中文核心期刊

中国科技核心期刊

CSCD来源期刊

DOAJ 收录

Scopus 收录

林建奇. 双通道-原子荧光光谱和固体进样-冷原子吸收光谱测定岩石中痕量汞[J]. 岩矿测试, 2021, 40(4): 512-521. DOI: 10.15898/j.cnki.11-2131/td.202006180093
引用本文: 林建奇. 双通道-原子荧光光谱和固体进样-冷原子吸收光谱测定岩石中痕量汞[J]. 岩矿测试, 2021, 40(4): 512-521. DOI: 10.15898/j.cnki.11-2131/td.202006180093
LIN Jian-qi. Determination of Trace Mercury in Rocks by Dual-channel Atomic Fluorescence Spectrometry and Solid Sampling-Cold Atomic Absorption Spectrometry[J]. Rock and Mineral Analysis, 2021, 40(4): 512-521. DOI: 10.15898/j.cnki.11-2131/td.202006180093
Citation: LIN Jian-qi. Determination of Trace Mercury in Rocks by Dual-channel Atomic Fluorescence Spectrometry and Solid Sampling-Cold Atomic Absorption Spectrometry[J]. Rock and Mineral Analysis, 2021, 40(4): 512-521. DOI: 10.15898/j.cnki.11-2131/td.202006180093

双通道-原子荧光光谱和固体进样-冷原子吸收光谱测定岩石中痕量汞

Determination of Trace Mercury in Rocks by Dual-channel Atomic Fluorescence Spectrometry and Solid Sampling-Cold Atomic Absorption Spectrometry

  • 摘要: 岩石中的痕量汞检测往往因内部晶胞结构复杂,使得热水浴酸解提取不彻底、挥发损失以及接触污染等引起结果偏差和不稳定。本文在前人研究的基础上,采用中国研制的双通道-原子荧光光谱仪和固体进样-冷原子吸收光谱仪分析岩石中的痕量汞,以探索最佳检测方案。双通道-原子荧光光谱分析中,优化的实验条件为:以80%王水溶液对样品沸水浴提取50min,灯电流30mA,负高压280V,载气流速600mL/min,屏蔽气流速1000mL/min。测定痕量汞浓度范围为0.05~2μg/L,线性相关系数r>0.999,取样量为0.2g下方法检出限为0.285μg/kg,相对标准偏差为7.3%~15.3%。固体进样-冷原子吸收法光谱分析中,避免了化学消解处理直接进样测定,主要实验条件为:载气流速180mL/min,裂解程序700℃保持60s。测定痕量汞浓度范围为0.05~5ng,线性相关系数r>0.999,取样量为0.1g下方法检出限为0.046μg/kg,相对标准偏差为1.3%~4.2%。通过实验结果对比表明,固体进样-冷原子吸收光谱法的操作性、检出限以及稳定性均优于双通道-原子荧光光谱法,更适用于岩石中的痕量汞测定。

     

    Abstract:
    BACKGROUNDThe detection of trace mercury in rocks typically provides biased and non-reliable results because of the complex internal unit cell structure, incomplete hot water bath acid hydrolysis extraction, volatilization loss, and contact pollution.
    OBJECTIVESTo establish a more effective method for the determination of trace mercury concentrations in rocks.
    METHODSDual-channel atomic fluorescence spectrometry (AFS) and domestic solid sampling-cold atomic absorption spectrometry (AAS) were used to detect the total concentration of trace mercury in rocks.
    RESULTSUnder the optimized conditions of dual-channel AFS, the samples were extracted in a boiling water bath with 80% aqua regia solution for 50min. The current was 30mA, the negative high voltage was 280V, the carrier gas flow was 600mL/min, and the shielding gas flow was 1000mL/min. The concentration range was 0.05-2μg/L, and the linear correlation coefficient was greater than 0.999. The sample weight was 0.2g, method detection limit was 0.285μg/kg, and relative standard deviation was 7.3%-15.3%. For domestic solid sampling-cold AAS, the sample was determined by direct injection without chemical digestion. The carrier gas flow was 180mL/min, pyrolysis process was conducted for 60s at 700℃. The concentration range was determined to be 0.05-5ng, and the linear correlation coefficient was greater than 0.999. The sample weight was 0.1g, method detection limit was 0.046μg/kg, and relative standard deviation was 1.3%-4.2%.
    CONCLUSIONSThe solid sampling-cold AAS was found to be more effective than dual-channel AFS in terms of operation, detection limit, and stability. It is more suitable for the determination of trace mercury in rocks.

     

/

返回文章
返回