【引用本文】 叶陆芳, 宋小华, 余代顺, 等. 固相萃取掺氧空气-乙炔火焰原子吸收光谱法测定水和植物样品中的痕量镓[J]. 岩矿测试, 2020, 39(2): 243-250. doi: 10.15898/j.cnki.11-2131/td.201905280073
YE Lu-fang, SONG Xiao-hua, YU Dai-shun, et al. Determination of Trace Ga in Water and Plant Samples by O2-doped Air-Acetylene FAAS with Solid Phase Extraction Preconcentration[J]. Rock and Mineral Analysis, 2020, 39(2): 243-250. doi: 10.15898/j.cnki.11-2131/td.201905280073

固相萃取掺氧空气-乙炔火焰原子吸收光谱法测定水和植物样品中的痕量镓

湖北民族大学化学与环境工程学院, 湖北 恩施 445000

收稿日期: 2019-05-28  修回日期: 2019-09-11  接受日期: 2019-12-16

基金项目: 国家自然科学基金项目(21565013);大学生创新创业训练项目

作者简介: 叶陆芳, 在读本科生, 从事痕量分析及样品前处理技术研究。E-mail:2530335171@qq.com

通信作者: 吴少尉, 博士, 教授, 从事原子光谱/质谱联用分析技术研究。E-mail:2361130534@qq.com

Determination of Trace Ga in Water and Plant Samples by O2-doped Air-Acetylene FAAS with Solid Phase Extraction Preconcentration

College of Chemistry and Environmental Engineering, Hubei University for Nationalities, Enshi 445000, China

Corresponding author: WU Shao-wei, 2361130534@qq.com

Received Date: 2019-05-28
Revised Date: 2019-09-11
Accepted Date: 2019-12-16

摘要:目前研究萃取分离富集镓大多偏向在强酸性体系中,一定程度上给操作带来安全风险,另需耐酸器皿设备,易污染,空白背景值高。本文开发了一种在弱酸性条件下萃取分离富集痕量镓的方法。以大孔吸附树脂为载体,十六烷基三甲基溴化铵调节其表面极性,热固化负载2-乙基己基磷酸(2-乙基己基)酯,制备了镓的萃取树脂。动态考察了固相萃取镓的吸附容量,优化选择固相萃取分离富集条件,实验表明萃取条件温和,分离富集痕量镓效果理想。当溶液酸度为pH 2.5时,Ga(Ⅲ)达到最大的回收率99%,并确定了掺氧空气乙炔火焰原子吸收光谱法(FAAS)测定镓的最佳参数,提升了常规空气乙炔FAAS测定镓的灵敏度。方法检出限(3σ)为2.6ng/mL,相对标准偏差(RSD,n=7)为2.87%,加标回收率在95.7%~102.0%之间,理论富集倍数为40。本方法已应用于自来水、中药材和水培蔬菜样品中痕量镓的测定,简便、快速、可靠。

关键词: , 植物, , 固相萃取, 掺氧空气乙炔火焰, 原子吸收光谱法

要点

(1) 制备价廉的固相萃取介质。

(2) 在弱酸性体系中对痕量Ga进行固相萃取分离预富集前处理。

(3) 优化了固相萃取O2-空气-乙炔FAAS测定镓的方法,拓宽了FAAS使用范围。

Determination of Trace Ga in Water and Plant Samples by O2-doped Air-Acetylene FAAS with Solid Phase Extraction Preconcentration

ABSTRACT

BACKGROUND:

At present, research on the extraction separation and enrichment of gallium is mostly biased to the strong acidic system, which brings a safety risk to the operation and needs acid-proof apparatus. Furthermore, the procedure is easily contaminated, resulting in high background values.

OBJECTIVES:

To develop a method for extraction separation and preconcentration of trace Ga under weakly acidic condition.

METHODS:

Solid phase extraction medium for Ga was prepared by using modified large porous adsorption resin with cetyl-trimethyl-ammonium bromide and loading it with 2-ethylhexyl phosphonic acid-2-ethylhexyleste. The separation and enrichment conditions of solid phase extraction were studied in detail.

