【引用本文】 郝新丽, 韩思航, 杨磊, 等. 基于热转换元素分析同位素比质谱法研究水样中有机物对氢稳定同位素比值的影响[J]. 岩矿测试, 2019, 38(5): 503-509. doi: 10.15898/j.cnki.11-2131/td.201811150121
HAO Xin-li, HAN Si-hang, YANG Lei, et al. Effect of Organic Matter in Water Samples on the Hydrogen Stable Isotope Ratio Determination by Thermal Conversion/Elemental Analysis-Isotope Ratio Mass Spectrometry[J]. Rock and Mineral Analysis, 2019, 38(5): 503-509. doi: 10.15898/j.cnki.11-2131/td.201811150121

基于热转换元素分析同位素比质谱法研究水样中有机物对氢稳定同位素比值的影响

1. 

河北地质大学水资源与环境学院, 河北 石家庄 050031

2. 

河北省水资源可持续利用与开发重点实验室, 河北 石家庄 050031

3. 

河北省水资源可持续利用与产业结构优化协同创新中心, 河北 石家庄 050031

收稿日期: 2018-11-15  修回日期: 2019-03-08  接受日期: 2019-04-09

基金项目: 河北地质大学博士启动基金项目(BQ2017008);河北地质大学实验室开放基金项目(KF201839)

作者简介: 郝新丽, 博士, 实验师, 从事同位素质谱检测技术研究。E-mail:xlhao2014@163.com

Effect of Organic Matter in Water Samples on the Hydrogen Stable Isotope Ratio Determination by Thermal Conversion/Elemental Analysis-Isotope Ratio Mass Spectrometry

1. 

School of Water Resources & Environment, Hebei GEO University, Shijiazhuang 050031, China

2. 

Hebei Province Key Laboratory of Sustained Utilization & Development of Water Recourse, Hebei GEO University, Shijiazhuang 050031, China

3. 

Hebei Province Collaborative Innovation Center for Sustainable Utilization of Water Resources and Optimization of Industrial Structure, Hebei GEO University, Shijiazhuang 050031, China

Received Date: 2018-11-15
Revised Date: 2019-03-08
Accepted Date: 2019-04-09

摘要:在研究水文水资源方面,水中氢稳定同位素比值(δ2H)是一项重要的检测参数,它的变化规律可以用于识别和量化水分来源、揭示水循环演化过程及形成机理,因此促进了水中δ2H检测技术的发展。热转换元素分析同位素比质谱法(TC/EA-IRMS)测定氢稳定同位素具有高效、准确的特点,适合检测含有机物的水样。本文以乙醇为例,利用TC/EA-IRMS检测方法,探究水样中有机物含量对δ2H值的影响。通过配制不同体积比的乙醇-水溶液,测定溶液的δ2H值,建立了乙醇体积比与δ2H值的线性方程,相关系数(R2)可达0.9996,说明水样中有机物会使δ2H值产生线性变化,随着有机物含量增加,水样测定的δ2H值逐渐向有机物的δ2H值方向偏移。利用该线性关系在已知有机物δ2H值和体积比的条件下,可以对样品中H2O的δ2H值进行修正。以乙醇实验为例,其修正结果与真值的相对误差为1.7%,通过修正可以得到真实水样中水分子的δ2H值,有助于准确掌握水循环的状态和规律。同时,利用有机物与δ2H值的线性关系也可以对有机物进行溯源,在模拟溯源乙醇的实验中其溯源的δ2H值与真值相对误差仅为0.4%,说明该线性关系在有机物溯源方面具有良好的应用前景。

关键词: 稳定同位素比质谱法, 热转换元素分析, 氢稳定同位素, 乙醇, 有机污染物溯源

要点

(1) 建立了水中氢稳定同位素比与有机物含量之间的线性关系。

(2) 实现了TC/EA-IRMS法测定含有机物水体δ2H值的修正。

(3) 将水中氢稳定同位素比与有机物含量之间的线性关系应用于有机物溯源。

Effect of Organic Matter in Water Samples on the Hydrogen Stable Isotope Ratio Determination by Thermal Conversion/Elemental Analysis-Isotope Ratio Mass Spectrometry

ABSTRACT

BACKGROUND:

In the study of hydrology and water resources, the hydrogen stable isotope ratio (δ2H) of water is an important detection parameter, and its changing patterns can be used to identify and quantify the source of water, and reveal the evolution process and formation mechanism of the water cycle. Therefore, the accuracy of δ2H value is very important, which promotes the development of isotope detection technology. High-temperature combustion pyrolysis-element analysis isotope ratio mass spectrometry is a highly efficient and accurate method for the determination of hydrogen isotopes. It is suitable for the detection of water samples containing organic matter.

