【引用本文】 胡志中, 李佩, 蒋璐蔓, 等. 古代玻璃材料LA-ICP-MS组分分析及产源研究[J]. 岩矿测试, 2020, 39(4): 505-514. doi: 10.15898/j.cnki.11-2131/td.201909210134
HU Zhi-zhong, LI Pei, JIANG Lu-man, et al. Application of LA-ICP-MS in the Analysis of Archaeological Glass and Source Discrimination[J]. Rock and Mineral Analysis, 2020, 39(4): 505-514. doi: 10.15898/j.cnki.11-2131/td.201909210134

古代玻璃材料LA-ICP-MS组分分析及产源研究

1. 

中国地质调查局成都地质调查中心, 四川 成都 610081

2. 

成都文物考古研究院, 四川 成都 610072

收稿日期: 2019-09-21  修回日期: 2019-11-28  接受日期: 2020-05-13

作者简介: 胡志中, 硕士, 工程师, 从事原位微区分析。E-mail:hzz_pot@aliyun.com

通信作者: 杨波, 硕士, 高级工程师, 从事同位素分析。E-mail:yangbo@163.com

Application of LA-ICP-MS in the Analysis of Archaeological Glass and Source Discrimination

1. 

Chengdu Center of China Geological Survey, Chengdu 610081, China

2. 

Chengdu Institute of Cultural Relics and Archaeology, Chengdu 610072, China

Corresponding author: YANG Bo, yangbo@163.com

Received Date: 2019-09-21
Revised Date: 2019-11-28
Accepted Date: 2020-05-13

摘要:古代玻璃及玻璃质材料的定量分析对于研究其制作年代及产地、原料的来源以及制作工艺有着重要的参考意义。与电子探针(EMPA)、能谱扫描-电子显微镜(EDX-SEM)等分析方法相比,LA-ICP-MS能够快速且准确地提供样品主次量及微量元素信息。本文对LA-ICP-MS古代玻璃元素定量分析中的影响因素进行研究认为:在193nm激光下玻璃标准NIST610和康宁玻璃标准之间基体差异造成的影响较小,而采用玻璃标准NIST610为外标结合基体归一化法的校正策略测定康宁标准结果表明,该策略能够准确反映不同类型古代玻璃材料中成分组成;实验中不同剥蚀模式的研究,有助于不同实验条件的建立,从而满足不同研究的需要。本次研究对出土样品进行了分析,为该制品的产源研究提供了数据支持。

关键词: 古代玻璃材料, LA-ICP-MS, 标准物质, 基体效应, 校正策略

要点

(1)LA-ICP-MS古代玻璃元素定量分析中的影响因素研究。

(2)LA-ICP-MS不同剥蚀模式的研究。

(3)出土玻璃材料的分析以及其产源研究。

Application of LA-ICP-MS in the Analysis of Archaeological Glass and Source Discrimination

ABSTRACT

BACKGROUND:

Quantitative analysis of ancient glass and vitreous materials has important significance for studying its production time, origin, source of raw materials and production process. Compared with traditional analysis methods (eg. EMPA, EDX-SEM), LA-ICP-MS can be used to analyze the primary, minor and trace elements in samples quickly and accurately.

OBJECTIVES:

To investigate the composition of archaeological glass and discriminate its sources.

METHODS:

The element concentration in ancient glass and vitreous materials were determined by LA-ICP-MS. The surface morphologies of pits in glasses were displayed by AFM.

RESULTS:

The matrix effect among NIST610 and Corning A-D was insignificant under 193nm laser system and this experimental condition. A quantification strategy based on NIST610 and normalization to 100% (w/w) was suitable for analyzing Corning A-D and ancient glass samples. Study on different ablation modes in the experiment is helpful for the establishment of different experimental conditions to meet the requirement of different studies.

CONCLUSIONS:

Unearthed samples were analyzed, which provided data support for the source of the product.

