【引用本文】 徐红纳, 靳立国, 由丽梅, 等. 一阶导数分光光度法同时测定水样中Cr(Ⅲ)和Cr(Ⅵ)[J]. 岩矿测试, 2020, 39(5): 785-792. doi: 10.15898/j.cnki.11-2131/td.201908090118
XU Hong-na, JIN Li-guo, YOU Li-mei, et al. Simultaneous Determination of Chromium(Ⅲ) and Chromium(Ⅵ) in Water by the First Derivative Spectrophotometric Method[J]. Rock and Mineral Analysis, 2020, 39(5): 785-792. doi: 10.15898/j.cnki.11-2131/td.201908090118

一阶导数分光光度法同时测定水样中Cr(Ⅲ)和Cr(Ⅵ)

1. 

牡丹江医学院, 黑龙江 牡丹江 157011

2. 

黑龙江省第一地质勘查院, 黑龙江 牡丹江 157011

收稿日期: 2019-08-09  修回日期: 2019-12-11  接受日期: 2020-04-16

基金项目: 2019年度黑龙江省省属高等学校基本科研业务费科研项目(2019-KYYWFMY-0055)

作者简介: 徐红纳, 硕士, 讲师, 主要从事分析化学研究。E-mail:13838782@163.com

通信作者: 靳立国, 硕士, 高级工程师, 主要从事矿产地质分析测试工作。E-mail:yaoguo97@163.com

Simultaneous Determination of Chromium(Ⅲ) and Chromium(Ⅵ) in Water by the First Derivative Spectrophotometric Method

1. 

Mudanjiang Medical University, Mudanjiang 157011, China

2. 

The First Geological Prospecting Institute of Heilongjiang Province, Mudanjiang 157011, China

Corresponding author: JIN Li-guo, yaoguo97@163.com

Received Date: 2019-08-09
Revised Date: 2019-12-11
Accepted Date: 2020-04-16

摘要:环境水样中的铬通常以Cr(Ⅲ)和Cr(Ⅵ)的形态存在,不同价态的铬产生不同的生理作用,对不同价态铬进行准确分析是必要的。目前Cr(Ⅲ)和Cr(Ⅵ)的测定方法大多数是先分离后再测定,或先测定出Cr(Ⅲ)或Cr(Ⅵ),然后通过氧化或还原测定铬的总量,再差减法计算出另一价态铬的含量,此操作复杂,并且在处理过程中易导致价态的改变,误差较大,精确度难以保证。本文用一阶导数分光光度法消除了Cr(Ⅲ)对Cr(Ⅵ)干扰,能同时测定Cr(Ⅲ)或Cr(Ⅵ)的含量。混合水样中加入显色剂EDTA-2Na,调节溶液pH在3~3.5,恒温水浴70℃条件保持加热15min,测定吸光度,导数间隔因子为10nm求一阶导数,在波长330nm处Cr(Ⅵ)吸光度一阶导数有最大值,而在此波长处Cr(Ⅲ)-EDTA络合物吸光度一阶导数值为0,可用一阶导数分光光度法测定Cr(Ⅵ)的含量,在Cr(Ⅲ)-EDTA的最大吸收波长543nm处测溶液吸光度,直接测定Cr(Ⅲ)的含量。在优化实验条件下,Cr(Ⅲ)线性回归方程为A=0.0036ρ-0.0002(r2=0.9999),线性范围为0~120mg/L,检出限为0.006mg/L;Cr(Ⅵ)线性回归方程为D=0.00072ρ-0.00013(D为一阶导数值,r2=0.9996),线性范围为0~100mg/L,检出限为0.005mg/L。Cr(Ⅲ)和Cr(Ⅵ)加标回收率为97.8%~102.6%。该方法能够满足废水中Cr(Ⅲ)和Cr(Ⅵ)分析测试要求。

关键词: 水样, Cr(Ⅲ), Cr(Ⅵ), 同时测定, 导数间隔因子, 一阶导数分光光度法

要点

(1) 一阶导数光谱法可使重叠峰完全分开,消除Cr(Ⅲ)对Cr(Ⅵ)的干扰。

(2)当导数间隔因子为10nm时有适宜的一阶导数值。

(3)Cr(Ⅲ)-EDTA络合物稳定性高,在3h内吸光度值未见变化。

Simultaneous Determination of Chromium(Ⅲ) and Chromium(Ⅵ) in Water by the First Derivative Spectrophotometric Method

ABSTRACT

OBJECTIVES:

To find a simple and accurate method for determination of Cr(Ⅲ) and Cr(Ⅵ).

