【引用本文】 刘新星, 张弘, 张娟, 等. 基于红外光谱技术的内蒙古乌奴格吐山斑岩铜钼矿蚀变和矿化特征研究[J]. 岩矿测试, 2021, 40(1): 121-133. doi: 10.15898/j.cnki.11-2131/td.202005060010
LIU Xin-xing , ZHANG Hong , ZHANG Juan , et al. A Study on Alteration Mineral Assemblages and Mineralization Characteristics of a Wunugetushan Porphyry Copper-Molybdenum Deposit in Inner Mongolia, China, Based on Infrared Spectroscopy[J]. Rock and Mineral Analysis, 2021, 40(1): 121-133. doi: 10.15898/j.cnki.11-2131/td.202005060010

基于红外光谱技术的内蒙古乌奴格吐山斑岩铜钼矿蚀变和矿化特征研究

1. 河北地质大学, 河北省战略性关键矿产资源重点实验室, 河北 石家庄 050031;

2. 自然资源实物地质资料中心, 河北 三河 065201

收稿日期: 2020-05-06  修回日期: 2020-10-16 

基金项目: 国家自然科学基金项目(批准号:41702352);中国地质调查局项目(DD20190411,DD20190379-91);河北省高等学校科学技术研究项目(QN2019144);河北地质大学博士启动基金(BQ2017012)

作者简介: 刘新星,博士,副教授,研究方向为遥感地质学。E-mail:liuxinxing963@163.com。。

A Study on Alteration Mineral Assemblages and Mineralization Characteristics of a Wunugetushan Porphyry Copper-Molybdenum Deposit in Inner Mongolia, China, Based on Infrared Spectroscopy

1. Hebei Key Laboratory of Strategic Critical Mineral Resources, Hebei GEO University, Shijiazhuang 050031, China;

2. Core and Samples Center of Land and Resources, China Geological Survey, Sanhe 065201, China

Received Date: 2020-05-06
Revised Date: 2020-10-16

摘要:近年来,红外光谱技术在矿物学研究、地质勘探与找矿等方面发挥了重要作用。本文通过测量与分析内蒙古乌奴格吐山斑岩铜钼矿Z661钻孔岩心短波红外和热红外波段的光谱,快速厘定了该矿床的蚀变矿物类型及组合特征。结果表明:乌奴格吐山斑岩铜钼矿床蚀变矿物主要有石英、钾长石、绢云母、伊利石、高岭石和蒙脱石等。蚀变矿物组合在空间上呈现出明显的分带性,其中石英+伊利石+绢云母+钾长石与矿化关系最为密切,可作为找矿的标型矿物组合;结合钻孔Cu、Mo矿化分布特征,发现绢(白云母)2200nm处吸收峰位置的波长偏移与成矿中心距离有关,波长变小,更趋向于成矿中心;且伊利石结晶度IC值其值越大,结晶度较高,矿化程度强。因而,该技术方法通过蚀变矿物波谱,能够快速圈定斑岩铜钼矿蚀变矿物组合,进而提高勘查效率。

关键词: 钻孔岩心, 红外光谱, 蚀变分带, 斑岩铜钼矿, 乌奴格吐山

A Study on Alteration Mineral Assemblages and Mineralization Characteristics of a Wunugetushan Porphyry Copper-Molybdenum Deposit in Inner Mongolia, China, Based on Infrared Spectroscopy

KEY WORDS: drill core, infrared spectroscopy, alteration zonation, porphyry copper-molybdenum deposit, Wunugetushan

本文参考文献

[1]

Sillitoe R H.Porphyry-copper systems[J].Economic Geology,2010,105:3-41.

[2]

Seedorff E,Dilles J HProffett J M,et al.Porphyry deposits:Characteristics and origin of hypogene features[J].Economic Geology100th Anniversary Volume,2005,251-298.

[3]

Sinclair W D.Porphyry deposits[C]//Goodfellow W D,ed.Mineral deposits of Canada:A synthesis of major deposit-types, district metallogeny,the evolution of geological provinces,and exploration methods.Geological Association of Canada,Mineral Deposits Division,Special Publication,2007,5:223-243.