KEY WORDS: ancient glass and vitreous materials, LA-ICP-MS, reference materials, matrix effect, quantification strategy

Highlights

(1) Influencing factors in the analysis of archaeological glass by LA-ICP-MS were studied.

(2) Different ablation modes by LA-ICP-MS were investigated.

(3) The element composition of the archaeological glass and their sources were studied.

本文参考文献

[1]

(英)科林·伦福儒, 保罗·巴恩著.陈淳, 译.考古学理论、方法与实践[M].上海: 上海古籍出版社, 2015.

Renfrew C, Bahn P G(Editor).Chen C (Translator).Archaeology: Theories, methods and practice[M].Shanghai: Shanghai Classics Publishing House, 2015.

[2]

Rehren T, Freestone I C. Ancient glass:From kaleidoscope to crystal ball[J].Journal of Archaeological Science, 2015, 56: 233-241. doi: 10.1016/j.jas.2015.02.021

[3] Dussubieux L,Golitko M,Gratuze B. Recent advances in laser ablation ICP-MS for archaeology[M] . Heidelberg: Springer, 2016: 137-211.
[4]

Humphry D. Some experiments and observations on the colours used in painting by the ancients[J]. Philosophical Transactions of the Royal Society, 1815, 105(1): 97-124.

[5]

Seligman C G, Beck H C. Far eastern glass:Some western origins[J]. The Bulletin of the Museum of Far Eastern Antiquities, 1938, (10): 1-64.

[6]

Gratuze B, Giovagnoli A, Barrandon J N, et al. Apport de la méthode ICP-MS couplée à l'ablation laser pour la caractérisation des archéomatériaux[J]. Revue d'Archéométrie, 1993, (17): 89-104.

[7]

Lin J, Liu Y, Yang Y, et al. Calibration and correction of LA-ICP-MS and LA-MC-ICP-MS analyses for element contents and isotopic ratios[J]. Solid Earth Sciences, 2016, 1(1): 5-27.

[8]

刘勇胜, 胡兆初, 李明, 等. LA-ICP-MS在地质样品元素分析中的应用[J]. 科学通报, 2013, 58(32): 3863-3878.

Liu Y S, Hu Z C, Li M, et al. Applications of LA-ICP-MS in the elemental analyses of geological samples[J]. Chinese Science Bulletin, 2013, 58(32): 3863-3878.

[9]

Li Z, Hu Z C, Liu Y S, et al. Accurate determination of elements in silicate glass by nanosecond and femtosecond laser ablation ICP-MS at high spatial resolution[J].Chemical Geology, 2015, 400: 11-23. doi: 10.1016/j.chemgeo.2015.02.004

[10]

Guillong M, Horn I, Günther D, et al. A comparison of 266nm, 213nm and 193nm produced from a single solid state Nd:YAG laser for laser ablation ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2003, 18: 1224-1230. doi: 10.1039/B305434A

[11]

Wagner B, Nowak A, Bulska E, et al. Critical assessment of the elemental composition of Corning archeological reference glasses by LA-ICP-MS[J].Analytical and Bioanalytical Chemistry, 2012, 402: 1667-1677. doi: 10.1007/s00216-011-5597-8

[12]

王辉, 汪方跃, 关炳庭, 等. 激光能量密度对LA-ICP-MS分析数据质量的影响研究[J]. 岩矿测试, 2019, 38(6): 609-619.

Wang H, Wang F Y, Guan B T, et al. Effect of laser energy density on data quality during LA-ICP-MS measurement[J]. Rock and Mineral Analysis, 2019, 38(6): 609-619.

[13]

吴石头, 许春雪, KlausS, 等. 193nm ArF准分子激光系统对LA-ICP-MS分析中不同基体的剥蚀行为和剥蚀速率探究[J]. 岩矿测试, 2017, 36(5): 451-459.

