港 215625

收稿日期: 2020-02-28  修回日期: 2021-03-14  接受日期: 2021-05-28

作者简介: 周莉莉, 硕士, 工程师, 主要从事冶金分析工作。E-mail: 971564234@qq.com

Determination of 14 Major and Minor Elements in Dust Ash by X-ray Fluorescence Spectrometry with Powder-Pelleting-Lined Boric Acid Preparation

Jiangsu Province(Sha-Steel) Research Institute of Iron and Steel, Zhangjiagang 215625, China

Received Date: 2020-02-28
Revised Date: 2021-03-14
Accepted Date: 2021-05-28

摘要:除尘灰中过高含量的钾、钠、锌、氯等元素严重影响转底炉的正常生产和稳定运行,为解决钢铁行业中除尘灰的环保和资源再利用问题,需准确测定其中各组分的含量。除尘灰种类多,钾、钠、锌和氯含量范围宽,采用X射线荧光光谱法(XRF)测定易超出工作曲线测定范围。本文基于粉末直接压片,采用硼酸衬底镶边的方法,将氯化钾、氯化钠和氧化锌基准试剂加入铁矿石标样中制备更高含量的校准样品,扩展了除尘灰日常分析中钾、钠、锌和氯的测定范围,使钾的测定范围为1.36%~12.00%,钠的测定范围为0.43%~6.85%,锌的测定范围为0.24%~35.00%,增加了氯的测定范围为0.25%~10.00%。本方法测定除尘灰中14种主次组分的精密度(RSD,n=7)均小于5.2%,实际样品的测定值与标准方法测定值基本一致,准确度和精密度良好。

关键词: 除尘灰, 主次量元素, 硼酸, 粉末压片制样, X射线荧光光谱法

要点

(1) 在铁矿石标样中加入氯化钾、氯化钠和氧化锌基准试剂制备更高浓度的校准样品。

(2) 扩展了钾、钠、锌、氯的测定范围分别为1.36%~12.00%、0.43%~6.85%、0.24%~35.00%和0.25%~10.00%。

(3) 该方法适用于除尘灰中的宽范围钾钠锌氯含量样品的测定。

Determination of 14 Major and Minor Elements in Dust Ash by X-ray Fluorescence Spectrometry with Powder-Pelleting-Lined Boric Acid Preparation

ABSTRACT

BACKGROUND:

The high content of potassium, sodium, zinc, and chlorine in dust ash significantly affects the stable operation of converter. To recycle the dust ash, it is necessary to accurately determine the contents of the components. Dust ash contains a broad range of potassium, sodium, zinc, and chlorine; therefore, the traditional X-ray fluorescence spectrometry (XRF) exceeds the range of the work curve.

OBJECTIVES:

To develop a method for the determination of 14 components in the dust ash with a broad concentration range of potassium, sodium, zinc, and chlorine.

METHODS:

Standard reagents of potassium chloride, sodium chloride, and zinc oxide were added to commercially available iron ore standards in a quantitative manner to provide a new series of calibration samples with wide ranges of potassium, sodium, zinc, and chlorine contents. The 14 components in the dust ash were determined by XRF spectrometry with a powder-pelleting-lined boric acid preparation.

RESULTS:

The measurement ranges of potassium, sodium, zinc, and chlorine were 1.36%-12.00%, 0.43%-6.85%, 0.24%-35.00%, and 0.25%-10.00%, respectively. The results of the 14 components in the dust ash were consistent with those of the traditional method, yielding a relative standard deviation of < 5.2% (n=7).

CONCLUSIONS:

XRF spectrometry with the powder-pelleting-lined boric acid preparation showed good accuracy and precision during the determination of 14 components in the dust ash.

KEY WORDS: dust ash, major and minor elements, boric acid, powder pelleting perpetration, X-ray fluorescence spectrometry

HIGHLIGHTS

(1) Standard reagents were added to the iron ore reference materials to prepare calibration samples with higher concentrations of potassium, sodium, zinc, and chlorine.

(2) The measurement ranges of potassium, sodium, zinc, and chlorine were 1.36%-12.00%, 0.43%-6.85%, 0.24%-35.00%, and 0.25%-10.00%, respectively.