RESULTS:

Experiments showed that the separation and enrichment of trace gallium was ideal when the extraction conditions were mild. The maximum recovery (99%) of Ga was achieved in sample solution with pH of 2.5. The determination parameters of gallium were optimized for oxygen doped air-acetylene flame atomic absorption spectrometry (FAAS), and the sensitivity was improved on that of the current method. The detection limit of the overall method (3σ) was 2.6ng/mL by IUPAC definition and the relative standard deviation (RSD, n=7) was 2.87%. The recoveries for spiked solution ranged from 95.7% to 102.0%, and a theory enrichment factor of 40 was obtained.

CONCLUSIONS:

This method has been successfully applied to the determination of trace gallium in tap water, Chinese medicine and hydroponic vegetable samples. It is simple, quick and reliable.

KEY WORDS: water, plant, Ga, solid phase extraction, oxygen doped air acetylene flame, atomic absorption spectrometry

HIGHLIGHTS

(1) A cheap solid-phase extraction media was prepared.

(2) Preconcentration of trace Ga in weak acidic system by solid phase extraction was established.

(3) A method for determination of trace gallium by O2-air-C2H2 FAAS with solid phase extraction was established, and the application of FAAS was extended.

本文参考文献

[1]

Takekawa F, Kuroda R. Determination of gallium in geological materials by graphite-furnace atomic absorption spectrometry[J].Talanta, 1988, 35(9): 737-739. doi: 10.1016/0039-9140(88)80174-7

[2]

Kamat J V, Guin S K, Pillai J S, et al. Scope of detection and determination of gallium(Ⅲ) in industrial ground water by square wave anodic stripping voltammetry on bismuth film electrode[J].Talanta, 2011, 86: 256-265. doi: 10.1016/j.talanta.2011.09.010

[3]

郑路, 王治伦, 陈群, 等. "有机镓胶囊"治疗成人大骨节病的效果研究[J]. 中国地方病防治杂志, 2014, 29(4): 249-251.

Zheng L, Wang Z L, Chen Q, et al. Treatment effect of organic gallium capsule on the adult KBD[J]. Chinese Journal of Control of Endemic Diseases, 2014, 29(4): 249-251.

[4]

Thangavel S, Dash K, Dhavile S M, et al. Determination of traces of As, B, Bi, Ga, Ge, P, Pb, Sb, Se, Si and Te in high-purity nickel using inductively coupled plasma-optical emission spectrometry (ICP-OES)[J].Talanta, 2015, 131: 505-509. doi: 10.1016/j.talanta.2014.08.026

[5]

Santanade F A, Barbosa J T P, Matos G D, et al. Direct determination of gallium in bauxite employing ICP-OES using the reference element technique for interference elimination[J].Microchemical Journal, 2013, 110: 198-201. doi: 10.1016/j.microc.2013.03.011

[6]

文加波, 商丹, 宋婉虹, 等. 电感耦合等离子体发射光谱法测定铝土矿中镓——酸溶和碱熔预处理方法比较[J]. 岩矿测试, 2011, 30(4): 481-485. doi: 10.3969/j.issn.0254-5357.2011.04.019

Wen J B, Shang D, Song W H, et al. Quantification of gallium in bauxites by inductively coupled plasma-atomic emission spectrometry-Comparison of sample pretreatment methods between alkali fusion and acid dissolution[J]. Rock and Mineral Analysis, 2011, 30(4): 481-485. doi: 10.3969/j.issn.0254-5357.2011.04.019

[7]

周含英, 周方钦, 白祖海, 等. 镓-槲皮素的分光光度法研究与应用[J]. 分析科学学报, 2005, 21(1): 107-108. doi: 10.3969/j.issn.1006-6144.2005.01.033

Zhou H Y, Zhou F Q, Bai Z H, et al. Study on gallium-quercetin complex spectrophotometry for the determination of gallium in Chinese herhal medicine[J].Journal of Analytical Science, 2005, 21(1): 107-108. doi: 10.3969/j.issn.1006-6144.2005.01.033

[8]

乐淑葵. 催化分光光度法测定地质样品中微量镓[J]. 中国无机分析化学, 2018, 8(3): 12-15. doi: 10.3969/j.issn.2095-1035.2018.03.004

Le S K. Determination of trace gallium in geological samples by catalytic photometric method[J].Chinese Journal of Inorganic Analytical Chemistry, 2018, 8(3): 12-15. doi: 10.3969/j.issn.2095-1035.2018.03.004

[9]

罗道成, 罗铸. 萃取富集-8-羟基喹啉显色光度法测定赤泥中微量Ga(Ⅲ)[J]. 分析科学学报, 2015, 31(6): 805-808.

