【引用本文】 唐波, 王景腾, 付勇, . 不同地质储库中的镁同位素组成及碳酸盐矿物形成过程中的镁同位素分馏控制因素[J]. 岩矿测试, 2020, 39(2): 162-173. doi: 10.15898/j.cnki.11-2131/td.201908120122
TANG Bo, WANG Jing-teng, FU Yong. Magnesium Isotope Composition of Different Geological Reservoirs and Controlling Factors of Magnesium Isotope Fractionation in the Formation of Carbonate Minerals-A Summary of Previous Results[J]. Rock and Mineral Analysis, 2020, 39(2): 162-173. doi: 10.15898/j.cnki.11-2131/td.201908120122

不同地质储库中的镁同位素组成及碳酸盐矿物形成过程中的镁同位素分馏控制因素

1. 

贵州大学资源与环境工程学院, 贵州 贵阳 550003

2. 

西南能矿集团股份有限公司, 贵州 贵阳 550003

收稿日期: 2019-08-12  修回日期: 2019-09-21  接受日期: 2019-10-21

基金项目: 国家重点研发计划“深地资源勘查开采”专题(2017YFC0602701);中国地质调查局中国矿产地质志项目(DD20160346,DD20190379);贵州省人才基地项目(RCJD2018-21)

作者简介: 唐波, 博士研究生, 讲师, 主要从事矿床学、地球化学研究。E-mail:tbsq123@126.com

通信作者: 付勇, 博士, 副教授, 主要从事矿床学、地球化学及相关研究。E-mail:byez1225@126.com

Magnesium Isotope Composition of Different Geological Reservoirs and Controlling Factors of Magnesium Isotope Fractionation in the Formation of Carbonate Minerals-A Summary of Previous Results

1. 

College of Resource and Environmental Engineering, Guizhou University, Guiyang 550003, China

2. 

Southwest Energy Group Co. LTD, Guiyang 550003, China

Corresponding author: FU Yong, byez1225@126.com

Received Date: 2019-08-12
Revised Date: 2019-09-21
Accepted Date: 2019-10-21

摘要:镁同位素在低温地球化学过程中显著的分馏效应,是其示踪地球表生环境演化及物质循环的基础。本文在前人研究的基础上,对地球上不同地质储库中的镁同位素组成及碳酸盐矿物形成过程中的镁同位素分馏控制因素进行了总结:火成岩的镁同位素组成较均一;风化产物总体富集重的镁同位素,且变化较大;碳酸盐岩中灰岩相对白云岩富集轻的镁同位素,但总体上富集轻的镁同位素;岩石类型、风化强度以及植被等因素对河流地表水的镁同位素组成影响较大,导致地表水的镁同位素组成总体变化较大;海水的镁同位素组成均一,平均值约为-0.83‰;低温条件下,控制碳酸盐矿物无机成因过程中镁同位素分馏的因素有矿物相、沉淀速率和温度,其中矿物相是主要控制因素;生物成因碳酸盐矿物镁同位素组成与生物体对含镁碳酸盐矿物的利用形式有关,除了需考虑与无机碳酸盐沉淀类似的控制因素外,还需考虑不同物种对轻、重镁同位素的选择性吸收能力;因生物成因海相碳酸盐矿物几乎都是由最初的无定形相碳酸盐转变而来,故生物成因海相碳酸盐矿物的镁同位素特征不能代表生成无定形相碳酸盐的流体的镁同位素特征。镁同位素在低温条件下具有良好的分馏效应,随着分析测试技术的发展及不同地质储库中镁同位素组成数据的积累和完善,有关表生环境中镁同位素分馏机制的许多问题将逐步得到解决,镁同位素在揭示地球表生环境演化及物质循环方面将发挥更大的作用。

关键词: 地质储库, 镁同位素组成, 碳酸盐矿物, 无定形相碳酸盐, 控制因素

要点

(1) 镁同位素在低温地球化学过程中具有显著的分馏作用。

(2) 碳酸盐岩总体上富集轻的镁同位素,灰岩的镁同位素组成比白云岩稍轻。

(3) 生物成因海相碳酸盐矿物几乎都是由最初的无定形相碳酸盐转变而来。

Magnesium Isotope Composition of Different Geological Reservoirs and Controlling Factors of Magnesium Isotope Fractionation in the Formation of Carbonate Minerals-A Summary of Previous Results

ABSTRACT

BACKGROUND:

Magnesium isotope fractionation effect during low-temperature geochemical processes is the foundation of tracing supergene evolution and material cycle of the earth.

