【引用本文】 营娇龙, 秦晓鹏, 郎杭, 等. 超高效液相色谱-串联质谱法同时测定水体中37种典型抗生素[J]. 岩矿测试, 2022, 41(3): 394-403. doi: 10.15898/j.cnki.11-2131/td.202111060168
YING Jiaolong, QIN Xiaopeng, LANG Hang, et al. Determination of 37 Typical Antibiotics by Liquid Chromatography-Triple Quadrupole Mass Spectrometry[J]. Rock and Mineral Analysis, 2022, 41(3): 394-403. doi: 10.15898/j.cnki.11-2131/td.202111060168

超高效液相色谱-串联质谱法同时测定水体中37种典型抗生素

1. 

中国地质大学(北京)水资源与环境学院,水资源与环境工程北京市重点实验室,北京 100083

2. 

生态环境部土壤与农业农村生态环境监管技术中心,北京 100012

3. 

中国水利水电科学研究院,北京 100038

4. 

首都师范大学附属中学永定分校,北京 102308

收稿日期: 2021-11-06  修回日期: 2021-12-23  接受日期: 2022-01-27

基金项目: 国家自然科学基金重点基金“典型抗生素对地下水系统中反硝化过程的影响机理研究”(41731282);中国地质调查局地质调查项目“地下水中有机污染组分对补给方式的响应——水样测试分析质量控制”(DD20190323)

作者简介: 营娇龙,博士研究生,水文地质学专业。E-mail:294217015@qq.com

通信作者: 刘菲,博士,教授,从事有机物污染监测与地下水污染治理研究。E-mail: feiliu@cugb.edu.cn

Determination of 37 Typical Antibiotics by Liquid Chromatography-Triple Quadrupole Mass Spectrometry

1. 

Beijing Key Laboratory of Water Resources and Environmental Engineering, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China

2. 

Technical Centre for Soil, Agricultural and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China

3. 

China Institute of Water Resources and Hydropower Research, Beijing 100038, China

4. 

Yongding Middle School Affiliated to Capital Normal University, Beijing 102308, China

Corresponding author: LIU Fei, feiliu@cugb.edu.cn

Received Date: 2021-11-06
Revised Date: 2021-12-23
Accepted Date: 2022-01-27

摘要:目前抗生素的环境检出受到人们的广泛关注,但能够同时测试地表水和地下水中七大类抗生素的方法仍较为缺乏。本文采用超高效液相色谱-串联三重四极杆质谱法(UPLC-MS/MS),建立了同时测定地表水和地下水中磺胺类、四环素类、大环内酯类、喹诺酮类、氯霉素类、β-内酰胺类和其他类共七大类37种抗生素的分析方法。该方法对水中抗生素有较好的富集作用及灵敏度,检出限为0.6~10.6ng/L,基质加标回收率大多为60%~130%。采用本方法测定了北京市永定河地表水、潮白河地表水及潮白河流域地下水中的抗生素。结果表明:永定河地表水中以磺胺类、喹诺酮类和大环内酯类为主,检出率分别为88.9%、55.6%和33.3%,其中氧氟沙星的最大值为111.9ng/L;潮白河地表水中磺胺类、喹诺酮类和氯霉素类抗生素的检出率均为100%,其中替米考星的浓度高达71.6ng/L;潮白河流域地下水中以磺胺类、喹诺酮类和β-内酰胺类抗生素为主,检出率分别为66.7%、55.6%和22.2%,磺胺嘧啶的最大值为69.3ng/L。污水处理厂附近样品中抗生素的检出率及浓度均明显高于其他点位。本研究建立的方法简单、快速、准确,为地表水和地下水中的抗生素监测提供方法支撑,为水资源的合理利用及水中新污染物的治理提供了科学依据。

关键词: 抗生素, 超高效液相色谱-串联三重四极杆质谱法, 地下水, 地表水, 北京市

要点

(1) 建立的UPLC-MS/MS同时定量测试七大类37种抗生素的方法,可应用于地表水和地下水中抗生素的检测。

(2) 该方法应用于北京市永定河地表水、潮白河地表水与潮白河流域地下水中抗生素的检测,均有不同程度的检出。

(3) 污水处理厂附近地表水和地下水中抗生素含量相对较高。

Determination of 37 Typical Antibiotics by Liquid Chromatography-Triple Quadrupole Mass Spectrometry

ABSTRACT

BACKGROUND:

Currently, the environmental detection of antibiotics is receiving extensive attention, but there is still a lack of methods that can simultaneously analyze seven categories of antibiotics in surface water and groundwater.

