【引用本文】 顾涛, 赵信文, 雷晓庆, 等. 珠江三角洲崖门镇地区水稻田土壤-植物系统中硒元素分布特征及迁移规律研究[J]. 岩矿测试, 2019, 38(5): 545-555. doi: 10.15898/j.cnki.11-2131/td.201811030118
GU Tao, ZHAO Xin-wen, LEI Xiao-qing, et al. Distribution and Migration Characteristics of Selenium in the Soil-Plant System of Paddy Fields in the Pearl River Delta, Yamen Town[J]. Rock and Mineral Analysis, 2019, 38(5): 545-555. doi: 10.15898/j.cnki.11-2131/td.201811030118

珠江三角洲崖门镇地区水稻田土壤-植物系统中硒元素分布特征及迁移规律研究

1. 

中国地质调查局武汉地质调查中心, 湖北 武汉 430205

2. 

中国地质大学(武汉)生物地质与环境地质实验室, 湖北 武汉 430074

收稿日期: 2018-11-04  修回日期: 2019-01-27  接受日期: 2019-04-09

基金项目: 国家重点研究计划项目(2018YFC1800804);中国地质调查局地质调查项目(DD20190291)

作者简介: 顾涛, 硕士, 工程师, 主要从事环境地质调查研究。E-mali:cugyunnangt1@163.com

Distribution and Migration Characteristics of Selenium in the Soil-Plant System of Paddy Fields in the Pearl River Delta, Yamen Town

1. 

Wuhan Center of Geological Survey, China Geological Survey, Wuhan 430205, China

2. 

State Key Laboratory of Biogeology and Environment Geology, China University of Geosciences(Wuhan), Wuhan 430074, China

Received Date: 2018-11-04
Revised Date: 2019-01-27
Accepted Date: 2019-04-09

摘要:硒在自然环境中的分布及迁移规律一直是研究热点。多目标区域地球化学调查成果表明,珠三角地区土壤硒含量较为丰富,适宜富硒特色农产品种植,但土壤-植物系统中硒的迁移转化规律尚不清楚。本文以典型富硒区-江门市崖门镇为例,系统采集了岩石、风化土、稻田土壤、浅层地下水、灌溉水及水稻样品,应用原子荧光光谱法进行硒含量测试,探讨土壤-植物系统中硒元素分布特征及迁移规律。结果表明:崖门镇花岗岩、花岗岩风化土、稻田表层土壤、剖面土壤、浅层地下水、灌溉水、大米硒含量平均值分别为0.0208mg/kg、0.2325mg/kg、0.5060mg/kg、0.83mg/kg、0.0003mg/L、0.0004mg/L、0.058mg/kg,表层土壤硒含量与珠江三角洲土壤地球化学背景值(0.51mg/kg)相当,大米硒含量达到富硒稻谷标准。土壤-植物系统中硒元素迁移规律为:土壤剖面硒元素向下部迁移,沿径流方向硒向下游迁移。土壤硒较易向水稻根部迁移,较难从根部向水稻地上部分迁移。本研究获得的土壤-植物系统硒元素分布与迁移规律可为该地区富硒资源开发利用提供科学依据。

关键词: 水稻田, , 原子荧光光谱法, 土壤-植物系统, 分布, 迁移

要点

(1) 花岗岩风化成土过程中导致了硒元素的富集并形成富硒土壤。

(2) 土壤剖面硒元素向下部迁移,沿径流方向向下游迁移。

(3) 水稻不同部位硒含量为:根>茎叶>大米>稻壳。

Distribution and Migration Characteristics of Selenium in the Soil-Plant System of Paddy Fields in the Pearl River Delta, Yamen Town

ABSTRACT

BACKGROUND:

The distribution and migration of selenium in the natural environment is a hot topic. The results of a multi-purpose, regional, geochemical survey showed that the content of selenium in the Pearl River Delta Region soils was relatively high, which was suitable for the planting of selenium-rich agricultural products. However, the rule of selenium migration and transformation in the soil-plant system is not yet clear.

OBJECTIVES:

To understand the distribution and migration of selenium in the soil-plant system.

METHODS:

Taking Yamen Town, Jiangmen City, a typical selenium-rich area in the Pearl River Delta region as an example, selenium contents in rocks, weathered soils, paddy soils, shallow groundwater, irrigation water and rice samples were analyzed by atomic fluorescence spectrometry.