[4]

Cooke D R,Hollings P,Wilkinson J J,et al.Geochemistry of porphyry deposits[J].Treatise on Geochemistry,2014,1(3):357-381.

[5]

Holliday J R,Cooke D R.Advances in geological models and exploration methods for copper±gold porphyry deposits[A].In:Milkereit B,ed.Proceedings of exploration 07:Fifth decennial international conference on mineral exploration[C].Toronto:Prospectors and Developers Association of Canada,2007:791-809.

[6]

Richards J P.Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation[J].Economic Geology,2003,98:1515-1533.

[7]

Hedenquist J W,Richards J P.The influence of geo-chemical techniques on the development of genetic models for porphyry copper deposits[J].Reviews in Economic Geology,1998,10:235-256.

[8]

Thompson A J B,Hauff P L,Robitaille A J,et al.Alteration mapping in exploration:Application of short-wave infrared (SWIR) spectroscopy[J].Society of Economic Geologists Newsletter,1999,39:1-13.

[9]

田丰,冷成彪,张兴春,等.短波红外光谱技术在西藏尼木地区岗讲斑岩铜-钼矿床中的应用[J].地球科学,2019,44(6):2143-2154.

Tian F,Leng C B,Zhang X C,et al.Application of short wavelength infrared technique in exploration of mineral deposits:A review[J].Bulletin of Mineralogy,Petrology and Geochemistry,2019,44(6):2143-2154.

[10]

Chang Z,Yang Z.Evaluation of inter-instrument variations among short wavelength infrared (SWIR) devices[J].Economic Geology,2012,107(7):1479-1488.

[11]

陈华勇,张世涛,初高彬,等.鄂东南矿集区典型矽卡岩-斑岩矿床蚀变矿物短波红外(SWIR)光谱研究与勘查应用[J].岩石学报,2019,35(12):3629-3643.

Chen H Y,Zhang S T,Chu G B,et al.The short wave infrared (SWIR) spectral characteristics of alteration minerals and applications for ore exploration in the typical skarn-porphyry deposits,Edong ore district,eastern China[J].Acta Petrologica Sinica,2019,35(12):3629-3643.

[12]

章革,连长云,王润生,等.便携式短波红外矿物分析仪(PIMA)在西藏墨竹工卡县驱龙铜矿区矿物填图中的应用[J].地质通报,2005,24(5):480-484.

Zhang G,Lian C Y,Wang R S,et al.Application of the portable infrared mineral analyser (PIMA) in mineral mapping in the Qulong copper prospect,Mozhugongka County,Tibet[J].Geological Bulletin of China,2005,24(5):480-484.

[13]

张世涛,陈华勇,张小波,等.短波红外光谱技术在矽卡岩型矿床中的应用——以鄂东南铜绿山铜铁金矿床为例[J].矿床地质,2017,36(6):1263-1288.

Zhang S T,Chen H Y,Zhang X B,et al.Application of short wavelength infrared (SWIR) technique to exploration of skarn deposit:A case study of Tonglvshan Cu-Fe-Au deposit,Edongnan (southeast Hubei) ore concentration area[J].Mineral Deposits,2017,36(6):1263-1288.

[14]

连长云,章革,元春华,等.短波红外光谱矿物测量技术在普朗斑岩铜矿区热液蚀变矿物填图中的应用[J].矿床地质,2005,24(6):621-637.

Lian C Y,Zhang G,Yuan C H,et al.Application of SWIR reflectance spectroscopy to Pulang porphyry copper ore district,Yunnan Procince[J].Mineral Deposits,2005,24(6):621-637.

[15]

谭钢,常国雄,佘宏全,等.内蒙古乌奴格吐山斑岩铜钼矿床辉钼矿铼-锇同位素定年及其地质意义[J].矿床地质,2010,29(S1):506-508.

Tan G,Chang G X,She H Q,et al.The Re-Os isotope dating of molybdenite and its geological significance in the porphyry copper-molybdenum deposit of wunugetushan,Inner Mongolia[J].Mineral Deposit,2010,29(S1):506-508.