OBJECTIVES:

To explore the influence of organic matter content in water on the hydrogen stable isotope ratio (δ2H) and establish a relationship curve between them. Use the relationship to modify the δ2H value of H2O and trace the organic source in organic polluted water.

METHODS:

Thermal conversion/elemental analysis-isotope ratio mass spectrometry (TC/EA-IRMS) was used as the main detection method. Ethanol water samples with different volume ratios (r) were prepared, and the δ2H values of the samples were determined by TC/EA-IRMS. Taking r and δ2H as variables, the curve relationship and equation were established.

RESULTS:

A good linear relationship was established by using the ethanol content and the δ2H value as variable with R2 of 0.9996, indicating that the organic matter in the water sample will linearly change the δ2H value. As the organic matter content increased, the δ2H value measured by the water sample gradually shifted toward the δ2H value of the organic matter. Using this linear relation, the δ2H value of H2O in the sample can be corrected when the volume ratio of the organic matter is known. Taking the ethanol experiment as an example, the relative error between the corrected result and the true value was 1.7%. By correcting, the δ2H value of the water molecules in the water sample can be obtained, which helped to accurately understand the state and regularity of the water cycle. At the same time, the linear relationship can also be used to trace the source of the organic matter. In the ethanol experiment that simulated the traceability of the source ethanol, the relative error was only 0.4%.

CONCLUSIONS:

The linear relationship between organic matter and δ2H has a good application prospect in organic matter tracing.

KEY WORDS: stable isotope ratio mass spectrometry, thermal conversion/elemental analysis, hydrogen stable isotopes, ethanol, organic matter tracing

HIGHLIGHTS

(1) A good linear relationship was established between the content of ethanol in the water sample and the δ2H value.

(2) The δ2H value measured by TC/EA-IRMS can be modified via the linear equation.

(3) The linear relationship established can be used to trace organic matter.

本文参考文献

[1]

胡海英, 包为民, 王涛, 等. 氢氧同位素在水文学领域中的应用[J]. 中国农村水利水电, 2007, (5): 4-8.

Hu H Y, Bao W M, Wang T, et al. Application of hydrogen and oxygen isotopes in hydrology[J]. China Rural Water and Hydropower, 2007, (5): 4-8.

[2]

刘澄静, 角媛梅, 刘歆, 等. 基于氢氧稳定同位素的哈尼水稻梯田湿地水源补给分析[J]. 生态学杂志, 2018, 37(10): 3092-3099.

Liu C J, Jiao Y M, Liu X, et al. Analysis on water supply of Hani Rice Terrace wetland based on stable hydrogen and oxygen isotopes[J]. Chinese Journal of Ecology, 2018, 37(10): 3092-3099.

[3]

马建业, 孙宝洋, 马波, 等. 纸坊沟流域水体氢氧同位素特征及其水量交换研究[J]. 水文地质工程地质, 2018, 45(5): 24-33.

Ma J Y, Sun B Y, Ma B, et al. Characteristics of hydrogen and oxygen isotopes and water exchange in the Zhifanggou watershed[J]. Hydrogeology & Engineering Geology, 2018, 45(5): 24-33.

[4]

Tipple B J, Jameel Y, Chau T H, et al. Stable hydrogen and oxygen isotopes of tap water reveal structure of the San Francisco Bay Area's water system and adjustments during a major drought[J]. Water Research, 2017, 119(1): 212-224.

[5]

Felstead N J, Leng M J, Metcalfe S E, et al. Unders-tanding the hydrogeology and surface flow in the Cuatrociénegas Basin (NE Mexico) using stable isotopes[J]. Journal of Arid Environments, 2015, 121: 15-23.

[6]

杨承帆, 杨守业. 真空抽提结合同位素分析技术研究风化剖面中水的氢氧同位素组成特征[J]. 岩矿测试, 2016, 35(1): 69-74.

Yang C F, Yang S Y. Using vacuum extraction-isotopic analysis technology to study hydrogen and oxygen isotopic compositions of water extracted from weathering profile sediments[J]. Rock and Mineral Analysis, 2016, 35(1): 69-74.

[7]

Mix H T, Chamberlain C P. Stable isotope records of hy-drologic change and paleotemperature from smectite in Cenozoic Western North America[J]. Geochimica et Cosmochimica Acta, 2014, 141: 532-546.

[8]

邓文平.北京山区典型树种水分利用机制研究[D].北京: 北京林业大学, 2015.