RESULTS:

The mean selenium concentrations in the granite rocks, granite weathered soils, surface soils, profile soils, shallow groundwater, irrigation water and rice of Yamen Town were 0.0208mg/kg, 0.2325mg/kg, 0.5060mg/kg, 0.83mg/kg, 0.0003mg/L, 0.0004mg/L and 0.058mg/kg, respectively. The selenium contents in surface soils were equivalent to the soil background value of the Pearl River Delta (0.51mg/kg), the selenium contents of rice reached the standard of selenium-rich rice.

CONCLUSIONS:

The rules of selenium migration in the soil-plant system are as follows:selenium migrates downward in the soil profiles, and migrates downstream along the direction of groundwater runoff. Soil selenium migrates to rice root easily, but migrates with difficulty from roots to the overground parts of rice. The study on the distribution and migration of selenium in the soil-plant system can provide a scientific basis for the exploitation and utilization of selenium-rich resources in this area.

KEY WORDS: paddy field, selenium, atomic fluorescence spectrometry, soil-plant system, distribution, migration

HIGHLIGHTS

(1) The weathering of granite rocks to soils led to the enrichment of selenium and the formation of selenium-rich soils.

(2) Selenium migrated downward in the soil profiles and downstream along the direction of groundwater runoff.

(3) Selenium content in different parts of rice followed the order of root, stem and leaf, rice grain, rice hull.

本文参考文献

[1]

Dinh Q T, Cui Z, Huang J, et al. Selenium distribution in the Chinese environment and its relationship with human health:A review[J].Environment International, 2018, 112: 294-309. doi: 10.1016/j.envint.2017.12.035

[2]

Ullah H, Liu G, Yousaf B, et al. A comprehensive review on environmental transformation of selenium:Recent advances and research perspectives[J]. Environmental Geochemistry and Health, 2018, .

[3]

Natasha , Shahid M, Niazi N K, et al. A critical review of selenium biogeochemical behavior in soil-plant system with an inference to human health[J].Environmental Pollution, 2018, 234: 915-934. doi: 10.1016/j.envpol.2017.12.019

[4]

Bullock L A, John P, Magali P, et al. High selenium in the carboniferous coal measures of northumberland, North East England[J].International Journal of Coal Geology, 2018, 195: 61-74. doi: 10.1016/j.coal.2018.05.007

[5]

Yanai J, Mizuhara S, Yamada H, et al. Soluble selenium content of agricultural soils in Japan and its determining factors with reference to soil type, land use and region[J].Soil Science and Plant Nutrition, 2015, 61(2): 312-318. doi: 10.1080/00380768.2014.997147

[6]

Yamada H, Kamada A, Usuki M, et al. Total selenium content of agricultural soils in Japan[J].Soil Science and Plant Nutrition, 2009, 55(5): 616-622. doi: 10.1111/j.1747-0765.2009.00397.x

[7]

Zhu J M, Zheng B S. Distribution and affecting factors of selenium in soil in the high-Se environment of Yutangba mini-landscape[J]. Chinese Science Bulletin, 1999, (Supplement 2): 46-48.

[8]

朱建明, 左维, 秦海波, 等. 恩施硒中毒区土壤高硒的成因:自然硒的证据[J]. 矿物学报, 2008, 28(4): 397-400. doi: 10.3321/j.issn:1000-4734.2008.04.010

Zhu J M, Zuo W, Qin H B, et al. An investigation on the source of soil Se in Yu Tang Ba, En Shi:Evidence from native selenium[J].Acta Mineralogica Sinica, 2008, 28(4): 397-400. doi: 10.3321/j.issn:1000-4734.2008.04.010

[9]

张建东, 王丽, 王浩东, 等. 紫阳县土壤硒的分布特征研究[J]. 土壤通报, 2017, 48(6): 1404-1408.

Zhang J D, Wang L, Wang H D, et al. Distribution of soil total selenium in Ziyang, Shaanxi[J]. Chinese Journal of Soil Science, 2017, 48(6): 1404-1408.

[10]

朱海娣, 毛雪, 吴承龙, 等. 石台县土壤硒资源分布特征及其利用[J]. 中国农业资源与区划, 2017, 38(9): 130-134.

Zhu H D, Mao X, Wu C L, et al. Distribution characteristics of selenium resources and their utilization in Shitai County[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2017, 38(9): 130-134.