OBJECTIVES:

To summarize the magnesium isotope composition of different geological reservoirs and investigate the controlling factors of the magnesium isotope fractionation during the formation of carbonate minerals.

METHODS:

Systematic collection and summary of previous research results.

RESULTS:

Magnesium isotope compositions of igneous rocks were relatively homogeneous. The weathering products were relatively enriched in heavy isotopes of magnesium with significant variation. Carbonate rocks showed enrichment in light isotopes of magnesium in general. The large variation of magnesium isotope composition of river water was affected by lithology, weathering degree and vegetation. Magnesium isotope composition of seawater was homogeneous with an average of -0.83‰. At low temperature, the factors controlling the fractionation of magnesium isotopes in the inorganic process of carbonate minerals were mineral phase, precipitation rate and temperature, of which mineral phase was the main controlling factor. The factors influencing the magnesium isotope composition of biogenic carbonate minerals were forms of utilization of magnesium carbonate minerals by organisms. In addition to considering the mechanisms that were similar to inorganic carbonate precipitation, the selective absorption of light and heavy magnesium isotopes by different species should be considered. Almost all biogenic marine carbonate minerals were transformed from the original amorphous phase carbonate precursor, and their original magnesium isotope composition was masked by the later magnesium isotope composition during transformation. Therefore, the magnesium isotope composition of biogenic marine carbonate minerals cannot represent the fluid isotope composition from which the original amorphous carbonate precursor formed.

CONCLUSIONS:

Magnesium isotopes have a good fractionation effect at low temperature. With the development of analytical technology and the accumulation and improvement of magnesium isotope composition data in different geological reservoirs, many problems related to the mechanism of magnesium isotope fractionation in the supergene environment will be solved gradually. Magnesium isotopes will play a greater role in revealing the evolution of the supergene environment and the material cycle of the earth.

KEY WORDS: geological reservoirs, magnesium isotope composition, carbonate minerals, amorphous carbonate, controlling factors

HIGHLIGHTS

(1) Magnesium isotopes showed significant fractionation during low-temperature geochemical processes.

(2) Carbonate rocks showed enrichment in light isotopes of magnesium in general; magnesium isotopes of limestone were lighter than those of dolomite.

(3) Almost all biogenic marine carbonate minerals were transformed from the original amorphous phase carbonate precursor.

本文参考文献

[1]

牛耀龄, 龚红梅, 王晓红, 等. 用非传统稳定同位素探索全球大洋玄武岩、深海橄榄岩成因和地球动力学的几个重要问题[J]. 地球科学进展, 2017, 32(2): 111-127.

Niu Y L, Gong H M, Wang X H, et al. Some key problems on the petrogenesis of seafloor basalts, abyssal peridotites and geodynamics—A non-traditional isotope approach[J]. Advances in Earth Science, 2017, 32(2): 111-127.

[2]

黄方, 南晓云. 土壤中非传统稳定同位素研究进展[J]. 中国科学技术大学学报, 2015, 45(2): 87-100. doi: 10.3969/j.issn.0253-2778.2015.02.001

Huang F, Nan X Y. Advance in applications of non-traditional stable isotopes in soil studies[J].Journal of University of Science and Technology of China, 2015, 45(2): 87-100. doi: 10.3969/j.issn.0253-2778.2015.02.001

[3]

刘耘. 非传统稳定同位素分馏理论及计算[J]. 地学前缘, 2015, 22(5): 1-28.

Liu Y. Theory and computational methods of non-traditional stable isotope fractionation[J]. Earth Science Frontiers, 2015, 22(5): 1-28.

