【引用本文】 王冠, 戴婕, 王坤阳, 等. 应用能谱-扫描电镜分析铜矿床伴生元素的赋存状态[J]. 岩矿测试, 2021, 40(5): 659-669. doi: 10.15898/j.cnki.11-2131/td.202012240172
WANG Guan, DAI Jie, WANG Kun-yang, et al. Occurrence of Associated Elements in a Copper Mine by EDX-SEM[J]. Rock and Mineral Analysis, 2021, 40(5): 659-669. doi: 10.15898/j.cnki.11-2131/td.202012240172

应用能谱-扫描电镜分析铜矿床伴生元素的赋存状态

中国地质调查局成都地质调查中心, 四川 成都 610081

收稿日期: 2020-12-24  修回日期: 2021-03-25  接受日期: 2021-05-04

基金项目: 中国地质调查局地质调查项目"镍矿石中主次元素分析及铜矿成矿元素分析方法研究"(1212011120267)

作者简介: 王冠, 硕士, 高级工程师, 主要从事岩石矿物分析研究。E-mail: 38380020@qq.com

通信作者: 戴婕, 博士, 高级工程师, 主要从事矿物学、地球化学研究。E-mail: daijiegirl@163.com

Occurrence of Associated Elements in a Copper Mine by EDX-SEM

Chengdu Centre of Geological Survey, China Geological Survey, Chengdu 610081, China

Corresponding author: DAI Jie, daijiegirl@163.com

Received Date: 2020-12-24
Revised Date: 2021-03-25
Accepted Date: 2021-05-04

摘要:铜矿床中的伴生元素通常具有较高经济价值,其矿物颗粒细小,往往从微米级到纳米级,因此难以被发现和获得利用,进而导致无法系统地对其赋存状态进行研究。本文以“里伍式”铜矿床中的矿石矿物为研究对象,通过背散射图像、二次电子像观察以及X射线光谱点、线与面分析技术的相互佐证,获得铜矿床伴生元素矿物物相、形貌特征、赋存状态、定性/定量及分布规律等信息。实验中选取扫描电镜的加速电压20kV、发射电流10μA、能谱脉冲处理活时间100s,同时对样品前处理、测试过程中的关键技术进行详细探讨,形成了一套有效的分析铜矿床中有关伴生元素的能谱-扫描电镜(EDX-SEM)微区分析方法。应用该方法分析查明四川里伍铜矿床中金、银、钴、铋、硒等元素的赋存状态,这些元素以独立矿物存在或类质同象的形式分布在其他矿物中。通过对这些伴生元素赋存状态的研究,为矿物工业价值的认定、矿床资源评价、伴生元素的回收利用提供了微观依据,为矿山的开采、选矿以及冶炼工艺过程的制定提供了技术支撑。

关键词: 能谱-扫描电镜, 铜矿床, 伴生元素, 赋存状态, 类质同象

要点

(1) 建立了铜矿床伴生元素的赋存状态特征的能谱-扫描电镜分析方法,优化了实验条件。

(2) 通过背散射像、二次电子像观察以及能量色散X射线光谱点、线、面分析技术的相互佐证,解决了铜矿床中伴生元素不易观察的难题。

(3) 四川里伍铜矿床中金银钴铋硒等伴生元素以独立矿物存在或类质同象形式分布在其他矿物中,该成果为矿床的资源评价、选冶工艺提供了微观依据。

Occurrence of Associated Elements in a Copper Mine by EDX-SEM

ABSTRACT

BACKGROUND:

Associated elements in copper deposits are of high economic value. However, they are difficult to locate and utilize because of their fine (micrometer to nanometer) size.

OBJECTIVES:

To develop a method for determining the occurrence of associated elements in copper deposits.

METHODS:

Backscatter image, secondary electron image, X-ray spectrum point, line and mapping analysis technology were used to determine the mineral phases, morphological characteristics, occurrence, qualitative/quantitative and distribution laws of the associated elements of the copper deposit. The acceleration voltage of the scanning electron microscope was 20kV, the emission current was 10μA, and the energy spectrum dwelling time was 100s.

RESULTS:

The key technologies in the sample pretreatment and analysis were discussed in detail to form a set of effective analyses of copper deposits. The energy spectrum-scanning electron microscope (EDX-SEM) microanalysis method of associated elements was established. Gold, silver, cobalt, bismuth, and selenium were all distributed in other minerals in the form of independent minerals or isomorphic substitution.