METHODS:

The first derivative spectrophotometric method was used for simultaneously determining of Cr(Ⅲ) and Cr(Ⅵ), which eliminated the interference of Cr(Ⅲ) on Cr(Ⅵ).

RESULTS:

Chromogenic reagent EDTA-2Na was added to the mixed water sample in a 70℃water-bath at pH 3-3.5 for 15min, and the absorbance was measured. When the derivative interval factor was 10nm, the first derivative value of absorption for Cr(Ⅵ) was the maximum at 330nm wavelength and the value for Cr(Ⅲ)-EDTA was zero. The concentration of Cr(Ⅵ) can be obtained by the first derivative spectrophotometric method, whereas Cr(Ⅲ) can be determined directly at the maximum wavelength of 543nm. Under the optimal conditions, the concentration range was 0-100mg/L for Cr(Ⅵ) and 0-120mg/L for Cr(Ⅲ). The equation of linear regression for Cr(Ⅲ) was A=0.0036ρ-0.0002 (r2=0.9999), for Cr(Ⅵ) was D=0.00072ρ-0.00013 (r2=0.9996). and the limit of detection was 0.005mg/L for Cr(Ⅵ) and 0.006mg/L for Cr(Ⅲ). The recoveries for Cr(Ⅲ) and Cr(Ⅵ) were 97.8%-102.6%.

Conclusion:

The method meets the requirements for analyzing waste water.

KEY WORDS: water sample, Cr(Ⅲ), Cr(Ⅵ), simultaneous determination, derivative interval factor, first derivative spectrophotometry

HIGHLIGHTS

(1) The derivative spectrophotometric method can be used for resolving overlapped peaks, and thus eliminating the interference of Cr(Ⅲ) on Cr(Ⅵ).

(2) When the derivative interval factor was 10nm, the first derivative value of absorption was the most suitable.

(3) Cr(Ⅲ)-EDTA coordination compound has high stability, and its absorbance value did not change within 3 hours.

本文参考文献

[1]

王蓉, 张丽萍, 邹时英, 等. 偶氮胂Ⅲ褪色光度法测定土壤中的铬[J]. 岩矿测试, 2011, 30(2): 230-232.

Wang R, Zhang L P, Zou S Y, et al. Determination of chromium in soil samples by arsenazo Ⅲ fading spectrophotometry[J]. Rock and Mineral Analysis, 2011, 30(2): 230-232.

[2]

Chen S J, Zhang X S, Yu L Y, et al. Simultaneous determination of Cr(Ⅲ) and Cr(Ⅵ) in tannery wastewater using low pressure ion chromatography combined with flow injection spectrophotometry[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2012, 88: 49-55. doi: 10.1016/j.saa.2011.11.053

[3]

Ouejhani A, Hellal F, Dachraoui M, et al. Application of doehlert matrix to the study of electrochemical oxidation of Cr(Ⅲ) to Cr(Ⅵ) in order to recover chromium from wastewater tanning baths[J]. Journal of Hazardous Materials, 2008, 157(2/3): 423-431.

[4]

Tardif S, Cipullo S, Sø H U, et al. Factors governing the solid phase distribution of Cr, Cu and As in contaminated soil after 40 years of ageing[J].Science of the Total Environment, 2019, 652: 744-754. doi: 10.1016/j.scitotenv.2018.10.244

[5]

Diao Z H, Du J J, Jiang D, et al. Insights into the simultaneous removal of Cr6+ and Pb2+ by a novel sewage sludge derived biochar immobilized nanoscale zero valent iron:Coexistence effect and mechanism[J].Science of the Total Environment, 2018, 642: 505-515. doi: 10.1016/j.scitotenv.2018.06.093

[6]

张杰芳, 闫玉乐, 夏承莉, 等. 微波碱消解-电感耦合等离子体发射光谱法测定煤灰中的六价铬[J]. 岩矿测试, 2017, 36(1): 45-51.