[16]

陈志广,张连昌,万博,等.内蒙古乌奴格吐山斑岩铜钼矿床低Sr-Yb型成矿斑岩地球化学特征及地质意义[J].岩石学报,2008,24(1):115-128.

Chen Z G,Zhang L C,Wan B,et al.Geochemistry and geological significances of ore-forming porphyry with low Sr and Yb value in Wunugetushan copper-molybdenum deposit,Inner Mongolia[J].Acta Petrologica Sinica,2008,24(1):115-128.

[17]

谭钢.内蒙古乌奴格吐山斑岩铜钼矿床成矿作用研究[D].北京:中国地质科学院,2011. Tan G.The ore-forming processes and mineralization of Wunugetushan porphyry Cu-Mo deposit,Inner Mongolia[D].Beijing:Chinese Academy of Geological Sciences,2011.

[18]

李宁.内蒙古乌奴格吐山铜钼矿成矿侵入岩特征及成矿时代[D].北京:中国地质大学(北京),2013. Li N.Study on characteristics of intrusive rocks related to mineralization and metallogenic time of Wunugetushan Cu-Mo deposit,Inner Mongolia[D].Beijing:China University of Geosciences (Beijing),2013.

[19]

王荣全,宋雷鹰,曹书武,等.乌奴格吐山斑岩铜-钼矿地球化学特征及评价标志[J].矿产与地质,2007,21(5):515-519.

Wang R Q,Song L Y,Cao S W,et al.Geochemical characteristics of the Wunugetushan porphyry Cu-Mo deposit and its evaluation indicators[J].Mineral resources and geology,2007,21(5):515-519.

[20]

尹煜春.内蒙古乌奴格吐山次火山斑岩型铜-钼矿床控矿因素分析及找矿方向[J].矿产与地质,2007,21(3):298-303.

Yin Y C.Ore controlling factors of subvolcanic porphyry type copper molybdenum deposit in Wunugetushan of Inner Mongolia,and its ore prospecting orientation[J].Mineral Resources and Geology,2007,21(3):298-303.

[21]

王泉.内蒙古满洲里-新巴尔虎右旗铜银多金属成矿带地质特征、成矿模式及预测[D].吉林:吉林大学,2006. Wang Q.Geological characteristics,Metallogenic model and prognosis of Manzhouli-Xinbaerhuyouqi Cu,Ag,polymetal metallogenic belt in Inner Mongolia[D].Jilin:Jilin University,2006.

[22]

张海心.内蒙古乌奴格吐山铜钼矿床地质特征及成矿模式[D].长春:吉林大学,2006. Zhang H X.Geological characteristics and metallogenic model of the Wunugetushan porphyry Cu-Mo deposit,Inner Mongolia[D].Changchun:Jilin University,2006.

[23]

黄力军,刘瑞德,陆桂福,等.乌奴格吐山铜矿物化探异常特征及外围找矿[J].物探与化探,2004,28(5):418-420

,424. Huang L J,Liu R D,Lu G F,et al.Characteristics of geophysical and geochemical anomalies in the Wunugetushan copper deposit and ore prospecting work on the outskirts[J].Geophysical and Geochemical Exploration,2004,28(5):418-420,424.

[24]

秦克章,李惠民,李伟实,等.内蒙古乌奴格吐山斑岩铜钼矿床的成岩、成矿时代[J].地质论评,1999,45(2):180-185.

Chen K Z,Li H M,Li W S,et al.Intrusion and mineralization ages of the Wunugetushan porphyry Cu-Mo deposit,Inner Mongolia,Northwestrn China[J].Geological Review,1999,45(2):180-185.

[25]

陈殿芬,艾永德,李荫清,等.乌奴格吐山斑岩铜钼矿床中金属矿物的特征[J].岩石矿物学杂志,1996,15(4):59-63

,65-67. Chen D F,Ai Y D,Li Y Qet al.Characteristics of metallic minerals from the Wunugetushan porphyry copper-molybdenum deposit[J].Acta petrologica et mineralogica,1996,15(4):59-63,65-67.