CONCLUSIONS:

Through the study of the occurrence of the associated elements, a micro basis for the identification of mineral industrial value, mine resource evaluation, and the recovery and utilization of associated elements has been established, and provides technical support for mining, beneficiation and smelting formulation.

KEY WORDS: EDX-SEM, copper deposit, associated elements, occurrence, isomorphism

HIGHLIGHTS

(1) A EDX-SEM method to characterize the occurrence of associated elements in copper ores was established with optimized experimental conditions.

(2) The problem that associated elements in copper deposits were difficult to observe was solved by the techniques of backscattered image, secondary electron image observation and spot, line and mapping analyses of energy dispersive X-ray spectroscopy.

(3) Gold, silver, cobalt, bismuth, and selenium in the Liwu copper deposit occurred as the independent minerals or in the form of similar isomorphic substitution in other minerals. The research results provided microscopic evidence for the resource valuation of the deposit and the metallurgical process.

本文参考文献

[1]

关静芝, 景毅, 张贺群, 等. 某金铜矿工艺矿物学研究[J]. 吉林地质, 2019, 38(3): 72-77. doi: 10.3969/j.issn.1001-2427.2019.03.019

Guan J Z, Jing Y, Zhang H Q, et al. Process mineralogical study of a copper ore in Jilin Province[J].Jilin Geology, 2019, 38(3): 72-77. doi: 10.3969/j.issn.1001-2427.2019.03.019

[2]

宋磊, 周少珍. 铜尾矿中铜矿物综合回收影响因素分析[J]. 中国矿业, 2014, 23(Supplement 1): 178-180.

Song L, Zhou S Z. Influence factors analysis of separation recycling of copper minerals in copper tailings[J]. China Mining Magazine, 2014, 23(Supplement 1): 178-180.

[3]

许志华. 铜工艺矿物学[J]. 广东有色金属学报, 1999, 9(1): 1-8.

Xu Z H. Technological mineralogy of copper[J]. Transactions of Nonferrous Metals Society of Guangdong, 1999, 9(1): 1-8.

[4]

饶明生. 刚果(金)某难选氧化铜矿高效回收选矿工艺技术研究[J]. 中国金属通报, 2020, (3): 115-117. doi: 10.3969/j.issn.1672-1667.2020.03.072

Rao M S. Research on high-efficiency recovery and beneficiation technology of a refractory oxidized copper ore in the Democratic Republic of Congo[J].China Metal Bulletin, 2020, (3): 115-117. doi: 10.3969/j.issn.1672-1667.2020.03.072

[5]

严华山, 尹艳芬, 艾光华, 等. 某铜铅锌伴生金银多金属矿工艺矿物学研究[J]. 矿业研究与开发, 2015, 35(2): 32-36.

Yan H S, Yin Y F, Ai G H, et al. Process mineralogy research on a Cu-Pb-Zn polymetallic ore associated with gold and silver[J]. Mining Research and Development, 2015, 35(2): 32-36.

[6]

孔令采, 李正要. 赞比亚某铜矿石工艺矿物学研究[J]. 金属矿山, 2015, (1): 72-76.

Kong L C, Li Z Y. Study on process mineralogy for a copper ore in Zambia[J]. Metal Mine, 2015, (1): 72-76.

[7]

吴立毅, 王文民, 赵晓霞, 等. 基于火焰原子吸收法实现多金属原矿石中铅锌铜的测定[J]. 世界有色金属, 2018, (14): 196, 199.

Wu L Y, Wang W M, Zhao X X, et al. Determination of lead, zinc and copper in polymetallic ore by flame atomic absorption spectrometry[J]. World Nonferrous Metals, 2018, (14): 196, 199.

[8]

尹秀杰. 原子吸收分光光度法在矿石矿物分析中的运用[J]. 黑龙江科学, 2020, 11(10): 66-67. doi: 10.3969/j.issn.1674-8646.2020.10.029

Yin X J. Application of atomic absorption spectro-photometry in analysis of ore minerals[J].Heilongjiang Science, 2020, 11(10): 66-67. doi: 10.3969/j.issn.1674-8646.2020.10.029

[9]

刘烽, 吴骋, 吴广宇, 等. 微波消解-电感耦合等离子体原子发射光谱法测定高镍铸铁中硅锰磷铬镍铜[J]. 冶金分析, 2018, 38(5): 78-82.

