【引用本文】 林建奇, . 双通道-原子荧光光谱和固体进样-冷原子吸收光谱测定岩石中痕量汞[J]. 岩矿测试, 2021, 40(4): 512-521. doi: 10.15898/j.cnki.11-2131/td.202006180093
LIN Jian-qi. Determination of Trace Mercury in Rocks by Dual-channel Atomic Fluorescence Spectrometry and Solid Sampling-Cold Atomic Absorption Spectrometry[J]. Rock and Mineral Analysis, 2021, 40(4): 512-521. doi: 10.15898/j.cnki.11-2131/td.202006180093

双通道-原子荧光光谱和固体进样-冷原子吸收光谱测定岩石中痕量汞

北京海光仪器有限公司, 北京 101312

收稿日期: 2020-06-18  修回日期: 2020-11-30  接受日期: 2021-05-28

基金项目: 国家重大科学仪器设备开发专项基金项目(2018YFF01013900)

作者简介: 林建奇, 硕士, 从事光谱仪器开发以及重金属分析方法研究。E-mail: 362282895@qq.com

Determination of Trace Mercury in Rocks by Dual-channel Atomic Fluorescence Spectrometry and Solid Sampling-Cold Atomic Absorption Spectrometry

Beijing Haiguang Instrument Co., LTD, Beijing 101312, China

Received Date: 2020-06-18
Revised Date: 2020-11-30
Accepted Date: 2021-05-28

摘要:岩石中的痕量汞检测往往因内部晶胞结构复杂,使得热水浴酸解提取不彻底、挥发损失以及接触污染等引起结果偏差和不稳定。本文在前人研究的基础上,采用中国研制的双通道-原子荧光光谱仪和固体进样-冷原子吸收光谱仪分析岩石中的痕量汞,以探索最佳检测方案。双通道-原子荧光光谱分析中,优化的实验条件为:以80%王水溶液对样品沸水浴提取50min,灯电流30mA,负高压280V,载气流速600mL/min,屏蔽气流速1000mL/min。测定痕量汞浓度范围为0.05~2μg/L,线性相关系数r>0.999,取样量为0.2g下方法检出限为0.285μg/kg,相对标准偏差为7.3%~15.3%。固体进样-冷原子吸收法光谱分析中,避免了化学消解处理直接进样测定,主要实验条件为:载气流速180mL/min,裂解程序700℃保持60s。测定痕量汞浓度范围为0.05~5ng,线性相关系数r>0.999,取样量为0.1g下方法检出限为0.046μg/kg,相对标准偏差为1.3%~4.2%。通过实验结果对比表明,固体进样-冷原子吸收光谱法的操作性、检出限以及稳定性均优于双通道-原子荧光光谱法,更适用于岩石中的痕量汞测定。

关键词: 岩石, 痕量汞, 双通道-原子荧光光谱法, 固体进样-冷原子吸收光谱法

要点

(1) 双通道-原子荧光光谱法检出限相比常规单通道原子荧光光谱法改善了42%。

(2) 固体进样-冷原子吸收光谱法解决了样品不易处理、挥发以及接触污染等问题,显著改善了检出限、记忆效应和稳定性。

(3) 固体进样-冷原子吸收光谱法仪器和国外产品性能相当,为其普及应用提供了依据。

Determination of Trace Mercury in Rocks by Dual-channel Atomic Fluorescence Spectrometry and Solid Sampling-Cold Atomic Absorption Spectrometry

ABSTRACT

BACKGROUND:

The detection of trace mercury in rocks typically provides biased and non-reliable results because of the complex internal unit cell structure, incomplete hot water bath acid hydrolysis extraction, volatilization loss, and contact pollution.

OBJECTIVES:

To establish a more effective method for the determination of trace mercury concentrations in rocks.

METHODS:

Dual-channel atomic fluorescence spectrometry (AFS) and domestic solid sampling-cold atomic absorption spectrometry (AAS) were used to detect the total concentration of trace mercury in rocks.