Deng W P.Water Use Mechanism of Typical Tree Species in Beijing Mounatainous Areas[D].Beijing: Beijing Forestry University, 2015.

[9]

姜海宁.新疆伊犁芦草沟盆地地下水循环模式研究[D].北京: 防灾科技学院, 2017.

Jiang H N.The Study on Groundwater Cycle Model of Lucaogou Basin in Yili, Xinjiang[D].Beijing: Institute of Disaster Prevention, 2017.

[10]

赵永红, 杨家英, 王航, 等. 地热水氢氧同位素分布特性[J]. 地球物理学进展, 2017, 32(6): 2415-2423.

Zhao Y H, Yang J Y, Wang H, et al. Hydrogen and oxygen isotope distribution characteristics of geothermal water[J]. Progress in Geophysics, 2017, 32(6): 2415-2423.

[11]

谢成玉, 肖薇, 徐敬争, 等. 氢和氧稳定同位素示踪湖泊蒸发的对比研究[J]. 海洋与湖沼, 2019, 50(1): 74-85.

Xie C Y, Xiao W, Xu J Z, et al. Comparison of using hydrogen and oxygen isotopes in tracing water evaporation in Taihu Lake[J]. Oceanologia et Limnologia Sinica, 2019, 50(1): 74-85.

[12]

杨会, 王华, 吴夏, 等. 三种方法测试岩溶水样氢氧同位素的对比研究[J]. 中国岩溶, 2018, 37(4): 632-637.

Yang H, Wang H, Wu X, et al. Comparative study of three methods for testing hydrogen and oxygen isotope of karst water samples[J]. Carsologica Sinica, 2018, 37(4): 632-637.

[13]

杨会, 王华, 应启和, 等. 不同检测方法对氢氧同位素分馏的影响[J]. 岩矿测试, 2012, 31(2): 225-228.

Yang H, Wang H, Ying Q H, et al. The impact of hydrogen and oxygen isotope mass fractionation for different detection methods[J]. Rock and Mineral Analysis, 2012, 31(2): 225-228.

[14]

蓝高勇, 吴夏, 杨会, 等. 激光同位素光谱法测量水中氢氧同位素组成的实验室间比对研究[J]. 岩矿测试, 2017, 36(5): 460-467.

Lan G Y, Wu X, Yang H, et al. Inter-laboratory comparison of analysis for hydrogen and oxygen stable isotope ratios in water samples by laser absorption spectroscopy[J]. Rock and Mineral Analysis, 2017, 36(5): 460-467.

[15]

王华, 吴夏, 蓝高勇, 等. GasBench Ⅱ-IRMS稳定同位素质谱法高精度测定环境水体中δD、δ18O和δ13CDIC同位素比值:实验室间对比研究[J]. 地质学报, 2015, 89(10): 1804-1813.

Wang H, Wu X, Lan G Y, et al. High precision measurement of hydrogen, oxygen and dissolve inorganic carbon isotope in water samples by GasBenchⅡ-IRMS:An interlaboratory comparison study[J]. Acta Geologica Sinica, 2015, 89(10): 1804-1813.

[16]

Simon D K, Karl D H, Paul B, et al. Deuterium/hydrogen isotope ratio measurement of water and organic samples by continuous-flow isotope ratio mass spectrometry using chromium as the reducing agent in an elemental analyser[J]. Rapid Communications in Mass Spectrometry, 2001, 15: 1283-1286.

[17]

严玉鹏, 郭智成, 张丽梅, 等. 元素分析仪-稳定同位素比例质谱仪的使用及维护[J]. 实验科学与技术, 2018, 16(3): 67-71.

Yan Y P, Guo Z C, Zhang L M, et al. Use and maintenance of elemental analyzer-isotope-ratio mass spectrometer (EA-IRMS)[J]. Experiment Science and Technology, 2018, 16(3): 67-71.

[18]

刘运德, 甘义群, 余婷婷, 等. 微量水氢氧同位素在线同时测试技术——热转换元素分析同位素比质谱法[J]. 岩矿测试, 2010, 29(6): 643-647.

Liu Y D, Gan Y Q, Yu T T, et al. Online simultaneous determination of δD and δ18O in micro-liter water samples by thermal conversion/elemental analysis-isotope ratio mass spectrometry[J]. Rock and Mineral Analysis, 2010, 29(6): 643-647.

[19]

张琳, 陈宗宇, 刘福亮, 等. 水中氢氧同位素不同分析方法的对比[J]. 岩矿测试, 2011, 30(2): 160-163.