[4]

王立成, 刘成林, 曹珂, 等. 沉积盆地卤水来源的非传统同位素示踪研究进展[J]. 矿床地质, 2014, 33(5): 909-920. doi: 10.3969/j.issn.0258-7106.2014.05.002

Wang L C, Liu C L, Cao K, et al. Progress in applying non-traditional isotopes to tracing origin of brines in sedimentary basins[J].Mineral Deposits, 2014, 33(5): 909-920. doi: 10.3969/j.issn.0258-7106.2014.05.002

[5]

胡瑞忠, 温汉捷, 苏文超, 等. 矿床地球化学近十年若干研究进展[J]. 矿物岩石地球化学通报, 2014, 33(2): 127-144. doi: 10.3969/j.issn.1007-2802.2014.02.016

Hu R Z, Wen H J, Su W C, et al. Some advances in ore deposit geochemistry in last decade[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2014, 33(2): 127-144. doi: 10.3969/j.issn.1007-2802.2014.02.016

[6]

朱祥坤, 王跃, 闫斌, 等. 非传统稳定同位素地球化学的创建与发展[J]. 矿物岩石地球化学通报, 2013, 32(6): 651-688.

Zhu X K, Wang Y, Yan B, et al. Developments of non-traditional stable isotope geochemistry[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2013, 32(6): 651-688.

[7]

黄方. 高温下非传统稳定同位素分馏[J]. 岩石学报, 2011, 27(2): 365-382.

Huang F. Non-traditional stable isotope fractionation at high temperatures[J]. Acta Petrologica Sinica, 2011, 27(2): 365-382.

[8]

张宏福, 汤艳杰, 赵新苗, 等. 非传统同位素体系在地幔地球化学研究中的重要性及其前景[J]. 地学前缘, 2007, 14(2): 37-57. doi: 10.3321/j.issn:1005-2321.2007.02.004

Zhang H F, Tang Y J, Zhao X M, et al. Significance and prospective of non-traditional isotopic systems in mantle geochemistry[J].Earth Science Frontiers, 2007, 14(2): 37-57. doi: 10.3321/j.issn:1005-2321.2007.02.004

[9]

Teng F Z, Dauphas N, Watkins J M, et al. Non-traditional stable isotopes:Retrospective and prospective[J].Reviews in Mineralogy and Geochemistry, 2017, 82: 1-26. doi: 10.2138/rmg.2017.82.1

[10]

Shahar A, Elardo S M, Macris C A, et al. Equilibrium fraction-ation of non-traditional stable isotopes:An experimental perspective[J].Reviews in Mineralogy and Geochemistry, 2017, 82: 65-83. doi: 10.2138/rmg.2017.82.3

[11]

Lu D W, Zhang T Y, Yang X Z, et al. Recent advances in analysis of non-traditional stable isotopes by multi-collector inductively coupled plasma mass spectrometry[J].Journal of Analytical Atomic Spectrometry, 2017, 32(10): 1848-1861. doi: 10.1039/C7JA00260B

[12]

Young E D, Manning C E, Schauble E A, et al. High-temperature equilibrium isotope fractionation of non-traditional stable isotopes:Experiments, theory, and applications[J].Chemical Geology, 2015, 395: 176-195. doi: 10.1016/j.chemgeo.2014.12.013

[13]

Zhu D, Bao H, Liu Y, et al. Non-traditional stable isotope behaviors in immiscible silica-melts in a mafic magma chamber[J].Scientific Reports, 2015, 5(1): 1-20. doi: 10.9734/JSRR/2015/14076

[14]

Teng F Z. Magnesium isotope geochemistry[J].Reviews in Mineralogy and Geochemistry, 2017, 82: 219-287. doi: 10.2138/rmg.2017.82.7

[15]

柯珊, 刘盛遨, 李王晔, 等. 镁同位素地球化学研究新进展及其应用[J]. 岩石学报, 2011, 27(2): 383-397.

Ke S, Liu S A, Li W H, et al. Advances and application in magnesium isotope geochemistry[J]. Acta Petrologica Sinica, 2011, 27(2): 383-397.

[16]

葛璐, 蒋少涌. 镁同位素地球化学研究进展[J]. 岩石矿物学杂志, 2008, 27(4): 367-374. doi: 10.3969/j.issn.1000-6524.2008.04.015

Ge L, Jiang S Y. Recent advances in research on magnesium isotope geochemistry[J].Acta Petrologica et Mineralogica, 2008, 27(4): 367-374. doi: 10.3969/j.issn.1000-6524.2008.04.015

[17]

何学贤, 李世珍, 唐索寒, 等. Mg同位素应用研究进展[J]. 岩石矿物学杂志, 2008, 27(5): 472-476. doi: 10.3969/j.issn.1000-6524.2008.05.013

He X X, Li S Z, Tang S H, et al. Advances in the study of Mg isotopes application[J].Acta Petrologica et Mineralogica, 2008, 27(5): 472-476. doi: 10.3969/j.issn.1000-6524.2008.05.013

[18]

董爱国, 韩贵琳. 镁同位素体系在河流中的研究进展[J]. 地球科学进展, 2017, 32(8): 800-809.