RESULTS:

Under the optimized conditions of dual-channel AFS, the samples were extracted in a boiling water bath with 80% aqua regia solution for 50min. The current was 30mA, the negative high voltage was 280V, the carrier gas flow was 600mL/min, and the shielding gas flow was 1000mL/min. The concentration range was 0.05-2μg/L, and the linear correlation coefficient was greater than 0.999. The sample weight was 0.2g, method detection limit was 0.285μg/kg, and relative standard deviation was 7.3%-15.3%. For domestic solid sampling-cold AAS, the sample was determined by direct injection without chemical digestion. The carrier gas flow was 180mL/min, pyrolysis process was conducted for 60s at 700℃. The concentration range was determined to be 0.05-5ng, and the linear correlation coefficient was greater than 0.999. The sample weight was 0.1g, method detection limit was 0.046μg/kg, and relative standard deviation was 1.3%-4.2%.

CONCLUSIONS:

The solid sampling-cold AAS was found to be more effective than dual-channel AFS in terms of operation, detection limit, and stability. It is more suitable for the determination of trace mercury in rocks.

KEY WORDS: rock, trace mercury, dual-channel atomic fluorescence spectrometry, solid sample-cold atomic absorption spectrometry

HIGHLIGHTS

(1) The detection limit of dual-channel atomic fluorescence spectrometry was significantly improved by 42% compared to that of conventional single-channel atomic fluorescence spectrometry.

(2) The solid sampling-cold atomic absorption spectrometry overcame the issues of difficult sample handling, volatilization, and contact pollution by significantly improving the detection limit, memory effect, and stability.

(3) The performance of a domestic solid sampling-cold atomic absorption spectrometry instrument is equivalent to that of foreign products, thereby promoting its commercialization and expansion of application scope.

本文参考文献

[1]

赵博, 张德会, 于蕾, 等. 从克拉克值到元素的地球化学性质或行为再到成矿作用[J]. 矿物岩石地球化学通报, 2014, 33(2): 252-261. doi: 10.3969/j.issn.1007-2802.2014.02.014

Zhao B, Zhang D H, Yu L, et al. From Clarke value to geochemical properties or behavior of elements to mineralization[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2014, 33(2): 252-261. doi: 10.3969/j.issn.1007-2802.2014.02.014

[2]

周子俣, 罗先熔, 文美兰, 等. 河南洛宁县石龙山多金属金矿区土壤热释汞测量及找矿预测[J]. 矿物岩石, 2018, 38(2): 49-58.

Zhou Z Y, Luo X R, Wen M L, et al. Soil thermomercury release survey and prospecting prediction of Shilongshan polymetallic gold deposit in Luoning County, Henan Province[J]. Mineralogy and Petrology, 2018, 38(2): 49-58.

[3]

边鹏. 汞的找矿指导作用[J]. 矿物学报, 2015, 35(Supplement 1): 566.

Bian P. Guiding role of mercury in ore prospecting[J]. Acta Mineralogica Sinica, 2015, 35(Supplement 1): 566.

[4]

李惠, 张国义, 禹斌, 等. 构造叠加晕找盲矿法及其在矿山深部找矿效果[J]. 地学前缘, 2010, 17(1): 287-293.

Li H, Zhang G Y, Yu B, et al. Structural super imposed halos method for prospeting blind or body in the deep of districts[J]. Earth Science Frontiers, 2010, 17(1): 287-293.

[5]

迟清华. 汞在地壳、岩石和疏松沉积物中的分布[J]. 地球化学, 2004, 33(6): 641-649. doi: 10.3321/j.issn:0379-1726.2004.06.013

Chi Q H. Distribution of mercury in the Earth's crust, rocks and loose sediments[J].Geochimica, 2004, 33(6): 641-649. doi: 10.3321/j.issn:0379-1726.2004.06.013

[6]

梁斌, 詹蔚. 探讨环境中冷原子吸收法对汞的测定[J]. 环境与发展, 2018, (2): 121, 123.

Liang B, Zhan W. Determination of mercury by cold atomic absorption spectrometry in the environment[J]. Environment and Development, 2018, (2): 121, 123.

[7]

张礼仲, 李文贵, 李岚, 等. ICP法与AA法测定铅、砷、汞的比对分析[J]. 食品安全导刊, 2017, (6): 67-69.

Zhang L Z, Li W G, Li L, et al. Comparative analysis of ICP method and AA method for determination of lead, arsenic and mercury[J]. China Food Safety Magazine, 2017, (6): 67-69.