[26]

秦克章,王之田.内蒙古乌奴格吐山铜-钼矿床稀土元素的行为及意义[J].地质学报,1993,67(4):323-335.

Qin K Z,Wang Z T.Rare earth element behaviour in the Wunugetushan Cu-Mo deposit,Inner Mongolia,its significance[J].Acta Geologica Sinica,1993,67(4):323-335.

[27]

金力夫,孙凤兴.内蒙乌奴格吐山斑岩铜钼矿床地质及深部预测[J].长春:长春地质学院学报,1990(1):61-67. Jin L F,Sun F X.Correlation between the northern southern ore sections in Wunugetushan porphyry copper deposit,inner Mongolia China[J].Changchun:Journal of Changchun University of Earth Science,1990

(1):61-67.

[28]

叶欣,王莉娟.乌奴格吐山斑岩铜钼矿床流体包裹体与成矿作用研究[J].地质与勘探,1989(6):14-21. Ye X,Wang L J.A study on fluid inclusion and metallogenesis of a porphyry Cu-Mo deposit, Urugetu Hill,Inner Mongolia,China[J].Geology and Exploration,1989

(6):14-21.

[29]

郭娜,刘栋,唐菊兴,等.基于短波红外技术的蚀变矿物特征及勘查模型——以斯弄多银铅锌矿床为例[J].矿床地质,2018,37(3):556-570.

Guo N,Liu D,Tang J X,et al.Characteristics of alteration minerals and prospecting model revealed by shortwave infrared technique:Take Sinongduo Ag-Pb-Zn deposit as an example[J].Mineral Deposits,2018,37(3):556-570.

[30]

The Specatral Geolgist software help of common minerals.

[31]

黄一入,郭娜,郑龙,等.基于遥感短波红外技术的三维蚀变填图——以低硫化浅成低温热液型矿床斯弄多为例[J].地球学报,2017,38(5):779-789.

Huang Y R,Guo N,Zheng L,et al.3D Geological alteration mapping based on remote sensing and shortwave infrared technology:A case study of the Sinongduo low-sulfidation epithermal deposit[J].Acta Geoscientica Sinica,2017,38(5):779-789.

[32]

彭自栋.甘肃岗岔金矿短波红外找矿应用及伊利石成因矿物学研究[D].北京:中国地质大学(北京),2015. Peng Z D.Short wave infrared and illite's genetic mineralogy study of gold deposit in Hezuo,Gansu Province[D].Beijing:China University of Geosciences (Beijing),2015.

[33]

郭娜.甲玛斑岩-矽卡岩型铜矿床蚀变矿物组合研究——基于高光谱短波红外技术[D].成都:成都理工大学,2012. Guo N.The altered mineral assemblage research in Jiama porphyry-skarn copper deposit-based on hyperspectral high frequency wave infrared technology[D].Chengdu:Chengdu University of Technology,2012.

[34]

Yang K,Huntington J F,Gemmell J B,et al.Variations in composition and abundance of white mica in the hydrothermal alteration system at Hellyer,Tasmania,as revealed by infrared reflectance spectroscopy[J].Journal of Geochemical Exploring,2011,108(2):143-156.

相似文献(共19条)

[1]

史维鑫, 易锦俊, 王浩, 田荣军. 马坑铁矿钻孔岩心红外光谱特征及蚀变分带特征研究. 岩矿测试, 2020, 39(6): 934-943. doi: 10.15898/j.cnki.11-2131/td.202005060004

[2]

李平, 马伟幸, 王蓓. 昌化芝麻地鸡血石物相鉴定. 岩矿测试, 2008, 27(1): 67-68.

[3]

李天顺, 李莉萍. 红外光谱定量测定硅灰石矿中矿物含量. 岩矿测试, 1992, (3): 232-235.

[4]

佟柏龄, 徐维并. 反射红外光谱法研究改性超滤膜. 岩矿测试, 1999, (2): 113-116.