Liu F, Wu C, Wu G Y, et al. Determination of silicon, manganese, phosphorus, chromium, nickel and copper in high nickel cast iron by inductively coupled plasma atomic emission spectrometry after microwave digestion[J]. Metallurgical Analysis, 2018, 38(5): 78-82.

[10]

李田义, 柯玲. 滤纸制样X射线荧光光谱法测定矿石中的多元素[J]. 岩矿测试, 2010, 29(1): 77-79. doi: 10.3969/j.issn.0254-5357.2010.01.018

Li T Y, Ke L. Determination of multi-elements in ore samples by X-ray fluorescence spectrometry with filter paper sample preparation[J]. Rock and Mineral Analysis, 2010, 29(1): 77-79. doi: 10.3969/j.issn.0254-5357.2010.01.018

[11]

王玲, 王明燕. 某铜矿山老尾矿中铜的赋存状态研究[J]. 有色金属(选矿部分), 2012, (6): 1-4. doi: 10.3969/j.issn.1671-9492.2012.06.001

Wang L, Wang M Y. Research on copper dissemination state from old tailings in a copper mine[J].Nonferrous Metals (Mineral Processing Section), 2012, (6): 1-4. doi: 10.3969/j.issn.1671-9492.2012.06.001

[12]

梁述廷, 刘玉纯, 刘瑱, 等. X射线荧光光谱微区分析在铜矿物类质同象鉴定中的应用[J]. 岩矿测试, 2015, 34(2): 201-206.

Liang S T, Liu Y C, Liu Z, et al. Application of in-situ micro-XRF spectrometry in the identification of copper minerals[J]. Rock and Mineral Analysis, 2015, 34(2): 201-206.

[13]

任小明, 蔡志伟. 提高扫描电镜能谱空间分辨率的方法研究[J]. 分析科学学报, 2020, 36(4): 579-583.

Ren X M, Cai Z W. Study on improving the spatial resolution of energy dispersive spectroscopy-mapping in scanning electron microscopy[J]. Journal of Analytical Science, 2020, 36(4): 579-583.

[14]

Sie S H, Griffin W L, Ryan C G, et al. The proton microprobe: A revolution in mineral analysis[J]. Nuclear Instruments and Methods in Physics Research.Section B: Beam Interactions with Materials and Atoms, 1991, 54: 281-291.

[15]

Wang K R, Zhou Y Q, Li F Q, et al. SPM and SEM study on the occurrence of micrograined gold in Jinya gold deposit, Guangxi[J]. Chinese Science Bulletin, 1992, 379220: 1906-1910.

[16]

任炽刚, 周世俊, 胡卫明, 等. 微米PIXE对含金矿样的分析[J]. 科学通报, 1991, 36(16): 1215-1217.

Ren C G, Zhou S J, Hu W M, et al. Micron PIXE on gold-bearing ore samples analysis[J]. Chinese Science Bulletin, 1991, 36(16): 1215-1217.

[17]

杨晓勇, 王奎仁, 戴小平, 等. 质子探针分析方法研究矿石中微细粒金的赋存状态——以皖中沙溪斑岩铜(金)矿床为例[J]. 高校地质学报, 1998, 4(1): 43-48.

Yang X Y, Wang K R, Dai X P, et al. Study on the occurrence of micrograined gold in minerals by application of proton and nuclear microprobes as exemplified by Shaxi porphyry copper and gold deposit Anhui[J]. Geological Journal of China Universities, 1998, 4(1): 43-48.

[18]

梁冬云, 邱显扬, 蒋英, 等. 天然铁锰氧化物负载金银规律性研究[J]. 有色金属(选矿部分), 2020, (4): 6-12. doi: 10.3969/j.issn.1671-9492.2020.04.002

Liang D Y, Qiu X Y, Jiang Y, et al. The gold and silver loading behavior study of natural iron-manganese oxides[J].Nonferrous Metals (Mineral Processing Section), 2020, (4): 6-12. doi: 10.3969/j.issn.1671-9492.2020.04.002

[19]

李遥, 邓小华, 吴艳爽, 等. 新疆哈密卡拉塔格块状硫化物矿床金银赋存状态研究[J]. 地学前缘, 2018, 25(5): 69-82.

