【引用本文】 赵庆令, 李清彩, 谭现锋, 等. 微波碱性体系消解-电感耦合等离子体发射光谱法测定固体废物中的六价铬[J]. 岩矿测试, 2020, 39(5): 717-724. doi: 10.15898/j.cnki.11-2131/td.201907290114
ZHAO Qing-ling , LI Qing-cai , TAN Xian-feng , et al. Determination of Hexavalent Chromium in Solid Waste by Inductively Coupled Plasma-Optical Emission Spectrometry with Microwave Digestion[J]. Rock and Mineral Analysis, 2020, 39(5): 717-724. doi: 10.15898/j.cnki.11-2131/td.201907290114

微波碱性体系消解-电感耦合等离子体发射光谱法测定固体废物中的六价铬

1. 山东省鲁南地质工程勘察院(山东省地勘局第二地质大队), 山东 济宁 272100;

2. 自然资源部采煤沉陷区综合治理与生态修复工程技术创新中心, 山东 济宁 272100

收稿日期: 2019-07-29  修回日期: 2019-12-06 

基金项目: 山东省地质勘查项目(鲁国土资字[2016]328号)

作者简介: 赵庆令,硕士,高级工程师,从事地质实验测试及环境地质工作。E-mail:zqlzb@126.com。。

Determination of Hexavalent Chromium in Solid Waste by Inductively Coupled Plasma-Optical Emission Spectrometry with Microwave Digestion

1. Lunan Geo-engineering Exploration Institute of Shandong Province(Shandong Provincial Bureau of Geology and Mineral Resources No.2 Geology Group), Jining 272100, China;

2. Technology Innovation Center of Integrated Management and Ecological Restoration for Mining Subsidence Area, Ministry of Natural Resources, Jining 272100, China

Received Date: 2019-07-29
Revised Date: 2019-12-06

摘要:六价铬Cr(Ⅵ)是建设用地土壤及固体废物环境监测的必测指标之一,为了配套现行土壤环境质量标准,建立操作简便、准确精密的Cr(Ⅵ)前处理和分析测定方法势在必行。本文采用0.1mol/L磷酸氢二钠溶液(pH=9.0)作为提取剂,微波炉消解,在优化的微波消解温度和时间内,保证了对固体样品基体的破坏作用,将晶格中的Cr(Ⅵ)全部释放到溶液中,并有效抑制了Cr(Ⅲ)氧化。用0.45μm滤膜在pH=9.0条件进行过滤后,可以将六价铬(溶液)与三价铬(沉淀)分离,借助电感耦合等离子体发射光谱法(ICP-OES)完成样品溶液中Cr(Ⅵ)的定量。结果表明:当样品量为1.00g,微波消解温度为90℃,消解时间为20min时能够保证固体废物中Cr(Ⅵ)的完全提取及准确测定。方法检出限为0.057mg/kg,相对标准偏差(n=7)低于3.20%,实际固体废物中Cr(Ⅵ)的加标回收率为94.3%~96.6%。与前人相关的电感耦合等离子体发射光谱法(检出限0.83mg/kg,加标回收率均值87.2%)相比,本方法的检出限更低,样品前处理时间更短,自动化程度高,可应用于环境监测领域。

关键词: 六价铬, 固体废物, 微波消解, 电感耦合等离子体发射光谱法

Determination of Hexavalent Chromium in Solid Waste by Inductively Coupled Plasma-Optical Emission Spectrometry with Microwave Digestion

KEY WORDS: Cr (Ⅵ), solid waste, microwave digestion, inductively coupled plasma-optical emission spectrometry

本文参考文献

[1]

Tran H N,Nguyen D T,Le G T,et al.Adsorption mechanism of hexavalent chromium onto layered double hydroxides-based adsorbents:A systematic in-depth review[J].Journal of Hazardous Materials,2019,373:258-270.

[2]

Zhao P D,Zhang H,Yu J,et al.Conditions for mutual conversion of Cr(Ⅲ) and Cr(Ⅵ) in aluminum chromium slag[J].Journal of Alloys and Compounds,2019,788:506-513.

[3]

Dhal B,Thatoi H N,Das N N,et al.Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste:A review[J].Journal of Hazardous Materials,2013,250-251:272-291.