[5]

乔鑫, 周征宇, 农佩臻, 赖萌, 李英搏, 郭恺鹏, 钟倩, 王含, 周彦. 贫碱结构水类型祖母绿红外光谱特征及其控制因素探究. 岩矿测试, 2019, 38(2): 169-178. doi: 10.15898/j.cnki.11-2131/td.201804070039

[6]

黄文清, 金绪广, 左锐, 晁东娟, 杨桂群, 薛盼, 陈小军, 张锦雯. 天然与合成紫晶的红外和偏振拉曼光谱鉴定特征. 岩矿测试, 2019, 38(4): 403-410. doi: 10.15898/j.cnki.11-2131/td.201807230087

[7]

宋中华, 陆太进, 苏隽, 柯捷, 唐诗, 李键, 高博, 张钧. 利用吸收和发光光谱技术分析高温高压天然富氢钻石的鉴定特征. 岩矿测试, 2018, 37(1): 64-69. doi: 10.15898/j.cnki.11-2131/td.201705040072

[8]

葛昌华, 梁华定, 潘富友. 2—(四氮唑偶氮)—5—二乙氨基苯甲酸的合成及光度法测定钒. 岩矿测试, 2003, (1): 40-43.

[9]

邵红, 刘相龙, 王大卫, 徐微雪. 壳聚糖和PDMDAAC改性膨润土用于处理含油废水的研究. 岩矿测试, 2014, 33(3): 431-437.

[10]

宋中华, 陆太进, 苏隽, 高博, 唐诗, 胡宁, 柯捷, 张钧. 无色-近无色高温高压合成钻石的谱图特征及其鉴别方法. 岩矿测试, 2016, 35(5): 496-504. doi: 10.15898/j.cnki.11-2131/td.2016.05.008

[11]

邢莹莹, 亓利剑, 王海涛. 秘鲁蓝色蛋白石矿物学性质及致色机理初探. 岩矿测试, 2017, 36(6): 608-613. doi: 10.15898/j.cnki.11-2131/td.201707250121

[12]

陈康, 纪广轩, 朱有峰, 张华川. 基于高光谱岩心扫描系统研究城门山铁路坎铜矿床的蚀变特征. 岩矿测试, 2020, 39(6): 944-953. doi: 10.15898/j.cnki.11-2131/td.202005060005

[13]

修连存, 郑志忠, 俞正奎, 黄俊杰, 陈春霞, 殷靓, 王弥建, 张秋宁, 黄宾, 修铁军, 吴萍. 近红外光谱仪测定岩石中蚀变矿物方法研究. 岩矿测试, 2009, 28(6): 519-523.

[14]

赵晨辉, 王成辉, 赵如意, 刘善宝, 饶娇萍, 刘武生, 张熊, 蒋金昌, 李挺杰. 广东大宝山铜矿英安斑岩的同位素组成与蚀变特征及其找矿意义. 岩矿测试, 2020, 39(6): 908-920. doi: 10.15898/j.cnki.11-2131/td.202007310107

[15]

刘云, 钱汉东, 季寿元. 黑云母的红外光谱研究. 岩矿测试, 1985, (4): 307-313.

[16]

陈国能, 彭卓伦, 杨志军. 硬玉微区显微红外光谱分析. 岩矿测试, 2006, 25(3): 226-228.

[17]

唐菊兴, 王成辉, 屈文俊, 杜安道, 应立娟, 高一鸣. 西藏玉龙斑岩铜钼矿辉钼矿铼-锇同位素定年及其成矿学意义. 岩矿测试, 2009, 28(3): 215-218.

[18]

富公勤. 云英岩的蚀变类型、蚀变带序和成岩格子. 岩矿测试, 1985, (2): 103-108.

[19]

丰成友, 李东生, 屈文俊, 杜安道, 王松, 苏生顺, 江军华. 青海祁漫塔格索拉吉尔矽卡岩型铜钼矿床辉钼矿铼-锇同位素定年及其地质意义. 岩矿测试, 2009, 28(3): 223-227.

计量
  • PDF下载量(21)
  • 文章访问量(576)
  • 被引次数(0)
目录

Figures And Tables

基于红外光谱技术的内蒙古乌奴格吐山斑岩铜钼矿蚀变和矿化特征研究

刘新星, 张弘, 张娟, 史维鑫, 张新乐, 成嘉伟, 卢克轩