Luo D C, Luo Z. Spectrophotometric determination of micro Ga in red mud[J]. Journal of Analytical Science, 2015, 31(6): 805-808.

[10]

米瑞华. 稼的原子吸收光谱分析进展[J]. 岩矿测试, 1996, 15(1): 53-55.

Mi R H. Advances in AAS determination of gallium[J]. Rock and Mineral Analysis, 1996, 15(1): 53-55.

[11]

Ma D, Okamoto Y, Kumamaru T, et al. Determination of gallium by graphite furnace atomic absorption spectrometry with combined use of a tungsten-coated L'vov platform tube and a chemical modification technique[J]. Analytical Chimica Acta, 1999, (390): 201-206.

[12]

Lopez-Garcia I, Campillo N, Arnau-Jerez I, et al. ETAAS determination of gallium in soils using slurry sampling[J].Journal of Analytical Atomic Spectrometry, 2004, 19(7): 935-937. doi: 10.1039/B401317D

[13]

Nie X D, Liang Y Z, Tang Y G, et al. Determination of trace elements in high purity nickel by high resolution inductively coupled plasma mass spectrometry[J].Journal of Central South University, 2012, 19(9): 2416-2420. doi: 10.1007/s11771-012-1290-0

[14]

唐碧玉, 施意华, 杨仲平, 等. 灰化酸溶-电感耦合等离子体质谱法测定煤炭中的镓锗铟[J]. 岩矿测试, 2018, 37(4): 371-378.

Tang B Y, Shi Y H, Yang Z P, et al. Determination of gallium, germanium and indium in coal by inductively coupled plasma-mass spectrometry with ashing acid digestion[J]. Rock and Mineral Analysis, 2018, 37(4): 371-378.

[15]

Filella M, Rodushkin I. A concise guide for the determination of less-studied technology-critical elements (Nb, Ta, Ga, In, Ge, Te) by inductively coupled plasma mass spectrometry in environmental samples[J].Spectrochimica Acta Part B:Atomic Spectroscopy, 2018, 141: 80-84. doi: 10.1016/j.sab.2018.01.004

[16]

Chevallier E, Chekri R, Zinck J, et al. Simultaneous determination of 31 elements in foodstuffs by ICP-MS after closed-vessel microwave digestion:Method validation based on the accuracy profile[J].Journal of Food Composition and Analysis, 2015, 41: 35-41. doi: 10.1016/j.jfca.2014.12.024

[17]

高贺凤, 王超, 张立纲, 等. 电感耦合等离子体质谱法精确测定地质样品中的微量元素镓[J]. 岩矿测试, 2013, 32(5): 709-714. doi: 10.3969/j.issn.0254-5357.2013.05.006

Gao H F, Wang C, Zhang L G, et al. Accurate determination of trace gallium in geological samples by inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2013, 32(5): 709-714. doi: 10.3969/j.issn.0254-5357.2013.05.006

[18]

李国榕, 王亚平, 孙元方, 等. 电感耦合等离子体质谱法测定地质样品中稀散元素铬镓铟碲铊[J]. 岩矿测试, 2010, 29(3): 255-258. doi: 10.3969/j.issn.0254-5357.2010.03.012

Li G R, Wang Y P, Sun Y F, et al. Determination of Cr, Ga, In, Te and Tl in geological samples by inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2010, 29(3): 255-258. doi: 10.3969/j.issn.0254-5357.2010.03.012

[19]

Filatova D G, Seregina I F, Foteeva L S, et al. Determination of gallium originated from a gallium-based anticancer drug in human urine using ICP-MS[J].Analytical and Bioanalytical Chemistry, 2011, 400(3): 709-714. doi: 10.1007/s00216-011-4791-z

[20]

邱德仁. 原子光谱分析[M] . 上海: 复旦大学出版社, 2002: 367

Qiu D R. Atomic Spectrometry Analysis[M] . Shanghai: Fudan University Press, 2002: 367
[21]

Wu S W, Zheng X X. Measurement of the O2-air-C2H2 flame temperature by a two-line atomic absorption way of gallium[J].Metallurgical Analysis, 2010, 30(12): 26-29.