[4]
[5]

Cao X Y,Wang S,Bi R C,et al.Toxic effects of Cr(Ⅵ) on the bovine hemoglobin and human vascular endothelial cells:Molecular interaction and cell damage[J].Chemosphere,2019,222:355-363.

[6]

Rager J E,Mina Suh M,Chappell G A,et al.Review of transcriptomic responses to hexavalent chromium exposure in lung cells supports a role of epigenetic mediators in carcinogenesis[J].Toxicology Letters,2019,305:40-50.

[7]

Zhao Y,Yan J,Li A P,et al.Bone marrow mesenchymal stem cells could reduce the toxic effects of hexavalent chromium on the liver by decreasing endoplasmic reticulum stress-mediated apoptosis via SIRT1/HIF-1α signaling pathway in rats[J].Toxicology Letters,2019,310:31-38.

[8]

Yin F,Yan J,Zhao Y,et al.Bone marrow mesenchymal stem cells repair Cr(Ⅵ)-injured kidney by regulating mitochondria-mediated apoptosis and mitophagy mediated via the MAPK signaling pathway[J].Ecotoxicology and Environmental Safety,2019,176:234-241.

[9]

Des Marias T L,Costa M.Mechanisms of chromium-induced toxicity[J].Current Opinion in Toxicology,2019,14:1-7.

[10]

Chen Q Y,Murphy A,Sun H,et al.Molecular and epigenetic mechanisms of Cr(Ⅵ)-induced carcinogenesis[J].Toxicology and Applied Pharmacology,2019,377:114636.

[11]

Santonen T,Alimonti A,Bocca B,et al.Setting up a collaborative European human biological monitoring study on occupational exposure to hexavalent chromium[J].Environmental Research,2019,177:108583.

[12]

张杰芳,闫玉乐,夏承莉,等.微波碱消解-电感耦合等离子体发射光谱法测定煤灰中的六价铬[J].岩矿测试,2017,36(1):46-51.

Zhang J F,Yan Y L,Xia C L,et al.Determination of Cr(Ⅵ) in coal ashby microwave alkaline digestion and inductively coupled plasma-optical emission spectrometry[J].Rock and Mineral Analysis,2017,36(1):46-51.

[13]

张涛,蔡五田,刘金巍,等.超声辅助提取离子色谱法测定铬污染土壤中的六价铬[J].分析测试学报, 2013,32(11):1384-1387.

Zhang T,Cai W T,Liu J W,et al.Determination of hexavalent chromium in soil samples by ultrasound-assisted extraction ion chromatography[J].Journal of Instrumental Analysis,2013,32(11):1384-1387.

[14]

Miyake Y,Tokumura M,Iwazaki Y,et al.Determination of hexavalent chromium concentration in industrial waste incinerator stack gas by using a modified ion chromatography with post-column derivatization method[J].Journal of Chromatography A,2017,1502:24-29.

[15]

巢静波,史乃捷,陈扬,等.衍生液注入控制-离子色谱法同时测定环境水样中的三价铬和六价铬[J].环境化学,2016,35(1):67-74.

Chao J B,Shi N J,Chen Y,et al.Simultaneous determination of trivalent and hexavalent chromium in environmental waters by ion chromatography with derivatization reagent injection-control technique[J].Environmental Chemistry,2016,35(1):67-74.

[16]

虞锐鹏,胡忠阳,叶明立,等.快速溶剂萃取-离子色谱法同时测定塑料中的三价铬和六价铬[J].色谱,2012,30(4):409-413.

Yu R P,Hu Z Y,Ye M L,et al.Simultaneous determination of trivalent chromium and hexavalent chromium in plastics by accelerated solvent extraction-ion chromatography[J].Chinese Journal of Chromatography,2012,30(4):409-413.

[17]

Salihu S O,Abu Bakar N K.A simple method for chromium speciation analysis in contaminated water using APDC and a pre-heated glass tube followed by HPLC-PDA[J].Talanta,2018,181:401-409.

[18]

田勇,刘崇华,方晗,等.共沉淀法辅助分离-离子色谱与电感耦合等离子体质谱联用测定玩具材料中三价铬及超痕量六价铬[J].分析测试学报,2015,34(6):706-710.