[8]

巧宁强, 薛志伟, 王刚峰, 等. 索氏提取-原子荧光光谱法测定含油岩心中的汞和砷[J]. 岩矿测试, 2019, 38(4): 461-467.

Qiao N Q, Xue Z W, Wang G F, et al. Soxhlet extract-atomic fluorescence spectrometry for the determination of mercury and arsenic in oil-bearing cores[J]. Rock and Mineral Analysis, 2019, 38(4): 461-467.

[9]

陆迁树, 段文, 李发刚, 等. 冷原子汞发生-原子荧光光谱法测定地球化学样品中痕量汞[J]. 理化检验(化学分册), 2019, 55(3): 338-342.

Lu Q S, Duan W, Li F G, et al. Determination of trace mercury in geochemical samples by cold atomic mercury-atomic fluorescence spectrometry[J]. Physical Testing and Chemical Analysis(Part B: Chemical Analysis), 2019, 55(3): 338-342.

[10]

王谦, 郑琳, 任飞, 等. 悬浮液进样-全反射X射线荧光光谱法测定膏霜类化妆品中的铅、砷和汞[J]. 分析化学, 2018, 46(4): 517-523.

Wang Q, Zheng L, Ren F, et al. Determination of lead, arsenic and mercury in cream cosmetics by suspension sampling-total reflection X-ray fluorescence spectrometry[J]. Chinese Journal of Analytical Chemistry, 2018, 46(4): 517-523.

[11]

卢水淼, 李鹰, 李剑, 等. 电感耦合等离子体质谱法测定地表水中汞及其记忆效应的消除[J]. 理化检验(化学分册), 2019, 55(10): 1222-1224.

Lu S M, Li Y, Li J, et al. Determination of mercury and its memory effects in surface water by inductively coupled plasma mass spectrometry[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2019, 55(10): 1222-1224.

[12]

林少美, 林彩琴, 郑三燕, 等. 电感耦合等离子体质谱法测定苦丁茶中的铅、镉、砷、汞和铬[J]. 中国卫生检验杂志, 2020, (1): 18-20.

Lin S M, Lin C Q, Zheng S Y, et al. Determination of lead, cadmium, arsenic, mercury and chromium in Bittersweet tea by inductively coupled plasma mass spectrometry[J]. Chinese Journal of Health Laboratory Technology, 2020, (1): 18-20.

[13]

林海兰, 朱日龙, 于磊, 等. 水浴消解-原子荧光光谱法测定土壤和沉积物中砷、汞、硒、锑和铋[J]. 光谱学与光谱分析, 2020, 40(5): 1528-1533.

Lin H L, Zhu R L, Yu L, et al. Water bath digestion-determination of arsenic, mercury, selenium, antimony and bismuth in soil and sediment by atomic fluorescence spectrometry[J]. Spectroscopy and Spectral Analysis, 2020, 40(5): 1528-1533.

[14]

张宏康, 邵丹, 王中瑗, 等. 食品中痕量汞的检测方法研究进展[J]. 食品安全质量检测学报, 2019, 10(5): 1230-1235.

Zhang H K, Shao D, Wang Z Y, et al. Research progress on determination methods of trace mercury in food[J]. Journal of Food Safety & Quality, 2019, 10(5): 1230-1235.

[15]

杨常青, 萧达辉, 康菲, 等. 氧弹分解-原子荧光法快速测定煤中汞方法的改进[J]. 分析试验室, 2017, 36(10): 1184-1187.

Yang C Q, Xiao D H, Kang F, et al. An improved method for the rapid determination of mercury in coal by oxygen bomb decomposition and atomic fluorescence spectrometry[J]. Chinese Journal of Analysis Laboratory, 2017, 36(10): 1184-1187.

[16]

颜巧丽, 李悟庆, 刘天一, 等. 电感耦合等离子体质谱法测定汞元素校准曲线线性探讨[J]. 安徽农业科学, 2020, (11): 202-204. doi: 10.3969/j.issn.0517-6611.2020.11.056

Yang Q L, Li W Q, Liu T Y, et al. Determination of mercury calibration curve linearity by inductively coupled plasma mass spectrometry[J].Journal of Anhui Agricultural Sciences, 2020, (11): 202-204. doi: 10.3969/j.issn.0517-6611.2020.11.056

[17]

李耀磊, 金红宇, 韩笑, 等. 电感耦合等离子体质谱测定法中汞元素记忆效应与稳定性研究[J]. 中国药学杂志, 2019, 54(1): 53-57.