Dong A G, Han G L. A review of magnesium isotope system in rivers[J]. Advances in Earth Science, 2017, 32(8): 800-809.

[19]

高庭, 刘承帅, 柯珊, 等.土壤低镁粘土矿物和铁氧化物富集轻Mg同位素的作用机制.中国地球科学联合学术年会论文集, 2017: 604-605.

Gao T, Liu C S, Ke S, et al.The enrichment mechanism of clay minerals with low Mg and Fe-oxide in soils on light Mg isotopes[C]//Proceedings of the Annual Meeting of China Geoscience Union, 2017: 604-605.

[20]

董爱国, 朱祥坤. 表生环境中镁同位素的地球化学循环[J]. 地球科学进展, 2016, 31(1): 43-58.

Dong A G, Zhu X K. Mg isotope geochemical cycle in supergene environment[J]. Advances in Earth Science, 2016, 31(1): 43-58.

[21]

范百龄, 陶发祥, 赵志琦, 等. 地表及海洋环境的镁同位素地球化学研究进展[J]. 矿物岩石地球化学通报, 2013, 32(1): 114-120. doi: 10.3969/j.issn.1007-2802.2013.01.011

Fan B L, Tao F X, Zhao Z Q, et al. Advance of geochemical applications of magnesium isotope in marine and Earth surface environments[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2013, 32(1): 114-120. doi: 10.3969/j.issn.1007-2802.2013.01.011

[22]

Zhao T, Liu W J, Xu Z F, et al. The influence of car-bonate precipitation on riverine magnesium isotope signals:New constrains from Jinsha River Basin, Southeast Tibetan Plateau[J].Geochimica et Cosmochimica Acta, 2019, (248): 172-184.

[23]

Fan B, Zhao Z, Tao F, et al. The geochemical behavior of Mg isotopes in the Huanghe Basin, China[J].Chemical Geology, 2016, 426: 19-27. doi: 10.1016/j.chemgeo.2016.01.005

[24]

Ma L, Teng F Z, Jin L, et al. Magnesium isotope fractionation during shale weathering in the shale hills critical zone observatory:Accumulation of light Mg isotopes in soils by clay mineral transformation[J].Chemical Geology, 2015, 397: 37-50. doi: 10.1016/j.chemgeo.2015.01.010

[25]

Kasemann S A, Pogge von Strandmann P A E, Prave A R, et al. Continental weathering following a Cryogenian glaciation:Evidence from calcium and magnesium isotopes[J].Earth and Planetary Science Letters, 2014, 396: 66-77. doi: 10.1016/j.epsl.2014.03.048

[26]

Wimpenny J, Yin Q Z, Tollstrup D, et al. Using Mg isotope ratios to trace Cenozoic weathering changes:A case study from the Chinese Loess Plateau[J].Chemical Geology, 2014, 376: 31-43. doi: 10.1016/j.chemgeo.2014.03.008

[27]

Beinlich A, Mavromatis V, Austrheim H, et al. Inter-mineral Mg isotope fractionation during hydrothermal ultramafic rock alteration—Implications for the global Mg-cycle[J].Earth and Planetary Science Letters, 2014, 392: 166-176. doi: 10.1016/j.epsl.2014.02.028

[28]

Huang K J, Teng F Z, Wei G J, et al. Adsorption- and desorption-controlled magnesium isotope fractionation during extreme weathering of basalt in Hainan Island, China[J]. Earth and Planetary Science Letters, 2012, 359-360(1): 73-83.