OBJECTIVES:

To establish a method that can detect thirty-seven antibiotics (15 sulfonamides, 2 tetracyclines, 3 macrolides, 8 quinolones, 2 chloramphenicols, 2 β-lactams and 5 other kinds) simultaneously.

METHODS:

Solid phase extraction coupled with ultra-performance liquid chromatography-triple quadrupole mass spectrometry (UPLC-MS/MS) was used to quantify the concentration of antibiotics.

RESULTS:

The method had good sensitivity and enrichment effect for the surface water and groundwater, the recoveries ranged from 60% to 130%, the detection limits ranged from 0.6 to 10.6ng/L. The method was applied to the determination of antibiotics in surface water of the Yongding and Chaobai Rivers, and groundwater of the Chaobai River in Beijing. Sulfonamides, quinolones and macrolides were the main antibiotics in the surface water of the Yongding River, and the detection rates were 88.9%, 55.6% and 33.3%, respectively. The highest concentration of floxacin was 111.9ng/L. Sulfonamides, quinolones and chloramphenicols were the main antibiotics in the surface water of the Chaobai River with detection rates of 100%. The highest concentration of tilmicosin was 71.6ng/L. Sulfonamides, quinolones and β-lactams antibiotics were the main antibiotics in the groundwater of the Chaobai River Basin, and the detection rates of were 66.7%, 55.6% and 22.2%, respectively. The highest concentration of sulfadiazine was 69.3ng/L. In both surface water and groundwater, the detection rate and concentration near the sewage treatment plant were significantly higher than those at other points.

CONCLUSIONS:

The method established in this study is simple, rapid and accurate, which can be used for the simultaneous determination of 37 antibiotics in seven categories in surface water and groundwater. It provides antibiotic analysis method support for surface water and groundwater investigation, and provides a scientific basis for rational utilization of water resources and management of new pollutants in water.

KEY WORDS: antibiotic, ultra performance liquid chromatography-triple quadrupole-mass spectrometry, groundwater, surface water, Beijing City

HIGHLIGHTS

(1) A method for simultaneous determination of 37 antibiotics by ultra-performance liquid chromatography-triple quadrupole mass spectrometry (UPLC-MS/MS) was established, which can be applied to the detection of antibiotics in surface water and groundwater simultaneously.

(2) The method was applied to the detection of antibiotics in surface water of the Yongding River, and surface water and groundwater of the Chaobai River in Beijing, whose antibiotics were detected in different levels.

(3) The concentration of antibiotics near the sewage treatment plant was relatively high.

本文参考文献

[1]

祁彦洁, 刘菲. 地下水中抗生素污染检测分析研究进展[J]. 岩矿测试, 2014, 33(1): 1-11. doi: 10.3969/j.issn.0254-5357.2014.01.002

Qi Y J, Liu F. Analysis of antibiotics in groundwater: A review[J]. Rock and Mineral Analysis, 2014, 33(1): 1-11. doi: 10.3969/j.issn.0254-5357.2014.01.002

[2]

Huang F Y, An Z Y, Moran M J, et al. Recognition of typical antibiotic residues in environmental media related to groundwater in China (2009—2019)[J].Journal of Hazardous Materials, 2020, 399: 122813. doi: 10.1016/j.jhazmat.2020.122813

[3]

Zhang Q Q, Ying G G, Pan C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance[J].Environmental Science & Technology, 2015, 49(11): 6772-6782.