Li Y, Deng X H, Wu Y S, et al. A study of the occurrences of gold and silver in the massive sulfide deposit in the Kalatagregion, NW China[J]. Earth Science Frontiers, 2018, 25(5): 69-82.

[20]

高知睿, 赵元艺, 曹冲, 等. 德兴铜矿堆浸场矿石矿物学、Cu伴生元素地球化学特征及意义[J]. 岩石矿物学杂志, 2017, 36(6): 785-799. doi: 10.3969/j.issn.1000-6524.2017.06.003

Gao Z R, Zhao Y Y, Cao C, et al. Ore mineralogy of the heap leaching field of the Dexing copper deposit and geochemistry of Cu and associated elements[J].Acta Petrologica Et Mineralogica, 2017, 36(6): 785-799. doi: 10.3969/j.issn.1000-6524.2017.06.003

[21]

戴婕, 徐金沙, 丁俊, 等. 四川甘孜江浪矿田里伍和黑牛洞铜矿床伴生金元素的赋存状态研究及成因探讨[J]. 矿物岩石, 2017, 37(1): 40-48. doi: 10.3969/j.issn.1007-2802.2017.01.005

Dai J, Xu J S, Ding J, et al. The study of occurrence state of associated gold and discussion of its genesis for Liwu and Heiniudong copper deposits, Janglang Dome, Sichuan[J].Mineral Petrology, 2017, 37(1): 40-48. doi: 10.3969/j.issn.1007-2802.2017.01.005

[22]

周姣花, 周晶, 牛睿, 等. 重砂分级-扫描电镜-能谱等技术研究湖南张家界黑色页岩贵金属元素赋存状态[J]. 岩矿测试, 2019, 38(6): 649-659.

Zhou J H, Zhou J, Niu R, et al. Study on occurrence of noble mental elements in black shale series in Zhangjiajie, Hunan Province by heavy placer classification-SEM-EDS and other techniques[J]. Rock and Mineral Analysis, 2019, 38(6): 649-659.

[23]

杨瑞林, 白燕. 应用能谱-扫描电镜和X射线衍射技术研究原煤伴生矿物中稀土和放射性元素赋存形式[J]. 岩矿测试, 2019, 30(4): 382-393.

Yang R L, Bai Y. The occurrence of rare earth and radioactive elements in the associated minerals with raw coal by EDX-SEM and XRD[J]. Rock and Mineral Analysis, 2019, 30(4): 382-393.

[24]

陈丽华,缪昕,于众. 扫描电镜在地质上的应用[M] . 北京: 科学出版社, 1986: 13

Chen L H,Miu X,Yu Z. Application of SEM in geology[M] . Beijing: Science Press, 1986: 13
[25]

戴婕, 孙传敏, 丁俊, 等. 四川九龙里伍铜矿主要矿石矿物扫描电镜能谱分析[J]. 沉积与特提斯地质, 2009, 29(4): 105-110.

Dai J, Sun C M, Ding J, et al. Scanning electron microscopy and energy dispersive spectrum analysis of the ore minerals from the Liwu copper deposit[J]. Sedimentary Geology and Tethyan Geology, 2009, 29(4): 105-110.

[26]

张达兵, 查寿才, 武鹏, 等. 云南大红山铜矿Ⅰ号矿带金赋存规律研究[J]. 矿产与地质, 2019, 33(5): 851-860. doi: 10.3969/j.issn.1001-5663.2019.05.012

Zhang D B, Zha S C, Wu P, et al. Study on the occurrence regularity of gold in the ore belt No.Ⅰ of Dahongshan copper deposit, Yunnan[J].Mineral Resources and Geology, 2019, 33(5): 851-860. doi: 10.3969/j.issn.1001-5663.2019.05.012

[27]

徐晓春, 季珂, 白茹玉, 等. 安徽宣城茶亭斑岩铜金矿床金的赋存状态及金铜成因联系[J]. 岩石矿物学杂志, 2018, 37(4): 575-589. doi: 10.3969/j.issn.1000-6524.2018.04.005

Xu X C, Ji K, Bai R Y, et al. Modes of occurrence of gold and genetic connection between gold and copper in the ores from the Chating porphyry copper-gold deposit, Xuancheng City, Anhui Province[J].Acta Petrologica Et Mineralogica, 2018, 37(4): 575-589. doi: 10.3969/j.issn.1000-6524.2018.04.005

[28]

冯浩轩, 申萍, 潘鸿迪, 等. 哈萨克斯坦努尔卡斯甘大型富金斑岩铜矿地质特征及金赋存状态[J]. 岩石学报, 2018, 34(3): 763-784.