(3) This method is suitable for the determination of potassium, sodium, zinc, and chlorine in the dust ash over a broad concentration range.

本文参考文献

[1]

王彩虹, 蒋心泰. 酒钢除尘灰性质分析及应用技术[J]. 中国冶金, 2019, 29(3): 57-62.

Wang C H, Jiang X T. Property analysis and utilization technology of dust ash in Jiusteel[J].China Metallurgy, 2019, 29(3): 57-62.

[2]

钱峰, 于淑娟, 侯洪宇, 等. 烧结机头电除尘灰资源化再利用[J]. 钢铁, 2019, 50(12): 67-72.

Qian F, Yu S J, Hou H Y, et al. Recycling of the electric dust in sintering machine head[J]. Iron and Steel, 2019, 50(12): 67-72.

[3]

马贵生, 夏秋雨, 张树华, 等. 钢厂高炉Zn负荷控制与含铁尘泥利用研究[J]. 烧结球团, 2020, 45(5): 77-82.

Ma G S, Xia Q Y, Zhang S H, et al. Research on Zn load control and utilization of ferrous dust in blast furnace of steel plant[J]. Sintering and Pelletizing, 2020, 45(5): 77-82.

[4]

Jalkanen H, Oghbasialsie H, Raipala K, et al. Recycling of steelmaking dusts: The radust concept[J].Journal of Mining and Metallurgy (Section B: Metallurgy), 2005, 41(1): 1-16. doi: 10.2298/JMMB0501001J

[5]

王庆祥, 尹坚. 湘钢1号高炉碱金属行为[J]. 中国冶金, 2005, 15(2): 18-20. doi: 10.3969/j.issn.1006-9356.2005.02.004

Wang Q X, Yin J. Alkalis behavior in No.1 BF of Xiangtan iron and steel company[J].China Metallurgy, 2005, 15(2): 18-20. doi: 10.3969/j.issn.1006-9356.2005.02.004

[6]

秦立浩, 墙蔷, 阳红辉, 等. 烧结机头电除尘灰的分级利用[J]. 钢铁研究学报, 2020, 32(9): 802-808.

Qin L H, Qiang Q, Yang H H, et al. Classified utilization of sintering EAF dust[J]. Journal of Iron and Steel Research, 2020, 32(9): 802-808.

[7]

She X F, Wang J S, Xue Q G, et al. Basic properties of steel plant dust and technological properties of direct reduction[J].International Journal of Minerals, Metallurgy and Materials, 2011, 18(3): 277-284. doi: 10.1007/s12613-011-0434-9

[8]

张静, 薛彦辉, 李伟杰, 等. 烧结机头灰化学浸出试验研究[J]. 烧结球团, 2020, 45(1): 77-81.

Zhang J, Xue Y H, Li W J, et al. Experimental study on chemical leaching of dust at sintering machine feed end[J]. Sintering and Pelletizing, 2020, 45(1): 77-81.

[9]

邱红绪, 周建辉, 杨朝帅, 等. 火焰原子吸收光谱法测定烧结机头电除尘灰中银[J]. 冶金分析, 2017, 37(9): 63-67.

Qiu H X, Zhou J H, Yang C S, et al. Determination of silver in electrostatic precipitator dust of sintering machine head by flame by flame atomic absorption spectrometry[J]. Metallurgical Analysis, 2017, 37(9): 63-67.

[10]

罗永红, 韦真周, 覃辉平, 等. 乙醇浸泡-活性炭富集火焰原子吸收光谱法测定烧结机头电除尘灰中金[J]. 冶金分析, 2017, 37(6): 44-49.

Luo Y H, Wei Z Z, Qin H P, et al. Determination of gold in electrostatic precipitator dust of sinter machine head by flame atomic absorption spectrometry after ethanol immersion-activated carbon enrichment[J]. Metallurgical Analysis, 2017, 37(6): 44-49.

[11]

夏辉, 王小强, 何沙白, 等. 电感耦合等离子体原子发射光谱法测定高碳除尘灰中11种元素[J]. 冶金分析, 2016, 36(3): 44-48.

Xia H, Wang X Q, He S B, et al. Determination of eleven elements in high carbon dedusting ash by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2016, 36(3): 44-48.