[4]

Hagenbuch I M, Pinckney J L. Toxic effect of the combined antibiotics ciprofloxacin, lincomycin, and tylosin on two species of marine diatoms[J].Water Research, 2012, 46(16): 5028-5036. doi: 10.1016/j.watres.2012.06.040

[5]

Chen L P, Huang F Y, Zhang C, et al. Effects of norfloxacin on nitrate reduction and dynamic denitrifying enzymes activities in groundwater[J].Environmental Pollution, 2021, 273: 116492. doi: 10.1016/j.envpol.2021.116492

[6]

Hoai T D, Trang T T, Tuyen N V, et al. Aeromonas veronii caused disease and mortality in channel catfish in Vietnam[J].Aquaculture, 2019, 513: 734425. doi: 10.1016/j.aquaculture.2019.734425

[7]

Huang F Y, Zou S Z, Deng D D, et al. Antibiotics in a typical karst river system in China: Spatiotemporal variation and environmental risks[J].Science of the Total Environment, 2019, 650: 1348-1355. doi: 10.1016/j.scitotenv.2018.09.131

[8]

Duan L, Zhang Y Z, Wang B, et al. Characteristics of pharmaceutically active compounds in surface water in Beijing, China: Occurrence, spatial distribution and biennial variation from 2013 to 2017[J].Environmental Pollution, 2020, 264: 114753. doi: 10.1016/j.envpol.2020.114753

[9]

朱帅, 沈亚婷, 贾静, 等. 环境介质中典型新型有机污染物分析技术研究进展[J]. 岩矿测试, 2018, 37(5): 586-606.

Zhu S, Shen Y T, Jia J, et al. Review on the analytical methods of typical emerging organic pollutants in the environment[J]. Rock and Mineral Analysis, 2018, 37(5): 586-606.

[10]

董恒涛, 姚劲挺, 郝红元, 等. 超高效液相色谱三重四极杆质谱联用法测定地表水中14种喹诺酮类抗生素残留[J]. 环境化学, 2018, 37(6): 1436-1439.

Dong H T, Yao J T, Hao H Y, et al. Determination of 14 quinolones residues in surface water by UHPLC-MS/MS[J]. Environmental Chemistry, 2018, 37(6): 1436-1439.

[11]

朱峰, 吉文亮, 阮丽萍, 等. 高效液相色谱-质谱联用法同时检测水体中13种β-内酰胺类药物残留[J]. 色谱, 2016, 34(3): 299-305.

Zhu F, Ji W L, Ruan L P, et al. Simultaneous determination of 13 β-lactam residues in water by high performance liquid chromatography tandem mass spectrometry[J]. Chinese Journal of Chromatography, 2016, 34(3): 299-305.

[12]

Xue Q, Qi Y J, Liu F, et al. Ultra-high performance liquid chromatography-electrospray tandem mass spectrometry for the analysis of antibiotic residues in environmental waters[J].Environmental Science & Pollution Research International, 2015, 22(21): 16857.

[13]

马健生, 王卓, 张泽宇, 等. 哈尔滨市地下水中29种抗生素分布特征研究[J]. 岩矿测试, 2021, 40(6): 944-953.

Ma J S, Wang Z, Zhang Z Y, et al. Study on distribution characteristics of 29 antibiotics in groundwater in Harbin[J]. Rock and Mineral Analysis, 2021, 40(6): 944-953.

[14]

Zou S Z, Huang F Y, Chen L, et al. The occurrence and distribution of antibiotics in the karst river system in Kaiyang, southwest China[J].Water Science and Technology-Water Supply, 2018, 18(6): 2044-2052. doi: 10.2166/ws.2018.026

[15]

郎杭. 地下水中典型药物定性识别及抗生素定量的方法研究与应用[D]. 北京: 中国地质大学(北京), 2020.

Lang H. Pharmaceutical identification and antibiotics detection in groundwater[D]. Beijing: China University of Geosciences (Beijing), 2020.

[16]

Jiang M X, Wang L H, Ji R, et al. Biotic and abiotic degradation of four cephalosporin antibiotics in a lake surface water and sediment[J].Chemosphere, 2010, 80(11): 1399-1405. doi: 10.1016/j.chemosphere.2010.05.048

[17]

Volmer D A, Hui J P M. Study of erythromycin A decomposition products in aqueous solution by solid-phase microextraction/liquid chromatography/tandem mass spectrometry[J].Rapid Communications in Mass Spectrometry, 1998, 12(3): 123-129. doi: 10.1002/(SICI)1097-0231(19980214)12:3<123::AID-RCM126>3.0.CO;2-4

[18]

Baran W, Sochacka J, Wardas W, et al. Toxicity and biodegradability of sulfonamides and products of their photocatalytic degradation in aqueous solutions[J].Chemosphere, 2006, 65(8): 1295-1299. doi: 10.1016/j.chemosphere.2006.04.040