Feng H X, Shen P, Pan H D, et al. Geological character-istics and occurrence of gold in the large Nurkazgan glod-rich porphyry copper deposit, Kazakhstan[J]. Acta Petrologica Sinica, 2018, 34(3): 763-784.

[29]

宋会侠, 郭国林, 焦学军, 等. 新疆包古图斑岩铜矿伴生元素金和银赋存状态初步研究[J]. 岩石矿物学杂志, 2007, 26(4): 329-334. doi: 10.3969/j.issn.1000-6524.2007.04.005

Song H X, Guo G L, Jiao X J, et al. A preliminary study of the modes of occurrence of associated Au and Ag in the Baogutu porphyry copper deposit, Xinjiang Autonomous Region, China[J].Acta Petrologica Et Mineralogica, 2007, 26(4): 329-334. doi: 10.3969/j.issn.1000-6524.2007.04.005

[30]

巴红飞, 许永权, 段景文, 等. 刚果(金)某低品位铜钴矿选矿工艺试验研究[J]. 湖南有色金属, 2019, 35(6): 17-23.

Ba H F, Xu Y G, Duan J W, et al. Separation test research on a low-grade copper-cobalt ore in D.R.C[J]. Hunan Nonferrous Metals, 2019, 35(6): 17-23.

[31]

穆彪. 蒙古某铜矿中钴的赋存状态[J]. 有色矿冶, 2014, 3(1): 8-10.

Mu B. The occurrence state of cobalt in copper ore for certain mine of Mongolia[J]. Non-Ferrous Mining and Metallurgy, 2014, 3(1): 8-10.

[32]

单连军, 穆彪. 非洲某铜矿石中钴难选因素的矿物学研究[J]. 矿产综合利用, 2015, (4): 49-52.

Shan L J, Mu B. Mineralogical study on the refractory factors of cobalt in a copper ore originated from Africa[J]. Multipurpose Utilization of Mineral Resources, 2015, (4): 49-52.

[33]

杨敏之. 红透山铜矿床氧化带内硒的地球化学及其资源环境利用方向[J]. 地质找矿论丛, 2004, 19(3): 143-146.

Yang M Z. Se Geochemistry in the oxidation of Hongtoushan Cu deposit and its resource -environmental recovery[J]. Contributions to Geology and Mineral Resources Research, 2004, 19(3): 143-146.

[34]

王濮,潘兆橹,翁玲宝. 系统矿物学[M] . 北京: 地质出版社, 1982: 274

Wang P,Pan Z L,Weng L B. System mineralogy[M] . Beijing: Geological Publishing House, 1982: 274

相似文献(共20条)

[1]

徐国栋, 王冠, 程江, 董随亮. 应用能谱扫描电镜与X射线衍射等分析技术研究西藏扎西康铅锌矿中伴生元素锰的赋存状态. 岩矿测试, 2014, 33(6): 808-812. doi: 10.15898/j.cnki.11-2131/td.2014.06.008

[2]

刘亚非, 赵慧博, 高志文, 来志庆. 应用偏光显微镜和电子探针技术研究安徽铜官山矽卡岩型铜铁矿床伴生元素金银铂钯铀的赋存状态. 岩矿测试, 2015, 34(2): 187-193. doi: 10.15898/j.cnki.11-2131/td.2015.02.006

[3]

梁述廷, 刘玉纯, 刘瑱, 林庆文, 刘志伟. X射线荧光光谱微区分析在铜矿物类质同象鉴定中的应用. 岩矿测试, 2015, 34(2): 201-206. doi: 10.15898/j.cnki.11-2131/td.2015.02.008

[4]

周姣花, 徐金沙, 牛睿, 周晶, 来佳仪. 利用扫描电镜和能谱技术研究四川会理铂钯矿床中的铂族矿物特征及铂族元素赋存状态. 岩矿测试, 2018, 37(2): 130-138. doi: 10.15898/j.cnki.11-2131/td.201605050114

[5]

戴婕, 徐金沙, 杜谷, 王坤阳. 利用扫描电镜-电子探针研究四川杨柳坪镍铜硫化物矿床铂钯的赋存状态及沉淀机制. 岩矿测试, 2015, 34(2): 161-168. doi: 10.15898/j.cnki.11-2131/td.2015.02.002

[6]

吴国义, 俞祖根. 用物相分析方法研究新疆某矿区铂钯赋存状态. 岩矿测试, 1994, (3): 185-188.

