【引用本文】 张莉娟, 徐铁民, 方蓬达, 等. 超细固体悬浮液进样-电感耦合等离子体质谱法测定土壤中的微量元素[J]. 岩矿测试, 2019, 38(2): 147-153. doi: 10.15898/j.cnki.11-2131/td.201712190195
ZHANG Li-juan, XU Tie-min, FANG Peng-da, et al. Determination of Trace Elements in Soil by Inductively Coupled Plasma-Mass Spectrometry with Ultrafine Slurry Sampling[J]. Rock and Mineral Analysis, 2019, 38(2): 147-153. doi: 10.15898/j.cnki.11-2131/td.201712190195

超细固体悬浮液进样-电感耦合等离子体质谱法测定土壤中的微量元素

中国地质调查局天津地质调查中心, 天津 300172

收稿日期: 2017-12-19  修回日期: 2018-04-23  接受日期: 2018-06-11

作者简介: 张莉娟, 高级工程师, 从事岩石矿物的光谱分析。E-mail:zhanglij19@163.com

通信作者: 徐铁民, 硕士, 教授级高级工程师, 长期从事岩石矿物分析研究。E-mail:xutm1@163.com

Determination of Trace Elements in Soil by Inductively Coupled Plasma-Mass Spectrometry with Ultrafine Slurry Sampling

Tianjin Center of Geological Survey, China Geological Survey, Tianjin 300172, China

Corresponding author: XU Tie-min, xutm1@163.com

Received Date: 2017-12-19
Revised Date: 2018-04-23
Accepted Date: 2018-06-11

摘要:固体进样技术应用于土壤样品测量领域,一直受制于样品粒径的限制,无法应用在配有气动雾化器的分析仪器上。本文系统研究了土壤样品超细粉碎技术,在乙醇介质下,数分钟内将其粉碎至微米级,经此制成的固体悬浮液直接进行电感耦合等离子体质谱法(ICP-MS)测定,可以避免气动雾化器的堵塞。标准物质测定表明,样品粒径为6.8μm时,固体悬浮液进样仍然存在干扰,通过在固体悬浮液中加入少量氢氟酸和硝酸,对固体悬浮液进行改性,减小了固体悬浮液中固体颗粒粒径,从而减少了样品粒径的影响,可用ICP-MS测定土壤中锂铍钒铬镍铜锌铷锶镉铯钡铅等13个微量元素。经国家一级标准物质验证,本方法的最大相对误差在10.5%左右,多数元素的相对误差小于5%,相对标准偏差(RSD)小于5.4%(镉元素除外),满足了DZ/G 0130-2006质量控制要求。

关键词: 超细固体悬浮液, 气动雾化器, 电感耦合等离子体质谱法, 土壤, 微量元素

要点

(1) 土壤样品采用超细粉碎技术,进行干碎、水介质中粉碎、无水乙醇介质中粉碎的实验,在无水乙醇介质中的粉碎效果最好。

(2) 在固体悬浮液中加入少量氢氟酸和硝酸进行改性,减小了固体悬浮液中固体颗粒粒径,应用ICP-MS准确测定了土壤中的13个微量元素。

Determination of Trace Elements in Soil by Inductively Coupled Plasma-Mass Spectrometry with Ultrafine Slurry Sampling

ABSTRACT

BACKGROUND:

Solid sampling technology applied in soil sample measurement has the limitation of sample size, and cannot be applied to the mainstream element analysis instrument.

OBJECTIVES:

To determine the trace elements by smashing soil samples to micron scale by high-speed grinding technology and under the action of a dispersant.

METHODS:

The ultra-fine grinding technology of soil samples was systematically studied. The sample was crushed to micron level in a few minutes in an ethanol medium. The prepared solid suspension was directly measured by ICP-MS, avoiding blockage of pneumatic atomizers.

RESULTS:

The determination of the reference materials shows that the solid suspension still has interference when the particle size is 6.8μm. By adding a small amount of hydrofluoric acid and nitric acid to modify the solid suspension, the solid particle size was reduced and thereby the impact of the sample size was reduced. The 13 trace elements of lithium, beryllium, vanadium, chromium, nickel, copper, zinc, rubidium, strontium, cadmium, cesium, barium and lead were successfully determined by ICP-MS. Accuracy experiment showed that the maximum relative error is 10.5%±3% and most of the elements have a relative error less than 5%. The precision experiment showed that most elements have a relative standard deviation (RSD) of less than 5.4%.

CONCLUSIONS:

The determination results meet the requirements of DZ/G 0130-2006 'Test of Geology and Mineral Resources Quality Management Standards'.