[29]

Tipper E T, Calmels D, Gaillardet J, et al. Positive correlation between Li and Mg isotope ratios in the river waters of the Mackenzie Basin challenges the interpretation of apparent isotopic fractionation during weathering[J].Earth and Planetary Science Letters, 2012, 333-334: 35-45. doi: 10.1016/j.epsl.2012.04.023

[30]

Teng F Z, Li W Y, Rudnick R L, et al. Contrasting lithium and magnesium isotope fractionation during continental weathering[J].Earth and Planetary Science Letters, 2010, 300: 63-71. doi: 10.1016/j.epsl.2010.09.036

[31]

Brewer A, Teng F Z, Dethier D, et al. Magnesium isotope fractionation during granite weathering[J].Chemical Geology, 2008, 501: 95-103.

[32]

甯濛, 黄康俊, 沈冰, 等. 镁同位素在"白云岩问题"研究中的应用及进展[J]. 岩石学报, 2018, 34(12): 3690-3708.

Ning M, Huang K J, Shen B, et al. Applications and advances of the magnesium isotope on the 'dolomite problem'[J]. Acta Petrologica Sinica, 2018, 34(12): 3690-3708.

[33]

孙剑, 房楠, 李世珍, 等. 白云鄂博矿床成因的Mg同位素制约[J]. 岩石学报, 2012, 28(9): 2890-2902.

Sun J, Fang N, Li S Z, et al. Magnesium isotopic constraints on the genesis of Bayan Obo ore deposit[J]. Acta Petrologica Sinica, 2012, 28(9): 2890-2902.

[34]

Geske A, Goldstein R, Mavromatis V, et al. The magnesium isotope (δ26Mg) signature of dolomites[J]. Geochimica et Cosmochimica Acta, 2015, 149(11): 131-151.

[35]

Liu C, Wang Z R, Raub T D, et al. Neoproterozoic cap-dolostone deposition in stratified glacial meltwater plume[J].Earth and Planetary Science Letters, 2014, 404: 22-32. doi: 10.1016/j.epsl.2014.06.039

[36]

Mavromatis V, Meister P, Oelkers E H, et al. Using stable Mg isotopes to distinguish dolomite formation mechanisms: A case study from the Peru Margin[J].Chemical Geology, 2014, 385: 84-91. doi: 10.1016/j.chemgeo.2014.07.019

[37]

Azmy K, Lavoie D, Wang Z, et al. Magnesium-isotope and REE compositions of Lower Ordovician carbonates from Eastern Laurentia:Implications for the origin of dolomites and limestones[J].Chemical Geology, 2013, 356: 64-75. doi: 10.1016/j.chemgeo.2013.07.015

[38]

李曙光. 深部碳循环的Mg同位素示踪:2015—2016的进展与问题[J]. 矿物岩石地球化学通报, 2017, 36(2): 197-203. doi: 10.3969/j.issn.1007-2802.2017.02.002

Li S G. A review of tracing deep carbon recycling researches by using Mg isotopes during 2015—2016:Progresses and questions[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2017, 36(2): 197-203. doi: 10.3969/j.issn.1007-2802.2017.02.002

[39]

李曙光. 深部碳循环的Mg同位素示踪[J]. 地学前缘, 2015, 22(5): 143-159.

Li S G. Tracing deep carbon recycling by Mg isotopes[J]. Earth Science Frontiers, 2015, 22(5): 143-159.

[40]

Huang F, Chakraborty P, Lundstrom C C, et al. Isotope fractionation in silicate melts by thermal diffusion[J].Nature, 2010, 464(7287): 396-400. doi: 10.1038/nature08840

[41]

Huang S, Farka J, Jacobsen S B, et al. Calcium isotopic frac-tionation between clinopyroxene and orthopyroxene from mantle peridotites[J].Earth and Planetary Science Letters, 2010, 292(3): 337-344.

[42]

Berglund M, Wieser M E. Isotopic compositions of the elements 2009 (IUPAC Technical Report)[J].Pure and Applied Chemistry, 2011, 83(2): 397-410. doi: 10.1351/PAC-REP-10-06-02

[43]

Galy A, Belshaw N S, Halicz L, et al. High-precision measurement of magnesium isotopes by multiple-collector inductively coupled plasma mass spectrometry[J]. International Journal of Mass Spectrometry, 2001, 208(1): 89-98.

[44]

Galy A, Yoffe O, Janney P E, et al. Magnesium isotope heterogeneity of the isotopic standard SRM980 and new reference materials for magnesium-isotope-ratio measurements[J].Journal of Analytical Atomic Spectrometry, 2003, 18: 1352-1356. doi: 10.1039/b309273a

[45]

朱祥坤, 何学贤, 杨淳, 等. Mg同位素标准参考物质SRM980的同位素不均一性研究[J]. 地球学报, 2005, 26(Supplement 1): 12-14.