Li Y L, Jin H Y, Han X, et al. Memory effects and stability of mercury in inductively coupled plasma mass spectrometry[J]. Chinese Pharmaceutical Journal, 2019, 54(1): 53-57.

[18]

Linsa S S, Virgensa C F, dos Santosa W N L, et al. On-line solid phase extraction system using an ion imprinted polymer based on dithizone chelating for selective preconcentration and determination of mercury(Ⅱ) in natural waters by CV-AFS[J].Microchemical Journal, 2019, 150: 104075-104075. doi: 10.1016/j.microc.2019.104075

[19]

周慧君, 帅琴, 黄云杰, 等. 双硫腙改性氧化石墨烯/壳聚糖复合微球固相萃取在线富集-原子荧光光谱法测定地质样品中痕量汞[J]. 岩矿测试, 2017, 36(5): 474-480, 449.

Zhou H J, Shuai Q, Huang Y J, et al. Determination of trace mercury in geological samples by solid phase extraction with modified GO/Chitosan composite microsphere[J]. Rock and Mineral Analysis, 2017, 36(5): 474-480, 449.

[20]

乔磊, 叶永盛, 李鹰, 等. 固体直接进样-电热蒸发电感耦合等离子体质谱联用分析土壤中的重金属[J]. 岩矿测试, 2020, 39(1): 99-107.

Qiao L, Ye Y S, Li Y, et al. Analysis of heavy metals in soil by electrothermal evaporation inductively coupled plasma mass spectrometry with direct solid injection[J]. Rock and Mineral Analysis, 2020, 39(1): 99-107.

[21]

罗荣根. 应用固体测汞仪直接测定载金碳中的总汞[J]. 岩矿测试, 2016, 35(4): 420-424.

Luo R G. Direct determination of total mercury in gold-bearing carbon by solid mercury meter[J]. Rock and Mineral Analysis, 2016, 35(4): 420-424.

[22]

罗明贵, 谢毓群, 李通耀, 等. 固体进样直接测定法测定锌精矿中汞[J]. 冶金分析, 2020, 40(9): 57-62.

Luo M G, Xie Y Q, Li T Y, et al. Determination of mercury in zinc concentrate by direct solid injection method[J]. Metallurgical Analysis, 2020, 40(9): 57-62.

[23]

陆建平, 覃梦琳, 布静龙, 等. 分散液液微萃取-原子荧光光度法测定大米中的汞[J]. 光谱学与光谱分析, 2017, 37(11): 3606-3609.

Lu J P, Qin M L, Bu J L, et al. Determination of mercury in rice by dispersive liquid-liquid microextraction atomic fluorescence spectrometry[J]. Spectroscopy and Spectral Analysis, 2017, 37(11): 3606-3609.

[24]

李明章, 林建奇. 微波消解-原子荧光光谱法同时测定食醋中的砷和汞[J]. 理化检验(化学分册), 2016, 52(2): 222-225.

Li M Z, Lin J Q. Simultaneous determination of arsenic and mercury in vinegar by microwave digestion and atomic fluorescence spectrometry[J].Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2016, 52(2): 222-225.

[25]

李自强, 胡斯宪, 李小英, 等. 水浴浸提-氢化物发生-原子荧光光谱法同时测定土壤污染普查样品中砷和汞[J]. 理化检验(化学分册), 2018, 54(4): 480-483.

Li Z Q, Hu S X, Li X Y, et al. Simultaneous determination of arsenic and mercury in soil pollution census samples by water bath extraction hydride generation atomic fluorescence spectrometry[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2018, 54(4): 480-483.

[26]

谭丽娟, 唐玉霜, 黄利宁, 等. 氢化物发生-原子荧光光谱法测定1:5万区域地质调查样品中的As、Sb、Bi、Hg等4种元素[J]. 中国无机分析化学, 2019, 9(1): 19-23.

Tan L J, Tang Y S, Huang L N, et al. Determination of As, Sb, Bi and Hg in 1:50000 regional geological survey samples by hydride generation-atomic fluorescence spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2019, 9(1): 19-23.