KEY WORDS: ultrafine solid suspension, pneumatic atomizer, Inductively Coupled Plasma-Mass Spectrometry, soil, trace elements

HIGHLIGHTS

(1) The ultrafine slurry sampling technology of soil sample was studied. The experiments were carried out under the conditions of dry grinding, crushing in water medium, and crushing in anhydrous ethanol medium. The results showed the crushing effect in anhydrous ethanol medium was optimal.

(2) By adding a small amount of hydrofluoric acid and nitric acid to modify the solid suspension, the size of the solid particles in the solid suspension was reduced, and 13 trace elements in the soil were accurately determined by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS).

本文参考文献

[1]

Bredy D V, Montalvo J, Glowacki J G, et al. Direct deter-mination of zinc in sea-bottom sediments by carbon tube atomic absorption spectrometry[J].Analytica Chimica Acta, 1974, 70(2): 448-452. doi: 10.1016/S0003-2670(01)85200-4

[2]

邓勃. 电热原子吸收光谱分析中进样技术的进展(上)[J]. 现代仪器与医疗, 2009, 15(5): 19.

Deng B. Advance of samplingtechnique in electrothermal atomic absorption spectrometry (Ⅰ)[J]. Modern Instruments & Medical Treatment, 2009, 15(5): 19.

[3]

Ryszard D, Agnieszka M, Magdalena O, et al. Develop-ment of sensitive determination method for platinum in geological materials by carbon slurry sampling graphite furnace atomic absorption spectrometry[J]. Microchemical Journal, 2015, 121(7): 18-24.

[4]

Peng Y, Wei G, Ping Z, et al. Heatassisted slurry sampling GFAAS method for determination of lead in food standard reference materials[J]. Journal of Food Composition and Analysis, 2015, 42(9): 78-83.

[5]

Husáková L, Urbanová I, Šafránková M, et al. Slurry sampling high-resolution continuum source electrothermal atomic absorption spectrometry for direct beryllium determination in soil and sediment samples after elimination of SiO2 interference by least-squares background correction[J]. Talanta, 2017, 175(1): 93-100.

[6]

张换平, 王书红, 张盼, 等. 悬浮液进样石墨炉原子吸收光谱法测定茶叶中铜和铅的溶出率[J]. 理化检验(化学分册), 2017, 53(9): 1078-1080.

Zhang H P, Wang S H, Zhang P, et al. The dissolution rate of copper and lead in tea determined by suspension sampling graphite furnace atomic absorption spectrometry[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2017, 53(9): 1078-1080.

[7]

Camila K A, Patricia M K B, Vanessa E A, et al. Deter-mination of Cu, Cd, Pb and Cr in yogurt by slurry sampling electrothermal atomic absorption spectrometry:A case study for Brazilian yogurt[J]. Food Chemistry, 2018, 240(1): 268-274.

[8]

Daria G F, Vasilina V E, Vasilisa B B, et al. Determination of gold and cobalt dopants in advanced materials based on tin oxide by slurry sampling high resolution continuum source graphite furnace atomic absorption spectrometry[J]. Spectrochimica Acta Part B:Atomic Spectroscopy, 2018, 140(2): 14.

[9]

Rennan G O A, Nedio O, Roger T R, et al. Comparison of direct solid sampling and slurry sampling for the determination of cadmium in wheat flour by electrothermal atomic absorption spectrometry[J].Talanta, 2008, 77(1): 400-406. doi: 10.1016/j.talanta.2008.06.047

[10]

卢桂萍, 汪正, 邱德仁, 等. 悬浮液进样石墨炉原子吸收光谱分析进展[J]. 光谱学与光谱分析, 2010, 30(8): 2253-2259. doi: 10.3964/j.issn.1000-0593(2010)08-2253-07

Lu G P, Wang Z, Qiu D R, et al. Research advance in slurry introduction for graphite furnace atomic absorption spectrometry[J].Spectroscopy and Spectral Analysis, 2010, 30(8): 2253-2259. doi: 10.3964/j.issn.1000-0593(2010)08-2253-07

[11]

温晓华, 邵超英, 张琢, 等. 悬浮液进样氢化物发生原子荧光光谱法测定土壤中痕量砷锑硒[J]. 岩矿测试, 2007, 26(6): 460-464. doi: 10.3969/j.issn.0254-5357.2007.06.007

Wen X H, Shao C Y, Zhang Z, et al. Determinationof trace arsenic, antimony, selenium in soil samples by hydride generation atomic fluorescence spectrometry with slurry sample introduction[J]. Rock and Mineral Analysis, 2007, 26(6): 460-464. doi: 10.3969/j.issn.0254-5357.2007.06.007

[12]

Pedro R A, Raul A G, Susana M, et al. Slurry sampling in serum blood for mercury determination by CVAFS[J]. Journal of Hazardous Materials, 2009, 161(1): 1399-1403.