Zhang J F, Yan Y L, Xia C L, et al. Determination of Cr(Ⅵ) in coal ash by microwave alkaline digestion and inductively coupled plasma-optical emission spectrometry[J]. Rock and Mineral Analysis, 2017, 36(1): 45-51.

[7]

李冰茹, 杜远芳, 王北洪, 等. 食品中总铬和铬形态分析的前处理技术概述[J]. 食品安全质量检测学报, 2018, 9(9): 2056-2062.

Li B R, Du Y F, Wang B H, et al. Research progress on the pretreatment techniques in the analysis of total chromium and speciation chromium in food[J]. Journal of Food Safety and Quality, 2018, 9(9): 2056-2062.

[8]

Economou-Eliopoulos M, Megremi I, Vasilatos C, et al. Geochemical constraints on the sources of Cr(Ⅵ) contamination in waters of Messapia (Central Evia) Basin[J].Applied Geochemistry, 2017, 84: 13-25. doi: 10.1016/j.apgeochem.2017.05.015

[9]

安茂国, 赵庆令, 谭现锋, 等. 化学还原-稳定化联合修复铬污染场地土壤的效果研究[J]. 岩矿测试, 2019, 38(2): 204-211.

An M G, Zhao Q L, Tan X F, et al. Research on the effect of chemical reduction-stabilization combined remediation of Cr-contaminated soil[J]. Rock and Mineral Analysis, 2019, 38(2): 204-211.

[10]

Mulware S J. Trace elements and carcinogenicity:A subject in review[J]. Biotechnology, 2013, 3(2): 85-96.

[11]

Clemention M, Shi X L, Zhang Z, et al. Oxidative stress and metabolic reprogramming in Cr(Ⅵ) carcinogenesis[J].Current Opinion in Toxicology, 2018, 8: 20-27. doi: 10.1016/j.cotox.2017.11.015

[12]

陈思涵, 彭璨, 陈云生, 等. 分光光度法测定胶囊中Cr(Ⅲ)和Cr(Ⅵ)[J]. 中国卫生检验杂志, 2015, 25(1): 18-20.

Chen S H, Peng C, Chen Y S, et al. Detection of Cr(Ⅲ) and Cr(Ⅵ) in capsule with spectrophotometry[J]. Chinese Journal of Health Laboratory Technology, 2015, 25(1): 18-20.

[13]

张冀飞, 高欣, 杨晓兵, 等. 高效液相色谱-电感耦合等离子体质谱联用测定儿童玩具中痕量铬(Ⅲ)与铬(Ⅵ)[J]. 分析测试学报, 2015, 34(2): 232-236.

Zhang J F, Gao X, Yang X B, et al. Determination of chromium(Ⅲ) and chromium(Ⅵ) in children's toys using high performance liquid chromatography-inductively coupled plasma mass spectrometry[J]. Journal of Instrumental Analysis, 2015, 34(2): 232-236.

[14]

林莉, 郑翊, 卫碧文, 等. IC-ICP-MS联用法测定玩具材料中可迁移的六价铬与三价铬[J]. 分析试验室, 2013, 32(8): 82-85.

Lin L, Zheng Y, Wei B W, et al. Simultaneous determination of migratory chromium species in toy materials by ion chromatography and ICP-MS[J]. Chinese Journal of Analysis Laboratory, 2013, 32(8): 82-85.

[15]

闫美, 谢晨星, 朱智惠, 等. 保健食品中三价铬与六价铬的分离与测定[J]. 食品研究与开发, 2016, 37(7): 171-175.

Yan M, Xie C X, Zhu Z H, et al. The research on the conditions of hexavalent chromium convert to trivalent chromium in healthy food[J]. Food Research and Development, 2016, 37(7): 171-175.

[16]

刘明理, 曹进, 丁宏, 等. 液相色谱-质谱法测定保健食品中的三价铬及六价铬含量[J]. 食品安全质量检测学报, 2017, 8(7): 2465-2470.