Zhang L, Chen Z Y, Liu F L, et al. Study on methods for hydrogen and oxygen isotope analysis of water samples[J]. Rock and Mineral Analysis, 2011, 30(2): 160-163.

[20]

袁红朝, 张丽萍, 耿梅梅, 等. Flash HT和GasBenchⅡ-IRMS分析水中氢氧同位素的方法比较[J]. 质谱学报, 2013, 34(6): 347-352.

Yuan H C, Zhang L P, Geng M M, et al. Comparison of methods for hydrogen and oxygen isotopes analysis of water samples by Flash HT and GasBenchⅡ-IRMS system[J]. Journal of Chinese Mass Spectrometry Society, 2013, 34(6): 347-352.

[21]

张琳, 韩梅, 贾艳琨, 等. 同位素比值质谱与激光吸收光谱分析水中氢氧同位素方法的比较[J]. 质谱学报, 2015, 36(6): 559-564.

Zhang L, Han M, Jia Y K, et al. Analysis of hydrogen and oxygen isotope in water sample using isotope ratio mass spectrometry and laser spectroscopy[J]. Journal of Chinese Mass Spectrometry Society, 2015, 36(6): 559-564.

[22]

Nelson S T. A simple, practical methodology for routine VSMOW/SLAP normalization of water samples analyzed by continuous flow methods[J]. Rapid Communications in Mass Spectrometry, 2000, 14(12): 1044-1046.

[23]

马斌.氢氧稳定同位素指示水体分馏与降水入渗补给研究[D].北京: 中国地质大学(北京), 2017.

Ma B.Evaluation of Water Fractionation and Infiltrated Precipitation Using Hydrogen and Oxygen Stable Isotopes[D].Beijing: China University of Geosciences (Beijing), 2017.

[24]

李静, 王聪, 梁杏, 等. 持续蒸发与补给蒸发过程中水体咸化及同位素分馏的实验研究[J]. 地球化学, 2015, 44(6): 556-563.

Li J, Wang C, Liang X, et al. Experimental study of water salinization and isotopic fractionation in continuous evaporation and recharge evaporation[J]. Geochimica, 2015, 44(6): 556-563.

[25]

马斌, 梁杏, 靳孟贵, 等. 华北平原典型区水体蒸发氢氧同位素分馏特征[J]. 水科学进展, 2015, 26(5): 639-648.

Ma B, Liang X, Jin M G, et al. Characteristics of fractionation of hydrogen and oxygen isotopes in evaporating water in the typical region of the North China Plain[J]. Advances in Water Science, 2015, 26(5): 639-648.

[26]

仝晓霞, 刘存富. 西北干寒区冰雪融水氢氧同位素水文地质意义[J]. 环境科学与技术, 2018, 41(1): 57-63.

Tong X X, Liu C F. Hydrogeological significance of hydrogen and oxygen isotopes in ice and snow melting water in northwest arid region[J]. Environmental Science & Technology, 2018, 41(1): 57-63.

[27]

孟玉川, 刘国东. 长江流域降水稳定同位素的云下二次蒸发效应[J]. 水科学进展, 2010, 21(3): 327-334.

Meng Y C, Liu G D. Effect of below-cloud secondary evaporation on the stable isotopes in precipitation over the Yangtze River Basin[J]. Advances in Water Science, 2010, 21(3): 327-334.

[28]

朱帅, 沈亚婷, 贾静, 等. 环境介质中典型新型有机污染物分析技术研究进展[J]. 岩矿测试, 2018, 37(5): 586-606.

Zhu S, Shen Y T, Jia J, et al. Review on the analytical methods of typical emerging organic pollutants in the environment[J]. Rock and Mineral Analysis, 2018, 37(5): 586-606.

[29]

马红枣, 潘立刚, 李安, 等. 单体稳定同位素分析技术在有机污染物溯源中的应用研究进展[J]. 农药学学报, 2017, 19(3): 282-289.

Ma H Z, Pan L G, Li A, et al. Research progress on the application of compound-specific isotope analysis in the origin traceability of organic pollutants[J]. Chinese Journal of Pesticide Science, 2017, 19(3): 282-289.

[30]

白志鹏, 张利文, 彭林, 等. 稳定同位素在污染物溯源与示踪中的应用[J]. 城市环境与城市生态, 2006, 19(4): 29-32.

Bai Z P, Zhang L W, Peng L, et al. Application of stable isotope to trace to the sources and trail pollutants[J]. Urban Environment & Urban Ecology, 2006, 19(4): 29-32.

[31]

李星.东江干流有机质的碳氮同位素分布特征及溯源应用[D].广州: 暨南大学, 2015.