Zhu X K, He X X, Yang C, et al. Hetergoeneity of Mg isotope composition in SRM980[J]. Acta Geoscientica Sinica, 2005, 26(Supplement 1): 12-14.

[46]

Young E D, Galy A. The isotope geochemistry and cosmochemistry of magnesium[J].Reviews in Mineralogy and Geochemistry, 2004, 55(1): 197-230. doi: 10.2138/gsrmg.55.1.197

[47]

Chang V T C, Makishima A, Belshaw N S, et al. Purification of Mg from low-Mg biogenic carbonates for isotope ratio determination using multiple collector ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2003, 18(4): 296-301. doi: 10.1039/b210977h

[48]

Young E D, Ash R D, Galy A, et al. Mg isotope heter-ogeneity in the Allende meteorite measured by UV laser ablation-MC-ICPMS and comparisons with O isotopes[J].Geochimica et Cosmochimica Acta, 2002, 66(4): 683-698. doi: 10.1016/S0016-7037(01)00796-7

[49]

Young E D, Tonui E, Manning C E, et al. Spinel-olivine magnesium isotope thermometry in the mantle and implications for the Mg isotopic composition of Earth[J].Earth and Planetary Science Letters, 2009, 288: 524-533. doi: 10.1016/j.epsl.2009.10.014

[50]

Pearson N J, Griffin W L, Alard O, et al. The isotopic composition of magnesium in mantle olivine:Records of depletion and metasomatism[J].Chemical Geology, 2006, 226: 115-133. doi: 10.1016/j.chemgeo.2005.09.029

[51]

Teng F Z, Li W Y, Ke S, et al. Magnesium isotopic com-position of the Earth and chondrites[J].Geochimica et Cosmochimica Acta, 2010, 74(14): 4150-4166. doi: 10.1016/j.gca.2010.04.019

[52]

Wiechert U, Halliday A N. Non-chondritic magnesium and the origins of the inner terrestrial planets[J].Earth and Planetary Science Letters, 2007, 256(3-4): 360-371. doi: 10.1016/j.epsl.2007.01.007

[53]

Teng F Z, Wadhwa M, Helz R T, et al. Investigation of Magnesium isotope fractionation during basalt differentiation:Implications for a chondritic composition of the terrestrial mantle[J].Earth and Planetary Science Letters, 2007, 261(1): 84-92.

[54]

Bourdon B, Tipper E T, Fitoussi C, et al. Chondritic Mg isotope composition of the Earth[J].Geochimica et Cosmochimica Acta, 2010, 74(17): 5069-5083. doi: 10.1016/j.gca.2010.06.008

[55]

Yang W, Teng F Z, Zhang H F, et al. Chondritic magnesium isotopic composition of the terrestrial mantle:A case study of peridotite xenoliths from the North China Craton[J].Earth and Planetary Science Letters, 2009, 288(3/4): 475-482.

[56]

Huang F, Glessner J, Ianno A, et al. Magnesium isotopic composition of igneous rock standards measured by MC-ICP-MS[J]. Chemical Geology, 2009, 268(1): 15-23.

[57]

Teng F Z, Dauphas N, Helz R T, et al. Diffusion-driven magnesium and iron isotope fractionation in Hawaiian olivine[J]. Earth and Planetary Science Letters, 2011, 308(3): 317-324.

[58]

Li W Y, Teng F Z, Ke S, et al. Heterogeneous magnesium isotopic composition of the upper continental crust[J].Geochimica et Cosmochimica Acta, 2010, 74(23): 6867-6884. doi: 10.1016/j.gca.2010.08.030

[59]

Saenger C, Wang Z, Gaetani G, et al. The influence of temperature and vital effects on magnesium isotope variability in Poritesand Astrangia corals[J].Chemical Geology, 2013, 360/361: 105-117. doi: 10.1016/j.chemgeo.2013.09.017

[60]

Planchon F, Poulain C, Langlet D, et al. Mg-isotopic fractionation in the manila clam (Ruditapes philippinarum):New insights into Mg incorporation pathway and calcification process of bivalves[J].Geochimica et Cosmochimica Acta, 2013, 121(6): 374-397.