Wu S T, Xu C X, Klaus S, et al. Study on ablation behaviors and ablation rates of a 193nm ArF excimer laser system for selected substrates in LA-ICP-MS analysis[J]. Rock and Mineral Analysis, 2017, 36(5): 451-459.

[14]

吴石头, 王亚平, 许春雪, 等. 激光剥蚀-电感耦合等离子体质谱:双外标结合基体归一定量校准策略[J]. 岩矿测试, 2017, 45(7): 965-972.

Wu S T, Wang Y P, Xu C X, et al. Laser ablation-inductively coupled plasma-mass spectrometer:A quantification strategy based on two reference materials and bulk normalization as 100%(wt)[J]. Rock and Mineral Analysis, 2017, 45(7): 965-972.

[15]

Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICPMS without applying an internal standard[J].Chemical Geology, 2008, 257(1-2): 34-43. doi: 10.1016/j.chemgeo.2008.08.004

[16]

Luo Y, Gao S, Longerich H P, et al. The uncertainty budget of the multi-element analysis of glasses using LA-ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2007, 22: 122-130. doi: 10.1039/B608010C

[17]

Rehren T, Connolly P, Schibille N, et al. Changes in glass consumption in Pergamon (Turkey) from Hellenistic to Late Byzantine and Islamic times[J].Journal of Archaeological Science, 2015, 55: 266-279. doi: 10.1016/j.jas.2014.12.025

[18]

Bertini M, Izmer A, Vanhaecke F, et al. Critical evaluation of quantitative methods for the multi-elemental analysis of ancient glasses using laser ablation inductively coupled plasma mass spectrometry[J].Journal of Analytical Atomic Spectrometry, 2013, 28: 77-91. doi: 10.1039/C2JA30036B

[19]

Miliszkiewicz N, Walas S, Tobiasz A, et al. Current approaches to calibration of LA-ICP-MS analysis[J].Journal of Analytical Atomic Spectrometry, 2015, 30(2): 327-338. doi: 10.1039/C4JA00325J

[20]

袁继海, 詹秀春, 孙冬阳, 等. 激光剥蚀电感耦合等离子体质谱分析硅酸盐矿物基体效应的研究[J]. 分析化学, 2011, 39(10): 1582-1588.

Yuan J H, Zhan X C, Sun D Y, et al. Investigation on matrix effects in silicate minerals by laser ablation-inductively coupled plasma-mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2011, 39(10): 1582-1588.

[21]

Jochum K P, Nohl U, Herwig K, et al. GeoReM:A new geochemical database for reference materials and isotopic standards[J].Geostandards and Geoanalytical Research, 2005, 29(3): 333-338. doi: 10.1111/j.1751-908X.2005.tb00904.x

[22]

斯琴毕力格, 李青会, 干福熹, 等. 激光剥蚀-电感耦合等离子体原子发射光谱/质谱法分析中国古代钾玻璃组分[J]. 分析化学, 2013, 41(9): 1328-1333.

Siqin B L G, Li Q H, Gan F X, et al. Analysis of ancient Chinese potash glass by laser ablation inductively coupled plasma-atomic emission spectrometry/mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2013, 41(9): 1328-1333.

[23]

Vicenzi E P, Eggins S, Logan A, et al. Microbeam characterization of Corning archeological reference glasses:New additions to the Smithsonian microbeam standard collection[J].Journal of Research of the National Institute of Standards and Technology, 2002, 107: 719-727. doi: 10.6028/jres.107.058

[24]

Shortland A, Rogers N, Eremin K, et al. Trace element discri-minants between Egyptian and Mesopotamian Late Bronze Age glasses[J].Journal of Archaeological Science, 2007, 34: 781-789. doi: 10.1016/j.jas.2006.08.004

[25]

Longerich H P, Jackson S E, Günther D, et al. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation[J].Journal of Analytical Atomic Spectrometry, 1996, 11: 899-904. doi: 10.1039/JA9961100899

[26]

Horn I, Guillong M, Günther D, et al. Wavelength dependant ablation rates for metals and silicate glasses using homogenized laser beam profiles-Implications for LA-ICP-MS[J].Applied Surface Science, 2001, 182(1-2): 91-102. doi: 10.1016/S0169-4332(01)00465-2

[27]

Fryer B J, Jackson S E, Longerich H P, et al. The design, operation and role of the laser-ablation microprobe coupled with an inductively coupled plasma-mass spectrometer (LAM-ICP-MS) in the Earth sciences[J]. Canadian Mineralogist, 1995, 33: 303-312.