[13]

Lin M L, Jiang S J. Determination of As, Cd, Hg and Pb in herbs using slurry sampling electrothermal vaporisation inductively coupled plasma mass spectrometry[J].Food Chemistry, 2013, 141(3): 2158-2162. doi: 10.1016/j.foodchem.2013.04.105

[14]

Wan H H, Shiuh J J, Sahayam A C, et al. Determination of Pd, Rh, Pt, Au in road dust by electrothermal vaporization inductively coupled plasma mass spectrometry with slurry sampling[J]. Analytica Chimica Acta, 2013, 794(10): 15-19.

[15]

Sadiq N, Beauchemin D. Optimization of the operating conditions of solid sampling electrothermal vaporization coupled to inductively coupled plasma optical emission spectrometry for the sensitive direct analysis of powdered rice[J]. Analytica Chimica Acta, 2014, 851(12): 23-29.

[16]

Chien C C, Shiuh J J, Sahayam A C, et al. Determination of trace elements in medicinal activated charcoal using slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry with low vaporization temperature[J]. Talanta, 2015, 131(1): 585-589.

[17]

Wei N C, Shiuh J J, Yen L C, et al. Slurry sampling flow injection chemical vapor generation inductively coupled plasma mass spectrometry for the determination of trace Ge, As, Cd, Sb, Hg and Bi in cosmetic lotions[J]. Analytica Chimica Acta, 2015, 860(2): 8-14.

[18]

Chia Y T, Shiuh J J, Sahayam A C, et al. Determination of As, Hg and Pb in herbs using slurry sampling flow injection chemical vapor generation inductively coupled plasma mass spectrometry[J]. Food Chemistry, 2016, 192(1): 274-279.

[19]

Xue J S, Taic H D, Peng R G, et al. Determination of Nb and Ta in Nb/Ta minerals by inductively coupled plasmas optical emission spectrometry using slurry sample introduction[J]. Microchemical Journal, 2006, 84(12): 22-25.

[20]

Rafael A S, Nivaldo B, Solange C, et al. Determination of elemental content in solid sweeteners by slurry sampling and ICPOES[J].Food Chemistry, 2011, 124(3): 1264-1267. doi: 10.1016/j.foodchem.2010.07.059

[21]

Geovani C B, Geraldo D M, Sergio L C F, et al. Slurry sampling and high resolution continuum source flame atomic absorption spectrometry using secondary lines for the determination of Ca and Mg in dairy products[J].Microchemical Journal, 2011, 98(2): 231-233. doi: 10.1016/j.microc.2011.02.005

[22]

Fábio A C A, Vinicius C C, Erik G P S, et al. Multivariate optimization of simple procedure for determination of Fe and Mg in cassava starch employing slurry sampling and FAAS[J]. Food Chemistry, 2017, 227(7): 41-47.

[23]

毛雪飞, 刘霁欣, 王敏, 等. 固体进样元素分析技术在农产品质量安全中的应用[J]. 中国农业科学, 2013, 46(16): 3432-3443. doi: 10.3864/j.issn.0578-1752.2013.16.014

Mao X F, Liu J X, Wang M, et al. Applications of solid sampling analytical technologies of elements for quality and safety of agriproducts[J].Scientia Agricultura Sinica, 2013, 46(16): 3432-3443. doi: 10.3864/j.issn.0578-1752.2013.16.014

[24]

周享春, 黄春华, 吴爱斌, 等. 脉冲悬浮体进样火焰原子吸收光谱法直接测定土壤中铬[J]. 理化检验(化学分册), 2001, 37(3): 97-98.

Zhou X C, Huang C H, Wu A B, et al. Direct FAAS determination of trace amounts of chromium in soil by pulse slurry sampling[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2001, 37(3): 97-98.

[25]

张军烨, 汪正, 杜一平, 等. 悬浮液进样电感耦合等离子体发射光谱中颗粒的输运和蒸发行为[J]. 分析化学, 2011, 39(5): 658-663.

Zhang J Y, Wang Z, Du Y P, et al. Transportation and evaporation behavior of suspension particle for slurry nebulization introduction in inductively coupled plasma optical emission spectrometry[J]. Chinese Journal of Analytical Chemistry, 2011, 39(5): 658-663.