Li X.Carbon and Nitrogen Isotopic Compositions of Organic Matter in Dongjiang River and Its Application to Traceability[D].Guangzhou: Jinan University, 2015.

相似文献(共19条)

[1]

何应律, 吴璃华. 1,4—二羟基蒽醌—β—环糊精—乙醇体系测铍. 岩矿测试, 1991, (4): 271-273.

[2]

姚玉玲, 吴丽琨, 刘卫, 李刚. 乙醇增敏-电感耦合等离子体发射光谱法测定矿石及选冶样品中的铌钽. 岩矿测试, 2015, 34(2): 224-228. doi: 10.15898/j.cnki.11-2131/td.2015.02.012

[3]

陈波, 刘洪青, 邢应香. 电感耦合等离子体质谱法同时测定地质样品中锗硒碲. 岩矿测试, 2014, 33(2): 192-196.

[4]

刘金巍, 刘雪松, 边超, 张涛, 张智印, 魏建朋. 甲烷动态反应电感耦合等离子体质谱法测定地下水中痕量硒. 岩矿测试, 2019, 38(1): 85-91. doi: 10.15898/j.cnki.11-2131/td.201804200049

[5]

, 宋旭文, 辛仁轩. 等离子体光谱进样系统乙醇溶液的雾化特性. 岩矿测试, 2002, (4): 284-290.

[6]

刘运德, 甘义群, 余婷婷, 刘存富, 周爱国. 微量水氢氧同位素在线同时测试技术——热转换元素分析 同位素比质谱法. 岩矿测试, 2010, 29(6): 643-647.

[7]

张海政, 伊丽莹. 钍—偶氮胂Ⅲ—乙醇体系显色反应的研究及应用. 岩矿测试, 1991, (3): 182-184.

[8]

方晶晶, 周爱国, 刘存富, 甘义群, 周建伟, 蔡鹤生, 刘运德, 张彦鹏. 有机污染物稳定同位素在线测试技术研究进展. 岩矿测试, 2013, 32(2): 192-202.

[9]

张媛媛, 贺行良, 孙书文, 朱志刚. 元素分析仪-同位素比值质谱仪测定海洋沉积物有机碳稳定同位素方法初探. 岩矿测试, 2012, 31(4): 627-631.

[10]

李立武, 王广, 李中平, 杜丽, 曹春辉. 稳定同位素质谱与同位素光谱结合的方法分析氧同位素17O/16O. 岩矿测试, 2013, 32(3): 392-397.

[11]

汪志芬, 陈成业, 黄福生, 穆治国. 个旧锡矿花岗岩的氧氢碳稳定同位素研究. 岩矿测试, 1983, (4): 241-247.

[12]

秦德谛, 贺行良, 张媛媛, 李凤, 陈宇峰, 张培玉. 渤海东海海洋沉积物中碳氮稳定同位素标准物质研制. 岩矿测试, 2017, 36(1): 75-81. doi: 10.15898/j.cnki.11-2131/td.2017.01.011

[13]

刘玉龙, 夏凡, 张洪志. 挥发性有机污染物标准物质使用的短期稳定性评价. 岩矿测试, 2012, 31(4): 647-652.

[14]

孟宪厚. 稳定同位素稀释法在岩矿测试中的应用. 岩矿测试, 1988, (3): 236-241.

[15]

丁悌平. 稳定同位素地球化学的现状与展望. 岩矿测试, 1990, (1): 72-77.

[16]

丁悌平. 稳定同位素测试技术与参考物质研究现状及发展趋势. 岩矿测试, 2002, (4): 291-300.

[17]

洪为, 张作衡, 李凤鸣, 刘兴忠. 新疆西天山查岗诺尔铁矿床稳定同位素特征及其地质意义. 岩矿测试, 2012, 31(6): 1077-1087.

[18]

刘咸德, VeerleVanLierde, FrankVanhaecke, 李冰, FreddyCAdams, 董树屏. 中国北京和长岛大气颗粒物中铅的同位素丰度比测定. 岩矿测试, 2005, (1): 7-12.

[19]

李津, 朱祥坤, 唐索寒. 双稀释剂法在非传统稳定同位素测定中的应用——以钼同位素为例. 岩矿测试, 2011, 30(2): 138-143.

计量
  • PDF下载量(15)
  • 文章访问量(232)
  • HTML全文浏览量(24)
  • 被引次数(0)
目录

Figures And Tables

基于热转换元素分析同位素比质谱法研究水样中有机物对氢稳定同位素比值的影响

郝新丽, 韩思航, 杨磊, 戴忆竹, 黄璐瑶, 王竞铮