Liu M L, Cao J, Ding H, et al. Determination of trivalent and hexavalent chromium in healthy food by liquid chromatography-mass spectrometry[J]. Journal of Food Safety and Quality, 2017, 8(7): 2465-2470.

[17]

庞艳华, 刘名扬, 刘淑艳, 等. 反相离子对色谱-电感耦合等离子体质谱法测定化妆品中不同形态的铬[J]. 色谱, 2011, 29(10): 1027-1030.

Pang Y H, Liu M Y, Liu S Y, et al. Simultaneous determination of chromium speciation in cosmetics using reversed-phase ion-pair chromatography-inductively coupled plasma mass spectrometry[J]. Chinese Journal of Chromatography, 2011, 29(10): 1027-1030.

[18]

吴思霖, 王欣美, 潘晨, 等. 高效液相色谱-电感耦合等离子体质谱联用测定化妆品中六价铬与三价铬[J]. 分析测试学报, 2019, 38(6): 724-727.

Wu S L, Wang X M, Pan C, et al. Determination of chromium(Ⅵ) and chromium(Ⅲ) in cosmetics by high performance liquid chromatography-inductively coupled plasma mass spectrometry[J]. Journal of Instrumental Analysis, 2019, 38(6): 724-727.

[19]

张保科, 王蕾, 马生凤, 等. 电感耦合等离子体质谱法测定含气天然矿泉水中的铬[J]. 岩矿测试, 2013, 32(4): 568-571.

Zhang B K, Wang L, Ma S F, et al. Quantification of Cr in natural sparkling mineral waters by inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2013, 32(4): 568-571.

[20]

邢夏, 徐进力, 何晓辉, 等. 石墨炉原子吸收光谱法测定地球化学样品中微量铬[J]. 岩矿测试, 2011, 30(3): 333-336.

Xing X, Xu J L, He X H, et al. Determination of trace chromium in geochemical samples by graphite furnace atomic absorption spectrometry[J]. Rock and Mineral Analysis, 2011, 30(3): 333-336.

[21]

Sadeghi S, Moghaddam A Z. Chromium speciation using task specific ionic liquid/aqueous phase biphasic system combined with flame atomic absorption spectrometry[J].Journal of Molecular Liquids, 2016, 221: 798-804. doi: 10.1016/j.molliq.2016.06.056

[22]

卢菊生, 徐佳佳, 田久英, 等. 微乳相萃取分离富集-原子吸收光谱法分析铬形态[J]. 应用化学, 2010, 27(10): 1230-1234.

Lu J S, Xu J J, Tian J Y, et al. Speciation determination of chromium by atomic absorption spectrometry with separation of microemulsion extraction[J]. Chinese Journal of Applied Chemistry, 2010, 27(10): 1230-1234.

[23]

Tafti E N, Dadfarnia S, Shabani A M H, et al. Supramolecular dispersive liquid-liquid microextraction-based solidification of floating organic drops combined with electrothermal atomic absorption spectrometry for determination of chromium species[J].International Journal of Environmental Analytical Chemistry, 2017, 97(5): 444-445. doi: 10.1080/03067319.2017.1321743

[24]

Monasterio R P, Lascalea G E, Martínez L D, et al. Determination of Cr(Ⅵ) and Cr(Ⅲ) species in parenteral solutions using a nanostructured material packed-microcolumn and electrothermal atomic absorption spectrometry[J].Journal of Trace Elements in Medicine and Biology, 2009, 23(3): 157-166. doi: 10.1016/j.jtemb.2009.03.002

[25]

Lee C F, Chen B H, Huang Y L, et al. Determining Cr(Ⅲ) and Cr(Ⅵ) in urine using a flow injection on-line sorption separation system coupled with electrothermal atomic absorption spectrometry and a UV/nano-Au/TiO2 photocatalysis reduction device[J].Talanta, 2008, 77(2): 546-550. doi: 10.1016/j.talanta.2008.03.018

[26]

徐红纳, 王英滨. 双波长分光光度法同时测定水样中的Cr(Ⅲ)和Cr(Ⅵ)[J]. 分析试验室, 2008, 27(5): 34-37.