[12]

任玲玲, 谭胜楠, 李建朝, 等. 微波消解-电感耦合等离子体原子发射光谱法测定烧结除尘灰中9种元素[J]. 冶金分析, 2020, 40(6): 75-80.

Ren L L, Tan S N, Li J C, et al. Determination of nine elements in sintering dedusting ash by inductively coupled plasma atomic emission spectrometry after microwave digestion[J]. Metallurgical Analysis, 2020, 40(6): 75-80.

[13]

谢忠信,赵宗铃,张玉斌. X射线光谱分析[M] . 北京: 科学出版社, 1982: 249-275.

Xie Z X,Zhao Z L,Zhang Y B. X-ray fluorescence spectrometer[M] . Beijing: Science Press, 1982: 249-275.
[14]

范佳慧, 周莉莉, 朱春要, 等. 熔融制样-X射线荧光光谱法测定除尘灰中10种组分[J]. 冶金分析, 2019, 29(3): 61-66.

Fan J H, Zhou L L, Zhu C Y, et al. Determination of ten components in dust ash by X-ray fluorescence spectrometry with fusion sample preparation technique[J]. Metallurgical Analysis, 2019, 29(3): 61-66.

[15]

曾江萍, 张莉娟, 李小莉, 等. 超细粉末压片-X射线荧光光谱法测定磷矿石中12种组分[J]. 冶金分析, 2015, 35(7): 37-43.

Zeng J P, Zhang L J, Li X L, et al. Determination of twelve components in phosphate ore by X-ray fluorescence spectrometry with ultra-fine powder tabletting[J]. Metallurgical Analysis, 2015, 35(7): 37-43.

[16]

李清彩, 赵庆令. 粉末压片制样波长色散X射线荧光光谱法测定钼矿石中9种元素[J]. 岩矿测试, 2014, 33(6): 839-843.

Li Q C, Zhao Q L. Determination of 9 elements in molybdenum ore by wavelength dispersive X-ray fluorescence spectrometry with powder pelleting preparation[J]. Rock and Mineral Analysis, 2014, 33(6): 839-843.

[17]

修凤凤, 樊勇, 李俊雨, 等. 粉末压片-波长色散X射线荧光光谱法测定金矿型构造叠加晕样品中18种次量元素[J]. 岩矿测试, 2018, 37(5): 526-532.

Xiu F F, Fan Y, Li J Y, et al. Determination of 18 minor elements in the structural superimposed halo samples from gold deposits by wavelength dispersive X-ray fluorescence spectrometry with pressed-powder pellets[J]. Rock and Mineral Analysis, 2018, 37(5): 526-532.

[18]

唐梦奇, 刘顺琼, 袁焕明, 等. 粉末压片制样-波长色散X射线荧光光谱法测定进口铜矿石中的氟[J]. 岩矿测试, 2013, 32(2): 254-257. doi: 10.3969/j.issn.0254-5357.2013.02.012

Tang M Q, Liu S Q, Yuan H M, et al. Determination of fluorine in import copper ores by wavelength dispersive X-ray fluorescence spectrometry with pressed powder preparation[J]. Rock and Mineral Analysis, 2013, 32(2): 254-257. doi: 10.3969/j.issn.0254-5357.2013.02.012

[19]

张颖, 朱爱美, 张迎秋, 等. 波长与能量色散复合式X射线荧光光谱技术测定海洋沉积物元素[J]. 分析化学, 2019, 47(7): 1090-1097.

Zhang Y, Zhu A M, Zhang Y Q, et al. Fast analysis of major and minor elements in marine sediments by wavelength and energy dispersive X-ray fluorescence spectrometer[J]. Chinese Journal of Analytical Chemistry, 2019, 47(7): 1090-1097.

[20]

王佳妮, 张晗, 洪子肖, 等. X射线荧光光谱法测定螺旋藻中23种微量元素[J]. 分析试验室, 2016, 35(2): 130-134.

Wang J N, Zhang H, Hong Z X, et al. Determination of 23 trace elements in spirulina using X-ray fluorescence spectrometry[J]. Chinese Journal of Analysis Laboratory, 2016, 35(2): 130-134.