[61]

Wombacher F, Eisenhauer A, Bohm F, et al. Magnesium stable isotope fractionation in marine biogenic calcite and aragonite[J].Geochimica et Cosmochimica Acta, 2011, 75(19): 5797-5818. doi: 10.1016/j.gca.2011.07.017

[62]

Yoshimura T, Tanimizu M, Inoue M, et al. Mg isotope fractionation in biogenic carbonates of deep-sea coral, benthic foraminifera, and hermatypic coral[J].Analytical and Bioanalytical Chemistry, 2011, 401(9): 2755-2769. doi: 10.1007/s00216-011-5264-0

[63]

Ra K, Kitagawa H, Shiraiwa Y, et al. Mg isotopes and Mg/Ca values of coccoliths from cultured specimens of the species Emiliania huxleyi and Gephyrocapsa oceanica[J].Marine Micropaleontology, 2010, 77(3/4): 119-124.

[64]

Ra K, Kitagawa H, Shiraiwa Y, et al. Mg isotopes in chloro-phyll-a and coccoliths of cultured coccolithophores (Emiliania huxleyi) by MC-ICP-MS[J].Marine Chemistry, 2010, 122(1-4): 130-137. doi: 10.1016/j.marchem.2010.07.004

[65]

Hippler D, Buhl D, Witbaard R, et al. Towards a better understanding of magnesium-isotope ratios from marine skeletal carbonates[J].Geochimica et Cosmochimica Acta, 2009, 73(20): 6134-6146. doi: 10.1016/j.gca.2009.07.031

[66]

Pagge von Strandmann P A E. Precise magnesium isotope measurements in core top planktic and benthic foraminifera[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(12): Q12015.

[67]

Ra K, Kitagawa H. Magnesium isotope analysis of different chlorophyll forms in marine phytoplankton using multi-collector ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2007, 22(7): 817-821. doi: 10.1039/b701213f

[68]

Chang V T C, Williams R, Makishima A, et al. Mg and Ca isotope fractionation during CaCO3 biomineralisation[J].Biochemical and Biophysical Research Communications, 2004, 323(1): 79-85. doi: 10.1016/j.bbrc.2004.08.053

[69]

Galy A, Bar-Matthews M, Halicz L, et al. Mg isotopic composition of carbonate:Insight from speleothem formation[J].Earth and Planetary Science Letters, 2002, 201(1): 105-115.

[70]

Geske A, Zorlu J, Richter D, et al. Impact of diagenesis and low grade metamorphosis on isotope (δ26Mg, δ13C, δ18O and 87Sr/86Sr) and elemental (Ca, Mg, Mn, Fe and Sr) signatures of Triassic sabkha dolomites[J]. Chemical Geology, 2012, 332: 45-64.

[71]

Jacobson A D, Zhang Z, Lundstrom C, et al. Behavior of Mg isotopes during dedolomitization in the Madison Aquifer, South Dakota[J]. Earth and Planetary Science Letters, 2010, 297(3): 446-452.

[72]

Lavoie D, Jackson S, Girard I, et al. Magnesium isotopes in high-temperature saddle dolomite cements in the Lower Paleozoic of Canada[J]. Sedimentary Geology, 2014, 305(5): 58-68.

[73]

Immenhauser A, Buhl D, Richter D, et al. Magnesium-isotope fractionation during low-Mg calcite precipitation in a limestone cave—Field study and experiments[J].Geochimica et Cosmochimica Acta, 2010, 74(15): 4346-4364. doi: 10.1016/j.gca.2010.05.006

[74]

Tipper E, Galy A, Gaillardet J, et al. The magnesium isotope budget of the modern ocean: Constraints from riverine magnesium isotope ratios[J].Earth and Planetary Science Letters, 2006, 250(1/2): 241-253.

[75]

Brenot A, Cloquet C, Vigier N, et al. Magnesium isotope systematics of the lithologically varied Moselle River Basin, France[J].Geochimica et Cosmochimica Acta, 2008, 72(20): 5070-5089. doi: 10.1016/j.gca.2008.07.027

[76]

Buhl D, Immenhauser A, Smeulders G, et al. Time series δ26Mg analysis in speleothem calcite:Kinetic versus equilibrium fractionation, comparison with other proxies and implications for palaeoclimate research[J].Chemical Geology, 2007, 244(3): 715-729.