[26]

Xiang Q G, Hu B, Jiang C Z, et al. A comparison of slurry sampling electrothermal vaporization and slurry nebulization inductively coupled plasma mass spectrometry for the direct determination of trace impurities in titanium dioxide powder[J].Journal of Mass Spectrometry, 2006, 41(10): 1378-1385. doi: 10.1002/(ISSN)1096-9888

相似文献(共19条)

[1]

黄园英, 吴淑琪, 佟玲, 张玲金. 土壤中持久性有机污染物分析的前处理方法. 岩矿测试, 2008, 27(2): 81-86.

[2]

李刚, 苏文峰. 焙烧分离-氢化物发生-原子荧光光谱法测定土壤样品中微量硒. 岩矿测试, 2008, 27(2): 120-122.

[3]

方金梅. 福州市土壤硒形态分析及其迁移富集规律. 岩矿测试, 2008, 27(2): 103-107.

[4]

江林, 刘晓端, 张静. 土壤中不同形态砷的分析方法. 岩矿测试, 2008, 27(3): 179-183.

[5]

齐璐璐, 赵会芹, 陈子学, 郑育锁, 孟凡辉, 肖波, 张颖. 连续光源原子吸收光谱法测定土壤水溶性盐中钙镁. 岩矿测试, 2008, 27(2): 95-98.

[6]

刘广民, 尹莉莉, 董永亮, 肖宇芳. 土壤中五氯酚的快速测定. 岩矿测试, 2008, 27(2): 117-119.

[7]

张静梅, 张培新, 高孝礼, 黄光明, 窦银萍. 电感耦合等离子体质谱法同时测定地下水中硼溴碘. 岩矿测试, 2008, 27(1): 25-28.

[8]

尹周澜, 王薇惟, 覃祚明, 黄旭. 电感耦合等离子体质谱法测定高纯铟中铁. 岩矿测试, 2008, 27(3): 193-196.

[9]

李刚, 曹小燕. 电感耦合等离子体质谱法测定地质样品中锗和镉的干扰及校正. 岩矿测试, 2008, 27(3): 197-200.

[10]

王瑞敏. 泡沫塑料富集-电感耦合等离子体质谱法测定土壤中超痕量金铂钯. 岩矿测试, 2011, 30(3): 295-298.

[11]

陈永欣, 黎香荣, 韦新红, 吕泽娥, 谢毓群, 蔡维专. 微波消解-电感耦合等离子体质谱法测定土壤和沉积物中痕量稀土元素. 岩矿测试, 2011, 30(5): 560-565.

[12]

徐学明, 张培萍. 尿石—发样—土壤中微量元素分析及意义. 岩矿测试, 1999, (4): 280-283.

[13]

刘洪青, 孙月婷, 时晓露, 章勇. 微波消解-电感耦合等离子体质谱法测定生物样品中14个微量元素. 岩矿测试, 2008, 27(6): 427-430.

[14]

姜贞贞, 刘高令, 王祝, 李明礼, 卓玛曲西, 邵蓓, 董锐, 王伟. 电感耦合等离子体质谱法测定高海拔地区地热水中的微量元素. 岩矿测试, 2016, 35(5): 475-480. doi: 10.15898/j.cnki.11-2131/td.2016.05.005

[15]

鲁照玲, 胡红云, 姚洪. 土壤中重金属元素电感耦合等离子体质谱定量分析方法的研究. 岩矿测试, 2012, 31(2): 241-246.

[16]

李冰, , 史世云. 电感耦合等离子体质谱法同时测定地质样品中痕量碘溴硒砷的研究:Ⅱ.土壤及沉积物标准物质分析. 岩矿测试, 2001, (4): 241-246.

[17]

熊英, 吴赫, 王龙山. 电感耦合等离子体质谱法同时测定铜铅锌矿石中微量元素镓铟铊钨钼的干扰消除. 岩矿测试, 2011, 30(1): 7-11.

[18]

杨小莉, 杨小丽, 李小丹, 邵鑫, 杨梅. 敞开酸溶-电感耦合等离子体质谱法同时测定钨矿石和锡矿石中14种微量元素. 岩矿测试, 2014, 33(3): 321-326.

[19]

林伟龙, 王正海, 王娟, 蒋丽怡, 范朝焰. 电感耦合等离子体质谱测定灌木枝叶中微量元素的样品预处理方法研究. 岩矿测试, 2015, 34(4): 430-435. doi: 10.15898/j.cnki.11-2131/td.2015.04.009

计量
  • PDF下载量(51)
  • 文章访问量(619)
  • HTML全文浏览量(186)
  • 被引次数(0)
目录

Figures And Tables

超细固体悬浮液进样-电感耦合等离子体质谱法测定土壤中的微量元素

张莉娟, 徐铁民, 方蓬达, 魏双