[21]

刘玉纯, 林庆文, 马玲, 等. 粉末压片制样-X射线荧光光谱法分析地球化学调查样品测量条件的优化[J]. 岩矿测试, 2018, 37(6): 671-677.

Liu Y C, Lin Q W, Ma L, et al. Optimization of measurement conditions for geochemical survey sample analysis by X-ray fluorescence spectrometry with pressed powder pellet sample preparation[J]. Rock and Mineral Analysis, 2018, 37(6): 671-677.

[22]

刘菊琴, 李小莉. 波长与能量色散复合型X射线荧光光谱仪测定海洋沉积物、水系沉积物、岩石和土壤样品中15种稀土元素[J]. 冶金分析, 2018, 38(5): 7-12.

Liu J Q, Li X L. Determination of fifteen rare earth elements in ocean sediment, stream sediment, rock and soil samples by wavelength dispersion-energy dispersion combined type X-ray fluorescence spectrometer[J]. Metallurgical Analysis, 2018, 38(5): 7-12.

[23]

李小莉, 张勤. 粉末压片-X射线荧光光谱法测定土壤、水系沉积物和岩石样品中15种稀土元素[J]. 冶金分析, 2013, 33(7): 35-40. doi: 10.3969/j.issn.1000-7571.2013.07.007

Li X L, Zhang Q. Determination of fifteen rare earth elements in soil, stream sediment and rock samples by X-ray fluorescence spectrometry with pressed powder pellet[J].Metallurgical Analysis, 2013, 33(7): 35-40. doi: 10.3969/j.issn.1000-7571.2013.07.007

[24]

罗立强,詹秀春,李国会. X射线荧光光谱分析[M] . 北京: 化学工业出版社, 2015: 117-119.

Luo L Q,Zhan X C,Li G H. X-ray fluorescence spectrometer[M] . Beijing: Chemical Industry Press, 2015: 117-119.
[25]

殷惠民, 杜祯宇, 李玉武, 等. 能量色散X射线荧光光谱仪和简化的基体效应校正模型测定土壤、沉积物中重金属元素[J]. 冶金分析, 2018, 38(4): 1-10.

Yin H M, Du Z Y, Li Y W, et al. Determination of heavy metal elements in soil and sediment by energy dispersive X-ray fluorescence spectrometer with simplified matrix effect correction model[J]. Metallurgical Analysis, 2018, 38(4): 1-10.

[26]

殷惠民, 杜祯宇, 任立军, 等. 波长色散X射线荧光光谱谱线重叠和基体效应校正系数有效性判断及在土壤、沉积物重金属测定中的应用[J]. 冶金分析, 2018, 38(7): 1-11.

Yin H M, Du Z Y, Ren L J, et al. Determination of heavy metal elements in soil and sediment by energy dispersive X-ray fluorescence spectrometer with simplified matrix effect correction model[J]. Metallurgical Analysis, 2018, 38(7): 1-11.

[27]

夏传波, 姜云, 郑建业, 等. X射线荧光光谱法测定地质样品中氯的含量[J]. 理化检验(化学分册), 2016, 53(7): 775-779.

Xia C B, Jiang Y, Zheng J Y, et al. XRFs determination of chlorine in geological samples[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2016, 53(7): 775-779.

[28]

王德全, 于青. 粉末压片-射线荧光光谱法测定高炉除尘灰中钾铅锌砷[J]. 冶金分析, 2014, 34(9): 34-38.

Wang D Q, Yu Q. Determination of potassium lead, zinc and arsenic in blast furnace dust by X-ray fluorescence spectrometry with pressed powder pallet[J]. Metallurgical Analysis, 2014, 34(9): 34-38.

相似文献(共20条)

[1]

刘玉纯, 徐厚玲, 吴永斌, 梁述廷. X射线荧光光谱法测定生物样品中氯硫氮磷钾铜锌溴. 岩矿测试, 2008, 27(1): 41-44.

[2]

徐婷婷, 夏宁, 张波. 熔片制样-X射线荧光光谱法测定海洋沉积物样品中主次量组分. 岩矿测试, 2008, 27(1): 74-76.

[3]

余宇, 刘江斌, 党亮, 陈月源, 曹成东, 谈建安, 赵峰. X射线荧光光谱法同时测定石灰石中主次痕量组分. 岩矿测试, 2008, 27(2): 149-150.