[27]

李丹, 于静, 钱玉萍, 等. 氢化物发生原子荧光法测定陆地水中痕量汞[J]. 资源环境与工程, 2009, (6): 867-869.

Li D, Yu J, Qian Y P, et al. Determination of trace mercury in terrestrial water by hydride generation atomic fluorescence spectrometry[J]. Resources Environment & Engineering, 2009, (6): 867-869.

[28]

张馨予, 王劲榕. 氢化物发生-原子荧光光谱法测定纯铝中的痕量汞[J]. 云南冶金, 2011, 40(6): 53-56.

Zhang X Y, Wang J R. Determination of trace mercury in pure aluminum by hydride generation-atomic fluorescence spectrometry[J]. Yunnan Metallurgy, 2011, 40(6): 53-56.

[29]

张锦茂, 张勤. 冷原子无色散原子荧光法测定地球化学样品中的微量汞[J]. 岩矿测试, 1986, 15(1): 37-41.

Zhang J M, Zhang Q. Determination of trace mercury in geochemical samples by cold atom dispersion-free atomic fluorescence spectrometry[J]. Rock and Mineral Analysis, 1986, 15(1): 37-41.

[30]

余文丽, 王振生, 王小强, 等. 氢化物发生-原子荧光法测田螺中硒、汞[J]. 当代化工, 2020, (1): 204-207.

Yu W L, Wang Z S, Wang X Q, et al. Determination of selenium and mercury in snails by hydride generation-atomic fluorescence method[J]. Contemporary Chemical Industry, 2020, (1): 204-207.

[31]

林建奇. 直接进样测汞仪测定地质样品中汞的应用研究[J]. 地质装备, 2020, 21(2): 27-30.

Lin J Q. Study on the application of direct injection mercury detector in the determination of mercury in geological samples[J]. Equipment for Geotechnical Engineering, 2020, 21(2): 27-30.

[32]

路新燕, 陈纯, 高勇, 等. 固体进样-冷原子吸收法直接测定土壤中总汞[J]. 中国环境监测, 2016, 32(3): 126-128.

Lu X Y, Chen C, Gao Y, et al. Direct determination of total mercury in soil by solid sampling cold atomic absorption spectrometry[J]. Environmental Monitoring in China, 2016, 32(3): 126-128.

[33]

孙有娥, 李一辰, 程春艳, 等. 测汞仪固体直接进样测定土壤中总汞[J]. 化学分析计量, 2018, 27(6): 91-94.

Sun Y E, Li Y C, Cheng C Y, et al. Determination of total mercury in soil by solid direct injection mercury analyzer[J]. Chemical Analysis and Meterage, 2018, 27(6): 91-94.

[34]

宋姗娟, 刘彬, 赵颖, 等. 水浴消解-原子荧光法同时测定土壤中的汞、砷、硒、锑[J]. 土壤通报, 2020, 51(3): 630-633.

Song S J, Liu B, Zhao Y, et al. Simultaneous determination of mercury, arsenic, selenium and antimony in soil by water bath digestion atomic fluorescence spectrometry[J]. Soil Bulletin, 2020, 51(3): 630-633.

[35]

宋永刚, 于彩芬, 张玉凤, 等. 直接测汞仪与原子荧光法测定海洋底栖生物中痕量汞的对比研究[J]. 分析科学学报, 2016, 32(2): 288-290.

Song Y G, Yu C F, Zhang Y F, et al. Comparative study on the determination of trace mercury in marine benthos by direct mercury analyzer and atomic fluorescence spectrometry[J]. Journal of Analytical Science, 2016, 32(2): 288-290.

[36]

秦祎芳, 张红云, 高敬铭, 等. 原子荧光光谱法和快速测汞仪法测定粮食中汞的对比研究[J]. 食品科技, 2020, 45(8): 282-285.

Qin Y F, Zhang H Y, Gao J M, et al. Comparative study on determination of mercury in grain by atomic fluorescence spectrometry and rapid mercury analyzer[J]. Food Science and Technology, 2020, 45(8): 282-285.

[37]

宋永刚, 于彩芬, 张玉凤, 等. 脉红螺中痕量汞分析方法的研究[J]. 中国无机分析化学, 2016, 6(1): 1-5.