[7]

段凯波, 王登红, 熊先孝, 连卫, 高鹏, 王英林, 张杨. 贵州织金磷矿床中离子吸附型稀土的存在及初步定量. 岩矿测试, 2014, 33(1): 118-125.

[8]

甘树才, 周少红. 复杂钴矿石中钴镍赋存状态研究. 岩矿测试, 2000, (1): 42-44.

[9]

王志罡, 谢宏, 杨旭, 周忠容. 贵州铜仁坝黄磷矿中铀赋存状态的逐级化学提取研究. 岩矿测试, 2018, 37(3): 256-265. doi: 10.15898/j.cnki.11-2131/td.201710310172

[10]

周姣花, 周晶, 牛睿, 徐畅. 重砂分级-扫描电镜-能谱等技术研究湖南张家界黑色页岩贵金属元素赋存状态. 岩矿测试, 2019, 38(6): 649-659. doi: 10.15898/j.cnki.11-2131/td.201905090057

[11]

戴婕, 徐金沙, 潘晓东, 任静, 张茜. 微束分析技术在研究伴生金元素赋存状态中的应用. 岩矿测试, 2011, 30(6): 655-663.

[12]

姜赟赟, 来雅文, 段太成, 石厚礼. 长白山地区火山岩中稀土元素特征及赋存状态初探. 岩矿测试, 2013, 32(5): 825-831.

[13]

王坤阳, 杜谷. 利用原子力显微镜与能谱-扫描电镜研究页岩孔隙结构特征. 岩矿测试, 2020, 39(6): 839-846. doi: 10.15898/j.cnki.11-2131/td.202004180053

[14]

王芳, 朱丹, 鲁力, 魏均启, 潘诗洋. 应用电子探针分析技术研究某铌-稀土矿中铌和稀土元素的赋存状态. 岩矿测试, 2021, 40(5): 670-679. doi: 10.15898/j.cnki.11-2131/td.202006090086

[15]

丁帅帅, 郑刘根, 程桦. 电感耦合等离子体发射光谱-逐级化学提取法研究低硫煤矸石中微量元素的赋存状态及其环境效应. 岩矿测试, 2015, 34(6): 629-635. doi: 10.15898/j.cnki.11-2131/td.2015.06.005

[16]

万建军, 潘春蓉, 严杰, 康清清, 洪斌跃, 钟福军, 黄卉, 杜景勇, 严兆彬, 潘家永. 应用电子探针-扫描电镜研究陕西华阳川铀稀有多金属矿床稀土矿物特征. 岩矿测试, 2021, 40(1): 145-155. doi: 10.15898/j.cnki.11-2131/td.202005060009

[17]

甘树才, 来雅文, 付洪娥, 戚长谋. 峨嵋玄武岩铂钯赋存状态分析. 岩矿测试, 2003, (2): 121-123128.

[18]

杜安道, 孙亚莉. 等离子体质谱铼—锇同位素测年法研究及其应用. 岩矿测试, 1996, (4): 263-267.

[19]

王坤阳, 徐金沙, 饶华文, 裴眼路. 扫描电镜-X射线能谱仪在丹巴地区铂族矿物物相特征分析中的应用. 岩矿测试, 2013, 32(6): 924-930.

[20]

李志伟, 赵晓亮, 李珍, 王烨, 王君玉. 敞口酸熔-电感耦合等离子体发射光谱法测定稀有多金属矿选矿样品中的铌钽和伴生元素. 岩矿测试, 2017, 36(6): 594-600. doi: 10.15898/j.cnki.11-2131/td.201701030001

计量
  • PDF下载量(16)
  • 文章访问量(2784)
  • HTML全文浏览量(807)
  • 被引次数(0)
目录

Figures And Tables

应用能谱-扫描电镜分析铜矿床伴生元素的赋存状态

王冠, 戴婕, 王坤阳, 杨颖, 胡志中