[22]

武新宇.酸性介质中镓的吸附和萃取性质及回收工艺研究[D].西安: 长安大学, 2014.

Wu X Y.Study on the Sorption and Extraction Properties of Gallium in Acidic Medium and Its Recovery Technology[D].Xi'an: Chang'an University, 2014.

[23]

Hasanin T H A, Okamoto Y, Fujiwara T, et al. A flow method based on solvent extraction coupled on-line to a reversed micellar mediated chemiluminescence detection for selective determination of gold(Ⅲ) and gallium(Ⅲ) in water and industrial samples[J].Talanta, 2016, 148: 700-706. doi: 10.1016/j.talanta.2015.04.045

[24]

董学林, 何海洋. 泡沫塑料吸附分离富集-电感耦合等离子体质谱法测定稀土矿石中的镓[J]. 岩矿测试, 2016, 35(1): 42-47.

Dong X L, He H Y. Determination of gallium in rare earth ore by inductively coupled plasma-mass spectrometry using polyurethane foam pre-concentration/separation[J]. Rock and Mineral Analysis, 2016, 35(1): 42-47.

[25]

Hassanien M M, Mortada W I, Kenawy I M, et al. Solid phase extraction and preconcentration of trace gallium, indium, and thallium using new modified amino silica[J]. Applied Spectroscopy, 2017, 71(2): 288-299.

[26]

Amin A S, Moalla S M N. Utility of solid phase extraction for UV-visible spectrophotometric determination of gallium in environmental and biological samples[J].RSC Advances, 2016, 6(3): 1938-1944. doi: 10.1039/C5RA21368A

[27]

Anthemidis A. Gallium trace on-line preconcentration/separation and determination using a polyurethane foam mini-column and flame atomic absorption spectrometry:Application in aluminum alloys, natural waters and urine[J].Talanta, 2003, 60(5): 929-936. doi: 10.1016/S0039-9140(03)00156-5

[28]

Gong Q, Wei X L, Wu J N, et al. A solid phase extraction method for determination of trace gallium in aluminum-iron samples by atomic spectrometry[J].Journal of Analytical Atomic Spectrometry, 2012, 27(11): 1920-1927. doi: 10.1039/c2ja30208j

[29]

Zhang Z H, Zhang H B, Hu Y F, et al. Novel surface molecularly imprinted material modified multi-walled carbon nanotubes as solid-phase extraction sorbent for selective extraction gallium ion from fly ash[J].Talanta, 2010, 82(1): 304-311. doi: 10.1016/j.talanta.2010.04.038

[30]

班俊生, 任俊涛. 地质样品中痕量镓的磷酸三丁酯纤维棉富集及其在电感耦合等离子体原子发射光谱法测定中的应用[J]. 冶金分析, 2013, 33(8): 68-71. doi: 10.3969/j.issn.1000-7571.2013.08.015

Ban J S, Ren J T. Enrichment of trace gallium in geological sample by tributyl phosphate cellucotton and its application in ICP-AES determination[J].Metallurgical Analysis, 2013, 33(8): 68-71. doi: 10.3969/j.issn.1000-7571.2013.08.015

[31]

《岩石矿物分析》编委会.岩石矿物分析(第四版第一分册)[M].北京: 地质出版社, 2011: 724.

The Editorial Committee of < Rock and Mineral Analysis>.Rock and Mineral Analysis (The Fourth Edition: Vol.Ⅰ)[M].Beijing: Geological Publishing House, 2011: 724.

相似文献(共20条)

[1]

齐璐璐, 赵会芹, 陈子学, 郑育锁, 孟凡辉, 肖波, 张颖. 连续光源原子吸收光谱法测定土壤水溶性盐中钙镁. 岩矿测试, 2008, 27(2): 95-98.

[2]

黄园英, 吴淑琪, 佟玲, 张玲金. 土壤中持久性有机污染物分析的前处理方法. 岩矿测试, 2008, 27(2): 81-86.