[11]

曹容浩. 福建省龙海市表层土壤硒含量及影响因素研究[J]. 岩矿测试, 2017, 36(3): 282-288.

Cao R H. Study on selenium content of surface soils in Longhai, Fujian and its influencing factors[J]. Rock and Mineral Analysis, 2017, 36(3): 282-288.

[12]

Farhud A A, Sewailem M A, Usman A R A, et al. Status of selenium and trace elements in some arid soils cultivated with forage plants:A case study from Saudi Arabia[J]. International Journal of Agriculture & Biology, 2017, 19: 85-92.

[13]

Pytlik P B, Kulczycki G. Content of selenium in arable soils near Wroclaw[J]. Journal of Elementology, 2009, 14(4): 755-762.

[14]

李杰, 刘久臣, 汤奇峰, 等. 川西高原地区水体中硒含量及分布特征研究[J]. 岩矿测试, 2018, 37(2): 183-192.

Li J, Liu J C, Tang Q F, et al. Study of the contents and distribution of selenium in water samples from the Western Sichuan Plateau and the incidence of Kaschin beck disease[J]. Rock and Mineral Analysis, 2018, 37(2): 183-192.

[15]

迟凤琴, 徐强, 匡恩俊, 等. 黑龙江省土壤硒分布及其影响因素研究[J]. 土壤学报, 2016, 53(5): 1262-1274.

Chi F Q, Xu Q, Kuang E J, et al. Distribuion of selenium and its influencing factors in soils of Heilongjiang Province, China[J]. Acta Pedologica Sinica, 2016, 53(5): 1262-1274.

[16]

Eiche E, Bardelli F, Nothstein A K, et al. Selenium distribution and speciation in plant parts of wheat (Triticum aestivum) and Indian mustard (Brassica juncea) from a seleniferous area of Punjab, India[J].Science of the Total Environment, 2015, 505: 952-961. doi: 10.1016/j.scitotenv.2014.10.080

[17]

Junior E C S, Wadt L H O, Silva K E, et al. Natural variation of selenium in Brazil nuts and soils from the Amazon region[J].Chemosphere, 2017, 188: 650-658. doi: 10.1016/j.chemosphere.2017.08.158

[18]

马迅, 宗良纲, 诸旭东, 等. 江西丰城生态硒谷土壤硒有效性及其影响因素[J]. 安全与环境学报, 2017, 17(4): 1588-1593.

Ma X, Zong L G, Zhu X D, et al. Effectiveness and influential factors of soil selenium in elenium valley, Fengcheng, Jiangxi[J]. Journal of Safety and Environment, 2017, 17(4): 1588-1593.

[19]

王驰, 何慧, 张久亮, 等. 恩施鱼塘坝玉米硒富集及玉米肽抗氧化活性研究[J]. 中国粮油学报, 2016, 31(9): 75-80. doi: 10.3969/j.issn.1003-0174.2016.09.013

Wang C, He H, Zhang J L, et al. Study on selenium enrichment of corn in Yutangba, Enshi and the antioxidant activity of the corn peptides[J].Journal of the Chinese Cereals and Oils Association, 2016, 31(9): 75-80. doi: 10.3969/j.issn.1003-0174.2016.09.013

[20]

廖启林, 任静华, 许伟伟, 等. 江苏宜溧富硒稻米产区地质地球化学背景[J]. 中国地质, 2016, 43(5): 1791-1802.

Liao Q L, Ren J H, Xu W W, et al. Geological and geochemical background of Se-rich rice production in Yili area, Jiangsu Province[J]. Geology of China, 2016, 43(5): 1791-1802.

[21]

Thakur R, Tarafder P K, Jha R R, et al. An evolved GFAAS method for trace and ultratrace determination of Cr(Ⅲ) and Cr(Ⅵ) in water and wastewater:Speciation of chromium[J].Atomic Spectroscopy, 2018, 39(3): 126-136.

[22]

Satyanarayanan M, Balaram V, Sawant S S, et al. Rapid determination of REEs, PGEs, and other trace elements in geological and environmental materials by high resolution inductively coupled plasma mass spectrometry[J]. Atomic Spectroscopy, 2018, 39(1): 1-15.

[23]

Yuksel B, Arica E. Assessment of toxic, essential, and other metal levels by ICP-MS in Lake Eymir and Mogan in Ankara, Turkey:An environmental application[J].Atomic Spectroscopy, 2018, 39(5): 179-184.