Tian Y,Liu C H,Fang H,et al.Determination of Cr(Ⅲ) and ultratrace Cr(Ⅵ) in toy materials by co-precipitation assisted separation-ion chromatography-inductively coupled plasma mass spectrometry[J].Journal of Instrumental Analysis,2015,34(6):706-710.

[19]

刀谞,吕怡兵,滕恩江,等.离子色谱-电感耦合等离子体质谱联用测定大气颗粒物PM2.5和PM10中的六价铬[J].色谱,2014,32(9):936-941.

Dao X,Lü Y B,Teng E J,et al.Determination of hexavalent chromium in atmospheric particles PM2.5 and PM10 by ion chromatography with inductively coupled plasma mass spectrometry[J].Chinese Journal of Chromatography,2014,32(9):936-941.

[20]

倪张林,汤富彬,屈明华,等.微波灰化-液相色谱-电感耦合等离子体质谱联用测定干食用菌中的三价铬和六价铬[J].色谱,2014,32(2):174-178.

Ni Z L,Tang F B,Qu M H,et al.Determination of trivalent chromium and hexavalent chromium in dried edible fungi by microwave ashing-liquid chromatography with inductively coupled plasma mass spectrometry[J].Chinese Journal of Chromatography,2014,32(2):174-178.

[21]

Gao L,Gao B,Xu D Y,et al.In-situ measurement of labile Cr(Ⅲ) and Cr(Ⅵ) in water using diffusive gradients in thin-films (DGT)[J].Science of the Total Environment,2019,653:1161-1167.

[22]

Catalani S,Fostinelli J,Gilberti M E,et al.Application of a metal free high performance liquid chromatography with inductively coupled plasma mass spectrometry (HPLC-ICP-MS) for the determination of chromium species in drinking and tap water[J].International Journal of Mass Spectrometry,2015,387:31-37.

[23]

Heitland P,Blohm M,Breuer C,et al.Application of ICP-MS and HPLC-ICP-MS for diagnosis and therapy of a severe intoxication with hexavalent chromium and inorganic arsenic[J].Journal of Trace Elements in Medicine and Biology,2017,41:36-40.

[24]

Drinčić A,Zuliani T,Šančar J,et al.Determination of hexavalent Cr in river sediments by speciated isotope dilution inductively coupled plasma mass spectrometry[J].Science of the Total Environment,2018,637-638:1286-1294.

[25]

Lu Y,Li G,Liu W,et al.The application of micro-wave digestion in decomposing some refractory ore samples with solid fusion agent[J].Talanta,2018,186:538-544.

[26]

Muller E I,Muller C C,Souza J P,et al.Green microwave-assisted wet digestion method of carbohydrate-rich foods with hydrogen peroxide using single reaction chamber and further elemental determination using ICP-OES and ICP-MS[J].Microchemical Journal,2017,134:257-261.

[27]

赵庆令,安茂国,陈洪年,等.济南市某废弃化工厂区域土壤地球化学特征研究[J].岩矿测试,2018,37(2):201-208.

Zhao Q L,An M G,Chen H N,et al.Research on geochemical characteristic of soil in a chemical industrial factory site in Jinan City[J].Rock and Mineral Analysis,2018,37(2):201-208.

[28]

安茂国,赵庆令,谭现锋,等.化学还原-稳定化联合修复铬污染场地土壤的效果研究[J].岩矿测试,2019,38(2):204-211.

An M G,Zhao Q L,Tan X F,et al.Research on the effect of chemical reduction-stabilization combined remediation of Cr-contaminated soil[J].Rock and Mineral Analysis,2019,38(2):204-211.

相似文献(共19条)

[1]

林立, 周谙非, 张曼玲, 田艳玲, 杨彦丽. 微波消解-电感耦合等离子体发射光谱法分析食品中的总硼. 岩矿测试, 2008, 27(1): 21-24.

[2]

张杰芳, 闫玉乐, 夏承莉, 焦发存, 张海侠. 微波碱消解-电感耦合等离子体发射光谱法测定煤灰中的六价铬. 岩矿测试, 2017, 36(1): 46-51. doi: 10.15898/j.cnki.11-2131/td.2017.01.007

[3]

宣肇菲, 徐少才, 房贤文, 谭丕功. 四种酸体系对微波酸溶-电感耦合等离子体质谱法测定固体废物中16种金属元素含量的影响. 岩矿测试, 2015, 34(6): 617-622. doi: 10.15898/j.cnki.11-2131/td.2015.06.003

[4]

杜米芳. 电感耦合等离子体发射光谱法同时测定玻璃中铝钙铁钾镁钠钛硫. 岩矿测试, 2008, 27(2): 146-148.