Xu H N, Wang Y B. Simultaneous determination of chromium(Ⅲ) and chromium(Ⅵ) by dual-wavelength spectrophotometry[J]. Chinese Journal of Analysis Laboratory, 2008, 27(5): 34-37.

[27]

Hackbarth F V, Maass D, Souza A A U, et al. Removal of hexavalent chromium from electroplating wastewaters using marine macroalga Pelvetia canaliculata as natural electron donor[J].Chemical Engineering Journal, 2016, 290: 477-489. doi: 10.1016/j.cej.2016.01.070

[28]

Kim J S, Choi Y R, Kim Y S, et al. Determination of hexavalent chromium (Cr(Ⅵ)) in plastics using organic-assisted alkaline extraction[J].Analytica Chimica Acta, 2011, 690(2): 182-189. doi: 10.1016/j.aca.2011.01.060

[29]

Abadi M D M, Chamsaz M, Arbab-Zavar M H, et al. Supramolecular dispersive liquid-liquid microextraction-based solidification of floating organic drops for speciation and spectrophotometric determination of chromium in real samples[J].Analytical Methods, 2013, 5(12): 2971-2977. doi: 10.1039/c3ay00036b

[30]

孙克强, 王京力, 李浩洋, 等. 离子色谱法测定玩具中三价铬和六价铬的含量[J]. 理化检验(化学分册), 2017, 53(9): 1099-1102.

Sun K Q, Wang J L, Li H Y, et al. Determination of chromium(Ⅲ) and chromium(Ⅵ) in toys by ion chromatography[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2017, 53(9): 1099-1102.

[31]

巢静波, 史乃捷, 陈扬, 等. 衍生液注入控制-离子色谱法同时测定环境水样中的三价铬和六价铬[J]. 环境化学, 2016, 35(1): 67-74.

Chao J B, Shi N J, Chen Y, et al. Simultaneous determination of trivalent and hexavalent chromium in environmental waters by ion chromatography with derivatization reagent injection-control technique[J]. Environmental Chemistry, 2016, 35(1): 67-74.

[32]

Araujo-Barbosa U, Pena-Vazquez E, Barciela- Alonso M C, et al. Simultaneous determination and speciation analysis of arsenic and chromium in iron supplements used for iron-deficiency anemia treatment by HPLC-ICP-MS[J].Talanta, 2017, 170: 523-529. doi: 10.1016/j.talanta.2017.04.034

[33]

古君平, 施文庄, 刘殷, 等. 高效液相色谱-电感耦合等离子体质谱法同时测定烟用接装纸中三价铬与六价铬的含量[J]. 理化检验(化学分册), 2017, 53(1): 17-21.

Gu J P, Shi W Z, Liu Y, et al. Simultaneous determination of chromium(Ⅲ) and chromium(Ⅵ) in cigarette tipping paper by HPLC-ICP-MS[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2017, 53(1): 17-21.

[34]

周波林. 一阶导数紫外光谱法测定人血浆中地西泮的血药浓度[J]. 中国医药导报, 2014, 11(20): 16-19.

Zhou B L. Determination of diazepam in human plasma by first order derivative spectrophotometry[J]. China Medical Herald, 2014, 11(20): 16-19.

[35]

王华建, 黎艳红, 丰伟悦, 等. 反相离子对色谱-电感耦合等离子体质谱联用技术测定水中痕量Cr(Ⅲ)与Cr(Ⅵ)[J]. 分析化学, 2009, 37(3): 443-436.

Wang H J, Li Y H, Feng W Y, et al. Simultaneous determination of trace Cr(Ⅲ) and Cr(Ⅵ) in water using ion-pairing reversed phase chromatography-inductively coupled plasma mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2009, 37(3): 443-436.

相似文献(共20条)

[1]

余宇, 刘江斌, 党亮, 陈月源, 曹成东, 谈建安, 赵峰. X射线荧光光谱法同时测定石灰石中主次痕量组分. 岩矿测试, 2008, 27(2): 149-150.

[2]

杨晓慧, 李海维, 韩权. 4-(5-硝基-2-吡啶偶氮)-1,3-二氨基苯光度法同时测定钴和钯. 岩矿测试, 2008, 27(2): 113-116.