[24]

罗杰, 王佳媛, 游远航, 等. 硒在土壤-水稻系统中的迁移转化规律[J]. 西南师范大学学报(自然科学版), 2012, 37(3): 60-66. doi: 10.3969/j.issn.1000-5471.2012.03.013

Luo J, Wang J Y, You Y H, et al. Migration and transformation of Se in the soil-rice system[J].Journal of Southwest China Normal University (Natural Science Edition), 2012, 37(3): 60-66. doi: 10.3969/j.issn.1000-5471.2012.03.013

[25]

商靖敏, 罗维, 吴光红, 等. 洋河流域不同土地利用类型土壤硒(Se)分布及影响因素[J]. 环境科学, 2015, 36(1): 301-308.

Shang J M, Luo W, Wu G H, et al. Spatial distribution of Se in soils from different land use types and its influencing factors within the Yanghe Watershed, China[J]. Environmental Science, 2015, 36(1): 301-308.

[26]

郭宇, 鲍征宇, 马真真, 等. 湖北恩施地区土壤-植物系统中Se元素的地球化学特征[J]. 地质通报, 2012, 31(1): 151-155. doi: 10.3969/j.issn.1671-2552.2012.01.019

Guo Y, Bao Z Y, Ma Z Z, et al. Geochemical characteristics of selenium in the soil-plants system of Enshi area, Hubei Province[J].Geological Bulletin of China, 2012, 31(1): 151-155. doi: 10.3969/j.issn.1671-2552.2012.01.019

[27]

刘子宁, 窦磊, 游远航, 等. 珠江三角洲台山地区硒的地球化学特征[J]. 现代地质, 2014, 28(5): 928-934. doi: 10.3969/j.issn.1000-8527.2014.05.006

Liu Z N, Dou L, You Y H, et al. Geochemical characteristics of selenium in Taishan Region of Pearl River Delta[J].Geoscience, 2014, 28(5): 928-934. doi: 10.3969/j.issn.1000-8527.2014.05.006

[28]

熊平生. 江西赣县花岗岩型红土剖面常量元素地球化学特征[J]. 高校地质学报, 2015, 21(3): 553-558.

Xiong P S. Major elements geochemical characteristics of the granite-type laterite profile in Gan Xian, Jiangxi Province[J]. Geological Journal of China Universities, 2015, 21(3): 553-558.

[29]

陈俊坚, 张会化, 余炜敏, 等. 广东省土壤硒空间分布及潜在环境风险分析[J]. 生态环境学报, 2012, 21(6): 1115-1120.

Chen J J, Zhang H H, Yu W M, et al. Spatial variation and environmental indications of soil selenium in Guangdong Province[J]. Ecology and Environmental Sciences, 2012, 21(6): 1115-1120.

[30]

方金梅. 福州市土壤硒形态分析及其迁移富集规律[J]. 岩矿测试, 2008, 27(2): 103-107. doi: 10.3969/j.issn.0254-5357.2008.02.006

Fang J M. Selenium speciation analysis and its transformation and enrichment in soils of Fuzhou City[J]. Rock and Mineral Analysis, 2008, 27(2): 103-107. doi: 10.3969/j.issn.0254-5357.2008.02.006

[31]

郭莉, 杨忠芳, 阮起和, 等. 北京市平原区土壤中硒的含量和分布[J]. 现代地质, 2012, 26(5): 859-864. doi: 10.3969/j.issn.1000-8527.2012.05.003

Guo L, Yang Z F, Ruan Q H, et al. Content and distribution of selenium in soil of Beijing Plain[J].Geoscience, 2012, 26(5): 859-864. doi: 10.3969/j.issn.1000-8527.2012.05.003

[32]

梁若玉, 和娇, 史雅娟, 等. 典型富硒农业基地土壤硒的生物有效性与剖面分布分析[J]. 环境化学, 2017, 36(7): 1588-1595.

Liang R Y, He J, Shi Y J, et al. Bioavailability and profile distribution of selenium in soils of typical Se-enriched agricultural base[J]. Environmental Chemistry, 2017, 36(7): 1588-1595.