[19]

Lapworth D J, Baran N, Stuart M E, et al. Emerging organic contaminants in groundwater: A review of sources, fate and occurrence[J].Environmental Pollution, 2012, 163: 287-303. doi: 10.1016/j.envpol.2011.12.034

[20]

Zhou L J, Ying G G, Liu S, et al. Simultaneous determination of human and veterinary antibiotics in various environmental matrices by rapid resolution liquid chromatography-electrospray ionization tandem mass spectrometry[J].Journal of Chromatography A, 2012, 1244: 123-138. doi: 10.1016/j.chroma.2012.04.076

[21]

Ying J L, Qin X P, Zhang Z H, et al. Removal of lincomy-cin from aqueous solution by birnessite: Kinetics, mechanism, and effect of common ions[J].Environmental Science and Pollution Research, 2021, 28(3): 3590-3600. doi: 10.1007/s11356-020-10766-4

[22]

朱琳, 张远, 渠晓东, 等. 北京清河水体及水生生物体内抗生素污染特征[J]. 环境科学研究, 2014, 27(2): 139-146.

Zhu L, Zhang Y, Qu X D, et al. Occurrence of antibiotics in aquatic plants and organisms from Qing River, Beijing[J]. Research of Environmental Sciences, 2014, 27(2): 139-146.

[23]

章琴琴. 北京温榆河流域抗生素污染分布特征及源解析研究[D]. 重庆: 重庆大学, 2012.

Zhang Q Q. Determination and source apportionment of three classes of antibiotics in Beijing Wenyu Rivers[D]. Chongqing: Chongqing University, 2012.

[24]

方龙飞, 魏群山, 王元宏, 等. 上海黄浦江上游典型抗生素来源及分布污染特征研究[J]. 环境污染与防治, 2017, 39(3): 301-306.

Fang L F, Wei Q S, Wang Y H, et al. Source and distribution of typical antibiotics in the Upper Huangpu River, Shanghai[J]. Environmental Pollution & Control, 2017, 39(3): 301-306.

[25]

周志洪, 赵建亮, 魏晓东, 等. 珠江广州段水体抗生素的复合污染特征及其生态风险[J]. 生态环境学报, 2017, 26(6): 1031-1041.

Zhou Z H, Zhao J L, Wei X D, et al. Co-occurrence and ecological risk of antibiotics insurface water of Guangzhou Section of Pearl River[J]. Ecology and Environmental Sciences, 2017, 26(6): 1031-1041.

[26]

Du S, Ben W W, Strobel B W, et al. Occurrence, source estimation and risk assessment of pharmaceuticals in the Chaobai River characterized by adjacent land use[J].Science of the Total Environment, 2020, 712: 134525. doi: 10.1016/j.scitotenv.2019.134525

[27]

吴苗苗. 再生水回灌过程中典型磺胺类抗生素的行为特性研究[D]. 北京: 清华大学, 2015.

Wu M M. The behavior of typical sulfanomides in soil by groundwater recharge with reclaimed water[D]. Beijing: Tsinghua University, 2015.

[28]

Hanna N, Sun P, Sun Q, et al. Presence of antibiotic resi-dues in various environmental compartments of Shandong Province in eastern China: Its potential for resistance development and ecological and human risk[J].Environment International, 2018, 114: 131-142. doi: 10.1016/j.envint.2018.02.003

[29]

Zhang C H, Wang L L, Gao X Y, et al. Antibiotics in WWTP discharge into the Chaobai River, Beijing[J].Archives of Environmental Protection, 2016, 42(4): 48-57. doi: 10.1515/aep-2016-0036

相似文献(共20条)

[1]

饶竹, 何淼. 圆盘固相萃取富集-气相色谱法测定地表水中有机氯和有机磷农药. 岩矿测试, 2008, 27(1): 12-16.

[2]

张静梅, 张培新, 高孝礼, 黄光明, 窦银萍. 电感耦合等离子体质谱法同时测定地下水中硼溴碘. 岩矿测试, 2008, 27(1): 25-28.

[3]

宋淑玲, 饶竹, 李松. 全国地下水调查中12种半挥发性必检组分的测定. 岩矿测试, 2008, 27(2): 91-94.