[3]

孙玮琳, 沈斌, 汪双清, 龚迎莉. 自然水体和土壤中氯代烃和芳香烃类化合物分析测试方法研究. 岩矿测试, 2008, 27(3): 174-178.

[4]

王增焕, 王许诺, 谷阳光, 陈瑛娜. 疏水性螯合物固相萃取-原子吸收光谱法测定海水中5种重金属. 岩矿测试, 2017, 36(4): 360-366. doi: 10.15898/j.cnki.11-2131/td.201701200011

[5]

德国耶拿分析仪器股份公司. 连续光源火焰原子吸收法应用报告——发射模式连续光源原子吸收光谱法测定饮用水中的钠钾锂. 岩矿测试, 2007, 26(5): 文后I-文后I.

[6]

汪雨, 刘晓端. 高分辨连续光源原子吸收光谱法测定植物中的磷. 岩矿测试, 2009, 28(2): 113-118.

[7]

吴少蔚, , 刘汉东. 掺氧空气—乙炔火焰原子吸收光谱法测定地质样品中微量钡. 岩矿测试, 2002, (3): 187-189.

[8]

杨明, 葛文, 陈文武, 吴少尉, 金萍, 汤志勇. 富氧空气-乙炔火焰原子吸收光谱法测定地质样品中的钒. 岩矿测试, 2003, (4): 300-302.

[9]

刘金, 彭元, 陈红梅, 程先忠. 鸡蛋膜固相萃取-石墨炉原子吸收光谱法测定水样中的微量铅. 岩矿测试, 2012, 31(5): 872-876.

[10]

沈亚婷. 土壤溶解性有机质对植物吸收-输送-贮存重金属的影响研究现状与进展. 岩矿测试, 2012, 31(4): 571-575.

[11]

周慧君, 帅琴, 黄云杰, 汤志勇, 曾梦. 双硫腙改性氧化石墨烯/壳聚糖复合微球固相萃取在线富集-原子荧光光谱法测定地质样品中痕量汞. 岩矿测试, 2017, 36(5): 474-480. doi: 10.15898/j.cnki.11-2131/td.201703010024

[12]

王磊, 刘庆学, 安彩秀, 高希娟, 刘金巍, 李娜. 柱前衍生-气相色谱法同时测定水中醛酮类和硝基苯类化合物. 岩矿测试, 2010, 29(5): 486-490.

[13]

彭红卫, 张佩瑜. 悬浮液进样石墨炉原子吸收光谱法测定地质样品中痕量镓和铊. 岩矿测试, 1994, (2): 96-100.

[14]

谢文明, 陈明, 张玲金, 范志先. 固相萃取—高效液相色谱法快速测定土壤及水中莠去津. 岩矿测试, 2003, (2): 93-97.

[15]

邢谦, 董迈青, 谢海东. 火焰原子吸收光谱法测定天青石中锶. 岩矿测试, 2008, 27(4): 313-315.

[16]

金泽祥, 汤志勇. 萃取富集—ICP—AES测定地质样品中痕量镓铟铊. 岩矿测试, 1991, (2): 100-102.

[17]

赵慧玲, 刘建. 泡塑吸附分离萃取光度法测定粉煤灰中的镓. 岩矿测试, 2010, 29(4): 465-468.

[18]

蔡述伟. 黄原酯棉富集—冷原子吸收法测定水和地质.... 岩矿测试, 1992, (4): 348-349353.

[19]

张秀荣, 单孝全. 悬浮液进样—石墨炉原子吸收测定钒钛磁铁矿中痕量镓. 岩矿测试, 1997, (1): 60-64.

[20]

黄靖, 王英滨, 周冠轩, 马真乾. 微波消解-电感耦合等离子体发射光谱法测定粉煤灰中的镓. 岩矿测试, 2020, 39(1): 92-98. doi: 10.15898/j.cnki.11-2131/td.201905190065

计量
  • PDF下载量(6)
  • 文章访问量(202)
  • HTML全文浏览量(60)
  • 被引次数(0)
目录

Figures And Tables

固相萃取掺氧空气-乙炔火焰原子吸收光谱法测定水和植物样品中的痕量镓

叶陆芳, 宋小华, 余代顺, 杨小慢, 谢文根, 吴少尉