[33]

文帮勇, 张涛亮, 李西周, 等. 江西龙南地区富硒土壤资源开发可行性研究[J]. 中国地质, 2014, 41(1): 256-263. doi: 10.3969/j.issn.1000-3657.2014.01.021

Wen B Y, Zhang T L, Li X Z, et al. A feasibility study of selenium-rich soil development in Longnan County of Jiangxi Province[J].Geology in China, 2014, 41(1): 256-263. doi: 10.3969/j.issn.1000-3657.2014.01.021

[34]

赵少华, 宇万太, 张璐, 等. 环境中硒的生物地球化学循环和营养调控及分异成因[J]. 生态学杂志, 2005, 24(10): 1197-1203. doi: 10.3321/j.issn:1000-4890.2005.10.018

Zhao S H, Yu W T, Zhang L, et al. Biogeochemieal cycling of selenium, nutrition adjustment and differentiation cause in environment[J].Chinese Journal of Ecology, 2005, 24(10): 1197-1203. doi: 10.3321/j.issn:1000-4890.2005.10.018

[35]

谢邦廷, 贺灵, 江官军, 等. 中国南方典型富硒区土壤硒有效性调控与评价[J]. 岩矿测试, 2017, 36(3): 273-281.

Xie B T, He L, Jiang G J, et al. Regulation and evaluation of selenium availability in Se-rich soils in Southern China[J]. Rock and Mineral Analysis, 2017, 36(3): 273-281.

[36]

周骏, 刘兆云, 孟立丰, 等. 土壤性质对土壤-水稻系统中硒迁移的影响[J]. 土壤, 2016, 48(4): 734-741.

Zhou J, Liu Z Y, Meng L F, et al. Selenium transport in soil-paddy plant system influenced by soil properties[J]. Soils, 2016, 48(4): 734-741.

[37]

姜超强, 沈嘉, 祖朝龙, 等. 水稻对天然富硒土壤硒的吸收及转运[J]. 应用生态学报, 2015, 26(3): 809-816.

Jiang C Q, Shen J, Zu C L, et al. Selenium uptake and transport of rice under different Se-enriched natural soils[J]. Chinese Journal of Applied Ecology, 2015, 26(3): 809-816.

[38]

张靖源, 陈剑平, 黄邵华, 等. 广西鹿寨水稻及其种植土壤中硒含量分布特征分析[J]. 南方农业学报, 2016, 47(11): 1856-1860. doi: 10.3969/jissn.2095-1191.2016.11.1856

Zhang J Y, Chen J P, Huang S H, et al. Distribution characteristics of selenium content in rice and rhizosphere soil in Luzhai, Guangxi[J].Journal of Southern Agriculture, 2016, 47(11): 1856-1860. doi: 10.3969/jissn.2095-1191.2016.11.1856

[39]

黄太庆, 江泽普, 邢颖, 等. 水稻对外源硒的吸收利用研究[J]. 农业资源与环境学报, 2017, 34(5): 449-455.

Huang T Q, Jiang Z P, Xing Y, et al. Effects of exogenous selenium on paddy rice growth, selenium uptake and accumulation[J]. Agricultural Resources and Environment, 2017, 34(5): 449-455.

[40]

李玲, 张国平, 刘虹, 等. 广西大厂矿区土壤-植物系统中Sb、As的迁移转化特征[J]. 环境科学学报, 2010, 30(11): 2305-2313.

Li L, Zhang G P, Liu H, et al. Distribution and mobility of Sb and As in topsoil and plants in the Dachang multi-metalliferous mine area, Guangxi, China[J]. Acta Scientiae Circumstantiae, 2010, 30(11): 2305-2313.

[41]

吴汉福, 田玲, 翁贵英, 等. 煤矸石山优势植物对重金属吸收及富集特征[J]. 水土保持学报, 2016, 30(2): 317-322.

Wu H F, Tian L, Weng G Y, et al. Study on heavy metal absorption and enrichment characteristics of dominant plants species settled naturally on coal gangue pile[J]. Journal of Soil and Water Conservation, 2016, 30(2): 317-322.

[42]

White P J. Selenium accumulation by plants[J]. Annals of Botany, 2016, 117: 217-235.

[43]

徐聪, 刘媛媛, 孟凡乔, 等. 农产品硒含量及与土壤硒的关系[J]. 中国农学通报, 2018, 34(7): 96-103.

Xu C, Liu Y Y, Meng F Q, et al. Selenium content in agricultural products and its relationship with soil selenium[J]. Chinese Agricultural Science Bulletin, 2018, 34(7): 96-103.

相似文献(共20条)

[1]

方金梅. 福州市土壤硒形态分析及其迁移富集规律. 岩矿测试, 2008, 27(2): 103-107.