[5]

马亮帮, 葛颖. 微波消解-电感耦合等离子体发射光谱法测定固体沥青中微量金属元素. 岩矿测试, 2013, 32(3): 441-444.

[6]

奥地利安东帕有限公司. 密闭微波消解-ICPOES法测定钢铁样品中硅. 岩矿测试, 2008, 27(2): I-I.

[7]

朱岩, 戚文彬. 离子色谱法测定六价铬和三价铬. 岩矿测试, 1991, (2): 97-99.

[8]

陈贺海, 鲍惠君, 付冉冉, 应海松, 芦春梅, 金献忠, 肖达辉. 微波消解-电感耦合等离子体质谱法测定铁矿石中铬砷镉汞铅. 岩矿测试, 2012, 31(2): 234-240.

[9]

沈宇, 张尼, 高小红, 李皓, 马怡飞. 微波消解电感耦合等离子体质谱法测定地球化学样品中钒铬镍锗砷. 岩矿测试, 2014, (5): 649-654.

[10]

刘磊, 杨艳, 彭秀峰, 曹宏杰, 李海明. 微波消解-电感耦合等离子体发射光谱法测定岩石和矿物中的钼. 岩矿测试, 2011, 30(3): 318-320.

[11]

黄靖, 王英滨, 周冠轩, 马真乾. 微波消解-电感耦合等离子体发射光谱法测定粉煤灰中的镓. 岩矿测试, 2020, 39(1): 92-98. doi: 10.15898/j.cnki.11-2131/td.201905190065

[12]

岑治宝, 任红灿, 王树喜, 杜米芳. 微波消解-电感耦合等离子体发射光谱法同时测定白云石中铁铝钙镁钾钠硫. 岩矿测试, 2006, 25(3): 276-278.

[13]

袁园, 李明利. 微波消解-等离子体发射光谱法同时测定水中硅铁钠. 岩矿测试, 2006, 25(3): 279-281.

[14]

胡德新, 肖葵, 王向东, 王振坤, 刘敏, 李权斌. 微波消解-电感耦合等离子体发射光谱法测定高碳铬铁中硅锰磷. 岩矿测试, 2014, 33(2): 208-211.

[15]

陈永欣, 刘国文, 刘顺琼, 马丽方, 吕泽娥, 蔡维专. 微波消解-等离子体发射光谱法测定锰矿石中硅铝铁磷. 岩矿测试, 2007, 26(3): 241-242.

[16]

陈永欣, 黎香荣, 谢毓群, 罗明贵, 阮贵武. 微波消解-等离子体发射光谱法测定含铜物料中9种组分. 岩矿测试, 2011, 30(2): 200-204.

[17]

杨惠玲, 班俊生, 夏辉, 王书勤, 杜天军, 王小强. 微波消解电感耦合等离子发射光谱法测定三水铝土矿中的有效铝、活性铝和活性硅. 岩矿测试, 2017, 36(3): 246-251. doi: 10.15898/j.cnki.11-2131/td.201606120083

[18]

王凯, 金樱华, 李晨, 闵红, 屠虹. 全反射X射线荧光光谱法同时测定复混肥料中钒铬锰铁镍铜锌铅. 岩矿测试, 2012, 31(1): 142-146.

[19]

侯广顺, 李英杰, 刘瑞恒, 谭路路. 微波消解-石墨炉原子吸收光谱法测定火山灰中的痕量铅铬铜. 岩矿测试, 2015, 34(5): 539-543. doi: 10.15898/j.cnki.11-2131/td.2015.05.007

计量
  • PDF下载量(21)
  • 文章访问量(168)
  • 被引次数(0)
目录

Figures And Tables

微波碱性体系消解-电感耦合等离子体发射光谱法测定固体废物中的六价铬

赵庆令, 李清彩, 谭现锋, 安茂国, 陈娟, 毛秀丽