[4]

李小莉. X射线荧光光谱法测定铁矿中铁等多种元素. 岩矿测试, 2008, 27(3): 229-231.

[5]

王芙云, 任向阳, 袁翠菊. X射线荧光光谱法快速分析镁质耐火材料中硅铝铁钛钙镁. 岩矿测试, 2008, 27(3): 232-234.

[6]

王昌燧, 毛振伟, 朱铁权, 何伟, 贾兴和, 张茂林, 黄宇营. 斯里兰卡曼泰遗址出土青花瓷的化学成分分析及产地初探. 岩矿测试, 2008, 27(1): 37-40.

[7]

王军学. X射线荧光光谱法测定锌铝硅合金中硅和铁. 岩矿测试, 2008, 27(1): 77-78.

[8]

钟代果. 铝土矿中主成分的X射线荧光光谱分析. 岩矿测试, 2008, 27(1): 71-73.

[9]

仵利萍, 刘卫. 熔融制样-X射线荧光光谱法测定重晶石中主次量元素. 岩矿测试, 2011, 30(2): 217-221.

[10]

夏传波, 成学海, 张会堂, 赵伟, 王卿. 熔融制样-X射线荧光光谱法测定电气石中12种主次量元素. 岩矿测试, 2018, 37(1): 36-42. doi: 10.15898/j.cnki.11-2131/td.201610260197

[11]

魏灵巧, 宋红元, 易达, 罗磊, 付胜波, 黄瑞成. 熔融制样X射线荧光光谱法测定含硫量高的石膏矿物中主次量元素. 岩矿测试, 2015, 34(4): 448-453. doi: 10.15898/j.cnki.11-2131/td.2015.04.012

[12]

李清彩, 赵庆令. 粉末压片制样波长色散X射线荧光光谱法测定钼矿石中9种元素. 岩矿测试, 2014, 33(6): 839-843.

[13]

宋江涛, 赵庆令. 粉末压片制样-波长色散X射线荧光光谱法测定卤水中的溴. 岩矿测试, 2011, 30(4): 494-496.

[14]

唐梦奇, 刘顺琼, 袁焕明, 谢毓群, 刘国文, 罗明贵. 粉末压片制样-波长色散X射线荧光光谱法测定进口铜矿石中的氟. 岩矿测试, 2013, 32(2): 254-257.

[15]

夏鹏超, 李明礼, 王祝, 李代琼, 胡亚燕. 粉末压片制样-波长色散X射线荧光光谱法测定斑岩型钼铜矿中主次量元素钼铜铅锌砷镍硫. 岩矿测试, 2012, 31(3): 468-472.

[16]

于兆水, 张勤, 李小莉, 樊守忠, 潘晏山, 李国会. 高压粉末制样波长色散X射线荧光光谱法测定生物样品中23种元素. 岩矿测试, 2014, 33(6): 844-848.

[17]

罗学辉, 苏建芝, 鹿青, 杨理勤, 王岚. 熔融制样X射线荧光光谱法测定铜矿石中16种主次量元素. 岩矿测试, 2014, 33(2): 230-235.

[18]

黄近丹. X射线能地测定土壤中7种主次量元素. 岩矿测试, 1999, (4): 308-310.

[19]

朱忠平, 曾精华, 王长根, 吕立超. 熔融制样X射线荧光光谱法测定高铬赤泥中主次量组分. 岩矿测试, 2014, 33(6): 822-827. doi: 10.15898/j.cnki.11-2131/td.2014.06.010

[20]

李鹏程, 王梅英, 李艳华, 张明炜, 刘春霞, 王冀艳, 刘勉, 陈冲科, 鲁鲲, 李振. 熔融制样X射线荧光光谱法测定珍珠岩矿中主量元素. 岩矿测试, 2015, 34(1): 104-110. doi: 10.15898/j.cnki.11-2131/td.2015.01.014

计量
  • PDF下载量(6)
  • 文章访问量(989)
  • HTML全文浏览量(37)
  • 被引次数(0)
目录

Figures And Tables

硼酸衬底压片制样-X射线荧光光谱法测定除尘灰中14种主次量元素

周莉莉, 董礼男, 朱春要, 张继明