[2]

李刚, 苏文峰. 焙烧分离-氢化物发生-原子荧光光谱法测定土壤样品中微量硒. 岩矿测试, 2008, 27(2): 120-122.

[3]

林光西. 氢化物发生-原子荧光光谱法直接测定地球化学样品中痕量碲. 岩矿测试, 2008, 27(2): 151-152.

[4]

赵 斌, 陈志兵, 董 丽. 氢化物发生-原子荧光光谱法测定植物样品中汞硒砷. 岩矿测试, 2010, 29(3): 319-321.

[5]

陈志兵. 碱性模式氢化物发生—原子荧光光谱法测定土壤中的痕量硒. 岩矿测试, 2002, (4): 311-314.

[6]

赵宗生, 赵小学, 姜晓旭, 赵林林, 张霖琳. 原子荧光光谱测定土壤和水系沉积物中硒的干扰来源及消除方法. 岩矿测试, 2019, 38(3): 333-340. doi: 10.15898/j.cnki.11-2131/td.201809190106

[7]

李文莉, 李刚. 氢化物-原子荧光法测定铜矿中微量硒和碲. 岩矿测试, 2002, (3): 223-226.

[8]

李杰, 刘久臣, 汤奇峰, 孟拓, 袁欣, 马博, 朱晓华. 川西高原地区水体中硒含量及分布特征研究. 岩矿测试, 2018, 37(2): 183-192. doi: 10.15898/j.cnki.11-2131/td.201709250154

[9]

何炼. 原子荧光光谱法直接测定铜矿中的硒. 岩矿测试, 2004, (3): 235-237.

[10]

周姣花, 汪建宇, 钟莅湘, 陈浩风, 王玉林. 氢化物发生-原子荧光光谱法测定生物样品中的硒. 岩矿测试, 2011, 30(2): 214-216.

[11]

何贵, 常继秀, 周晓润, 王禄军. 仪器残留物对氢化物发生-原子荧光光谱法测定硒和碲的影响探讨. 岩矿测试, 2013, 32(2): 229-243.

[12]

罗松光, 谢文明, 葛晓立, 张光弟, 李奇. 北京密云房山地区土壤中多环芳烃的组成与分布特征. 岩矿测试, 2004, (2): 132-136.

[13]

王党辉, 孙泽坤, 郑民奇. 微波消解-氢化物发生原子荧光光谱法测定植物样品中硒. 岩矿测试, 2007, 26(5): 416-418.

[14]

薛超群, 郭敏. 氢化物发生-原子荧光光谱法测定土壤样品中不同价态的硒. 岩矿测试, 2012, 31(6): 980-984.

[15]

胡恭任, 于瑞莲, 赵金秀, 刘小进, 涂湘林. 泉州湾洛阳江河口桐花树和秋茄红树植物中重金属元素的分布与富集特征. 岩矿测试, 2010, 29(3): 236-240.

[16]

何中发, 邵超英, 温晓华, 张琢. 悬浮液进样-氢化物发生原子荧光光谱法测定土壤中痕量砷锑硒. 岩矿测试, 2007, 26(6): 460-464.

[17]

, 梅俊, 熊采华. 氢化物发生原子荧光光谱法测定土壤中络合态锑. 岩矿测试, 2002, (4): 275-278.

[18]

李冰, , 史世云. 电感耦合等离子体质谱法同时测定地质样品中痕量碘溴硒砷的研究:Ⅱ.土壤及沉积物标准物质分析. 岩矿测试, 2001, (4): 241-246.

[19]

邱海鸥, 徐国栋, 汤志勇, 王义壮. 原子荧光光谱法用于水系沉积物中迁移毒性态汞的形态分析. 岩矿测试, 2007, 26(5): 359-362.

[20]

冯辉, 张学君, 张群, 杜丽娜. 北京大清河流域生态涵养区富硒土壤资源分布特征和来源解析. 岩矿测试, 2019, 38(6): 693-704. doi: 10.15898/j.cnki.11-2131/td.201905270071

计量
  • PDF下载量(11)
  • 文章访问量(216)
  • HTML全文浏览量(56)
  • 被引次数(0)
目录

Figures And Tables

珠江三角洲崖门镇地区水稻田土壤-植物系统中硒元素分布特征及迁移规律研究

顾涛, 赵信文, 雷晓庆, 黄长生, 曾敏, 刘学浩, 王节涛