[28]

赵令浩, 孙冬阳, 胡明月, 等. 激光剥蚀电感耦合等离子体质谱小激光斑束线扫描定量分析技术[J]. 分析化学, 2018, 46(6): 931-937.

Zhao L H, Sun D Y, Hu M Y, et al. Line scanning quantitative analysis by laser ablation inductively coupled plasma mass spectrometry with small laser beam[J]. Chinese Journal of Analytical Chemistry, 2018, 46(6): 931-937.

[29] Pollard A M,Heron C. Archaeological chemistry[M] . Cambridge: The Royal Society of Chemistry, 1996: 172
[30]

Evans D, Müller W. Automated extraction of a five-year LA-ICP-MS trace element data set of ten common glass and carbonate reference materials:Long-term data quality, optimisation and laser cell homogeneity[J].Geostandards and Geoanalytical Research, 2018, 42(2): 159-188. doi: 10.1111/ggr.12204

[31]

林怡娴, RehrenT. 凉山州博物馆藏盐源征集费昂斯串珠的考察[J]. 四川文物, 2017, (6): 60-71.

Lin Y X, Rehren T. A string of faience beads in the museum of Liangshan Yi autonomous prefecture[J]. Sichuan Cultural Relics, 2017, (6): 60-71.

[32] Tite M,Shortland A J. Production technology of faience and related early vitreous materials[M] . : Oxford School of Archaeology, 2008: 38-42.
[33]

Turner W S. Studies in ancient glass and glassmaking processes.Part Ⅴ.Raw materials and melting processes[J]. Journal of Society of Glass Technology, 1956, 40: 277-300.

[34]

宁夏考古所,彭阳县文物管理所. 王大户与九龙山——北方青铜文化墓地[M] . 北京: 文物出版社, 2016: 703-736.

Ningxia Institute of Archaeology,Pengyang County Heritage Management Institute. Excavation report on Wangdahu and Jiulongshan[M] . Beijing: Cultural Relics Press, 2016: 703-736.
[35]

Mullins P R. The archaeology of consumption[J].Annual Review of Anthropology, 2011, (40): 133-144.

相似文献(共18条)

[1]

余宇, 刘江斌, 党亮, 陈月源, 曹成东, 谈建安, 赵峰. X射线荧光光谱法同时测定石灰石中主次痕量组分. 岩矿测试, 2008, 27(2): 149-150.

[2]

王中岐, 张敏, 田文辉. 能量色散X射线荧光光谱法测定钼矿石中钼铅铁铜. 岩矿测试, 2008, 27(3): 235-236.

[3]

徐婷婷, 夏宁, 张波. 熔片制样-X射线荧光光谱法测定海洋沉积物样品中主次量组分. 岩矿测试, 2008, 27(1): 74-76.

[4]

李小莉. X射线荧光光谱法测定铁矿中铁等多种元素. 岩矿测试, 2008, 27(3): 229-231.

[5]

蔡玉曼. 硅钼蓝分光光度法测定钛铁矿中二氧化硅不确定度评定. 岩矿测试, 2008, 27(2): 123-126.

[6]

李曼, 王连和. 区域地球化学样品分析质量管理计算机控制. 岩矿测试, 2008, 27(3): 219-222.