[3]

杜米芳. 电感耦合等离子体发射光谱法同时测定玻璃中铝钙铁钾镁钠钛硫. 岩矿测试, 2008, 27(2): 146-148.

[4]

张静梅, 张培新, 高孝礼, 黄光明, 窦银萍. 电感耦合等离子体质谱法同时测定地下水中硼溴碘. 岩矿测试, 2008, 27(1): 25-28.

[5]

李刚, 曹小燕. 电感耦合等离子体质谱法测定地质样品中锗和镉的干扰及校正. 岩矿测试, 2008, 27(3): 197-200.

[6]

孙玮琳, 沈斌, 汪双清, 龚迎莉. 自然水体和土壤中氯代烃和芳香烃类化合物分析测试方法研究. 岩矿测试, 2008, 27(3): 174-178.

[7]

王小强, 侯晓磊, 杨惠玲. 电感耦合等离子体发射光谱法同时测定铅锌矿中银铜铅锌. 岩矿测试, 2011, 30(5): 576-579.

[8]

陶慧林, 朱仕毅, 郑省政. K比例H点标准加入吸光光度法同时测定矿样中铌和钽. 岩矿测试, 2010, 29(6): 703-706.

[9]

薛芳, 刘春华, 夏心泉, 赵书林. 6─溴─苯并噻唑偶氮变色酸双波长标准加入法同时测定铁和铝的研究. 岩矿测试, 1996, (3): 217-221.

[10]

刘曙, 罗梦竹, 金樱华, 陈宗宏, 任丽萍, 李晨. 微波消解-化学蒸气发生-原子荧光光谱法同时测定铁矿石中的痕量砷和汞. 岩矿测试, 2012, 31(3): 456-462.

[11]

盛献臻, 张汉萍, 李展强, 李海萍, 何光涛. 电感耦合等离子体发射光谱法同时测定地质样品中次量钨锡钼. 岩矿测试, 2010, 29(4): 383-386.

[12]

贺攀红, 杨珍, 龚治湘. 氢化物发生-电感耦合等离子体发射光谱法同时测定土壤中的痕量砷铜铅锌镍钒. 岩矿测试, 2020, 39(2): 235-242. doi: 10.15898/j.cnki.11-2131/td.201904160048

[13]

甘树才, 陈博. GDX—502树脂吸附分离富集—微分电位溶出测定水样中痕量酚. 岩矿测试, 1999, (1): 34-37.

[14]

佟柏龄. 巯基棉富集—大口径毛细管气相色谱法测定水样中痕量烷基汞. 岩矿测试, 1993, (2): 131-134.

[15]

杨美玲, 钟涛, 裴妙荣, 张兴磊, 乐长高, 王广才, 陈焕文. 气动雾化进样-微波等离子体炬质谱法快速测定水样中的钙离子. 岩矿测试, 2015, 34(5): 586-591. doi: 10.15898/j.cnki.11-2131/td.2015.05.015

[16]

杨立新, 张剑波, 路阳, 董斌, 常凤启. 超高效液相色谱-串联质谱法直接进样测定水样中8种有机污染物. 岩矿测试, 2014, 33(2): 275-281.

[17]

魏显有. 极谱法测定天然水样中痕量相. 岩矿测试, 1994, (1): 74-76.

[18]

金继红, 王干珍. 碘化钾次甲基蓝溶剂浮选光度法测定微量汞的研究. 岩矿测试, 1989, (2): 119-122.

[19]

刘丛强, 肖化云. 水样硝酸盐氮同位素分析预处理方法探讨. 岩矿测试, 2002, (2): 105-108.

[20]

林章金. 高含量铁水样中离子平衡及结果表示的探讨. 岩矿测试, 2003, (1): 73-74.

计量
  • PDF下载量(13)
  • 文章访问量(549)
  • HTML全文浏览量(155)
  • 被引次数(0)
目录

Figures And Tables

一阶导数分光光度法同时测定水样中Cr(Ⅲ)和Cr(Ⅵ)

徐红纳, 靳立国, 由丽梅, 程艳