Song Y G, Yu C F, Zhang Y F, et al. Study on the analysis method of trace mercury in red snail[J]. Chinese Journal of Inorganic Analytical Chemistry, 2016, 6(1): 1-5.

相似文献(共20条)

[1]

崔德松. 铜-铜试剂分离富集-电感耦合等离子体发射光谱法测定地下水中痕量汞. 岩矿测试, 2011, 30(3): 321-324.

[2]

张激光, 邵文军, 刘晶晶. 石墨炉原子吸收光谱法测定岩石和土壤中痕量镉. 岩矿测试, 2008, 27(4): 310-312.

[3]

陈耀惠, 韩绍荣. 火焰原子吸收法测定岩石中痕量钡. 岩矿测试, 1990, (3): 201-203.

[4]

王龙山, 胡建平, 王光照, 郝辉. 偏硼酸锂熔矿-超声提取-电感耦合等离子体发射光谱法测定岩石水系沉积物土壤样品中硅铝铁等10种元素. 岩矿测试, 2008, 27(4): 287-290.

[5]

范凡, 张锦茂. 氢化物—原子荧光法测定岩石中痕量硒的干扰及消除. 岩矿测试, 1993, (4): 264-267.

[6]

沈毓琏. 离子交换分离富集无火焰原子吸收法测定岩石中痕量铂,钯,金. 岩矿测试, 1989, (4): 272-276.

[7]

张勤, 詹秀春, . 地质样品痕量氯溴和硫的X射线荧光光谱法测定. 岩矿测试, 2002, (1): 12-18.

[8]

李立武, 胡沛青, 张铭杰, 房玄, 杜丽. 岩石热脱气单体碳/氢同位素组成分析装置. 岩矿测试, 2005, (2): 135-137.

[9]

刘磊, 杨艳, 彭秀峰, 曹宏杰, 李海明. 微波消解-电感耦合等离子体发射光谱法测定岩石和矿物中的钼. 岩矿测试, 2011, 30(3): 318-320.

[10]

朱玉伦, 戴莺. 硼特效树脂分离分光光度法测定岩石矿物中痕量硼. 岩矿测试, 1989, (3): 204-207.

[11]

金秉慧, 王纪孝. 电化学分析法直接测定岩石矿物中的二价铁和三价铁. 岩矿测试, 1993, (4): 268-272.

[12]

任冬, 周小琳, 宗有银, 张廷忠. 封闭酸溶-盐酸羟胺还原ICP-MS法测定土壤沉积物岩石中的痕量碘. 岩矿测试, 2019, 38(6): 734-740. doi: 10.15898/j.cnki.11-2131/td.201901170009

[13]

刘晔, 第五春荣, 柳小明, 袁洪林. 密闭高温高压溶样ICP-MS测定56种国家地质标准物质中的36种痕量元素——对部分元素参考值修正和定值的探讨. 岩矿测试, 2013, 32(2): 221-228.

[14]

钱程. P350反相色层分离岩石中痕量锆和铪及其测定. 岩矿测试, 1989, (3): 161-164.

[15]

朱玉伦, 林猷璧. M17树脂对岩石中痕量硒碲的分离富集研究及应用. 岩矿测试, 1993, (2): 81-84.

[16]

曾惠芳, 戢朝玉. 资料@—感耦等离子体质谱法同时测定岩石中痕量元素的研究. 岩矿测试, 1995, (3): 173-179.

[17]

安庆骧, 巢志瑜. 同步辐射X射线荧光微探针测定岩石中的元素分布. 岩矿测试, 1991, (2): 84-88.

[18]

陈晔虞. 多元配合物分光光度法测定岩石中的铍. 岩矿测试, 1989, (2): 111-113.

[19]

李献华, 刘颖. 等离子体质谱测定岩石标准物质中痕量元素—对某些元素定值的探讨. 岩矿测试, 1998, (2): 112-116.

[20]

李玉珍, 饶竹. 哌啶树脂在富集分离中应用研究:I.岩石矿物中痕量银的分离富集及测定. 岩矿测试, 1990, (3): 198-200.

计量
  • PDF下载量(7)
  • 文章访问量(1007)
  • HTML全文浏览量(31)
  • 被引次数(0)
目录

Figures And Tables

双通道-原子荧光光谱和固体进样-冷原子吸收光谱测定岩石中痕量汞

林建奇