[7]

靳梦琪, 李艳广, 王鹏, 汪双双, 黎卫亮. 榍石LA-ICP-MS U-Pb定年中元素分馏的影响及校正研究. 岩矿测试, 2020, 39(2): 274-284. doi: 10.15898/j.cnki.11-2131/td.201908120124

[8]

吴石头, 许春雪, Klaus Simon, 肖益林, 王亚平. 193nm ArF准分子激光系统对LA-ICP-MS分析中不同基体的剥蚀行为和剥蚀速率探究. 岩矿测试, 2017, 36(5): 451-459. doi: 10.15898/j.cnki.11-2131/td.201703290044

[9]

吴石头, 王亚平, 许春雪. 激光剥蚀电感耦合等离子体质谱元素微区分析标准物质研究进展. 岩矿测试, 2015, 34(5): 503-511. doi: 10.15898/j.cnki.11-2131/td.2015.05.002

[10]

朱碧, 朱志勇, 吕苗, 杨涛. Iolite软件处理LA-ICP-MS线扫描数据适用性研究. 岩矿测试, 2017, 36(1): 14-21. doi: 10.15898/j.cnki.11-2131/td.2017.01.003

[11]

王辉, 汪方跃, 关炳庭, 盛兆秋. 激光能量密度对LA-ICP-MS分析数据质量的影响研究. 岩矿测试, 2019, 38(6): 609-619. doi: 10.15898/j.cnki.11-2131/td.201903010029

[12]

汪双双, 韩延兵, 李艳广, 魏小燕, 靳梦琪, 程秀花. 利用LA-ICP-MS在16 μm和10 μm激光束斑条件下测定独居石U-Th-Pb年龄. 岩矿测试, 2016, 35(4): 349-357. doi: 10.15898/j.cnki.11-2131/td.2016.04.003

[13]

张伟盟, 严杰, 钟福军, 潘家永, 刘文泉, 赖静, 周堂波. 粤北石角围花岗岩型铀矿床沥青铀矿LA-ICP-MS原位U-Pb定年研究. 岩矿测试, 2019, 38(4): 449-460. doi: 10.15898/j.cnki.11-2131/td.201901160007

[14]

李阳, 邹灏, 刘行, 蒋修未, 李蝶. SILLS软件在单个萤石流体包裹体LA-ICP-MS微量元素分析数据处理中的应用. 岩矿测试, 2020, 39(2): 300-310. doi: 10.15898/j.cnki.11-2131/td.201812260141

[15]

肖志斌, 耿建珍, 涂家润, 张然, 叶丽娟, 毕君辉, 周红英. 砂岩型铀矿微区原位U-Pb同位素定年技术方法研究. 岩矿测试, 2020, 39(2): 262-273. doi: 10.15898/j.cnki.11-2131/td.201908120129

[16]

黄国成, 王登红, 吴小勇. 浙江临安夏色岭钨矿含矿岩体特征及LA-ICP-MS锆石铀-铅年代学研究. 岩矿测试, 2012, 31(5): 915-921.

[17]

王忠强, 李超, 江小均, 周利敏, 赵九江, 严清高, 李亚东, 陈耀坤. 滇西北休瓦促钼钨矿床白钨矿原位微量和Sr同位素特征及其对成矿作用的指示. 岩矿测试, 2020, 39(5): 767-781. doi: 10.15898/j.cnki.11-2131/td.201907310118

[18]

唐晓勇, 倪晓芳, 商照聪. 土壤中铁元素对铬元素p-XRF测定准确度的影响与校正. 岩矿测试, 2020, 39(3): 467-474. doi: 10.15898/j.cnki.11-2131/td.201911200161

计量
  • PDF下载量(16)
  • 文章访问量(270)
  • HTML全文浏览量(45)
  • 被引次数(0)
目录

Figures And Tables

古代玻璃材料LA-ICP-MS组分分析及产源研究

胡志中, 李佩, 蒋璐蔓, 王通洋, 杜谷, 杨波