[4]

祁彦洁, 刘菲. 地下水中抗生素污染检测分析研究进展. 岩矿测试, 2014, 33(1): 67-73.

[5]

马健生, 王卓, 张泽宇, 刘强, 李丽君. 哈尔滨市地下水中29种抗生素分布特征研究. 岩矿测试, 2021, 40(6): 944-953. doi: 10.15898/j.cnki.11-2131/td.202101040001

[6]

李海萍, 赵秋香, 何光涛, 莫书伟, 曾宇斌. 地表水和地下水水质分析前处理问题探讨. 岩矿测试, 2010, 29(5): 613-616.

[7]

王玉功, 高永宏, 王建波, 陈月源. 紫外可见分光光度法测定地表水和地下水的高锰酸盐指数. 岩矿测试, 2010, 29(5): 617-620.

[8]

郭子宁, 王旭升, 向师正, 胡桐搏, 刘菲, 关翔宇. 再生水入渗区典型抗生素分布特征与地下水微生物群落影响因素研究. 岩矿测试, 2022, 41(3): 451-462. doi: 10.15898/j.cnki.11-2131/td.202111040163

[9]

刘永刚, , 刘菲. 顶空气相色谱法测定北京市地下水中的氯代烃. 岩矿测试, 2002, (1): 55-58.

[10]

房贤文, 谭培功, 单红, 董新春, 张婷婷. 气相色谱法测定地表水中醛酮类化合物. 岩矿测试, 2007, 26(5): 363-366.

[11]

李海燕, 谭丕功, 房贤文, 张婷婷, 于彦彬. 高效液相色谱法同时测定地表水中四种醛类化合物. 岩矿测试, 2012, 31(4): 672-676.

[12]

黄毅, 何淼, 饶竹, 苏劲. GDX-502树脂富集高效液相色谱法测定地表水中酚类化合物. 岩矿测试, 2007, 26(2): 101-104.

[13]

高娟琴, 于扬, 王登红, 王伟, 代鸿章, 于沨, 秦燕. 新疆阿勒泰地区地表水体氢氧同位素组成及空间分布特征. 岩矿测试, 2021, 40(3): 397-407. doi: 10.15898/j.cnki.11-2131/td.202101140007

[14]

王磊, 安彩秀, 朱裕穗, 肖凡, 刘金巍. 乙腈-硫酸铵-水双水相萃取-高效液相色谱法测定地下水中苯并(a)芘和苯并(e)芘. 岩矿测试, 2013, 32(2): 325-329.

[15]

余蕾, 张小毅. 气相色谱-三重四极杆质谱法测定地下水中44种有机物污染物. 岩矿测试, 2021, 40(3): 365-374. doi: 10.15898/j.cnki.11-2131/td.202008310120

[16]

黄勇, 王安婷, 袁国礼, 李欢, 黄丹. 北京市表层土壤中PAHs含量特征及来源分析. 岩矿测试, 2022, 41(1): 54-65. doi: 10.15898/j.cnki.11-2131/td.202104270056

[17]

陈典, 张照荷, 赵微, 李俊, 焦杏春. 北京市再生水灌区地下水中典型全氟化合物的分布现状及生态风险. 岩矿测试, 2022, 41(3): 499-510. doi: 10.15898/j.cnki.11-2131/td.202111300190

[18]

阳国运, 唐裴颖. 电感耦合等离子体发射光谱法测定地表水和地下水中的硫酸根. 岩矿测试, 2009, 28(2): 176-178.

[19]

郭晓辰, 饶竹, 高冉. 气相色谱法测定地下水中拟除虫菊酯有机氯百菌清等24种农药残留. 岩矿测试, 2014, 33(3): 406-412.

[20]

左海英, 张琳, 刘菲. 固相萃取-液相色谱/质谱法测定地下水中三嗪类和. 岩矿测试, 2014, 33(1): 96-101.

计量
  • PDF下载量(2)
  • 文章访问量(81)
  • HTML全文浏览量(17)
  • 被引次数(0)
目录

Figures And Tables

超高效液相色谱-串联质谱法同时测定水体中37种典型抗生素

营娇龙, 秦晓鹏, 郎杭, 郭健一, 熊玲, 张占昊, 刘菲