[77]

Foster G L, Pogge von Strandmann P A E, Rae J W B, et al. Boron and magnesium isotopic composition of seawater[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(8): 253-274.

[78]

Ling M X, Sedaghatpour F, Teng F Z, et al. Homogeneous magnesium isotopic composition of seawater:An excellent geostandard for Mg isotope analysis[J].Rapid Communications in Mass Spectrometry, 2011, 25(19): 2828-2836. doi: 10.1002/rcm.5172

[79]

Tipper E, Gaillardet J, Louvat P, et al. Mg isotope constraints on soil pore-fluid chemistry:Evidence from Santa Cruz, California[J].Geochimica et Cosmochimica Acta, 2010, 74(14): 3883-3896. doi: 10.1016/j.gca.2010.04.021

[80]

Lee S W, Ryu J S, Lee K S, et al. Magnesium isotope geochemistry in the Han River, South Korea[J]. Chemical Geology, 2014, 364(1): 9-19.

[81]

Wimpenny J, Burton K W, James R H, et al. The behavi-our of magnesium and its isotopes during glacial weathering in an ancient shield terrain in West Greenland[J].Earth and Planetary Science Letters, 2011, 304(1): 260-269.

[82]

Tipper E T, Galy A, Bickle M J, et al. Calcium and magnesium isotope systematics in rivers draining the Himalaya-Tibetan-Plateau region:Lithological or fractionation control?[J].Geochimica et Cosmochimica Acta, 2008, 72(4): 1057-1075. doi: 10.1016/j.gca.2007.11.029

[83]

Pogge von Strandmann P A E, Burton K W, James R H, et al. The influence of weathering processes on riverine magnesium isotopes in a basaltic terrain[J]. Earth and Planetary Science Letters, 2008, 276(1/2): 187-197.

[84]

Liu X M, Teng F Z, Rudnick R L, et al. Massive mag-nesium depletion and isotope fractionation in weathered basalts[J].Geochimica et Cosmochimica Acta, 2014, 135(7): 336-349.

[85]

Wimpenny J, Colla C A, Yin Q, et al. Investigating the behaviour of Mg isotopes during the formation of clay minerals[J]. Geochimica et Cosmochimica Acta, 2014, 128(3): 178-194.

[86]

Huang K J, Teng F Z, Elsenouy A, et al. Magnesium isotopic variations in loess:Origins and implications[J].Earth and Planetary Science Letters, 2013, 374: 60-70. doi: 10.1016/j.epsl.2013.05.010

[87]

Pogge von Strandmann P A E, Opfergelt S, Lai Y J, et al. Lithium, magnesium and silicon isotope behaviour accompanying weathering in a basaltic soil and pore water profile in Iceland[J]. Earth and Planetary Science Letters, 2012, 339/340(4): 11-23.

[88]

Saenger C, Wang Z. Magnesium isotope fractionation in biogenic and abiogenic carbonates: Implications for paleoenvironmental proxies[J].Quaternary Science Reviews, 2014, 90(474): 1-21.

[89]

Bolou-Bi E B, Poszwa A, Leyval C, et al. Experimental determination of magnesium isotope fractionation during higher plant growth[J].Geochimica et Cosmochimica Acta, 2010, 74(9): 2523-2537. doi: 10.1016/j.gca.2010.02.010

[90]

Black J R, Yin Q, Rustad J R, et al. Magnesium isotopic equilibrium in chlorophylls[J].Journal of the American Chemical Society, 2007, 129(28): 8690-8691. doi: 10.1021/ja072573i

[91]

Shirokova L S, Mavromatis V, Bundeleva I A, et al. Using Mg isotopes to trace cyanobacterially mediated magnesium carbonate precipitation in alkaline lakes[J].Aquatic Geochemistry, 2013, 19(1): 1-24.

[92]

Handler M R, Baker J A, Schiller M, et al. Magnesium stable isotope composition of Earth's upper mantle[J].Earth and Planetary Science Letters, 2009, 282: 306-313. doi: 10.1016/j.epsl.2009.03.031

[93]

Saulnier S, Rollion-Bard C, Vigier N, et al. Mg isotope fractionation during calcite precipitation:An experimental study[J].Geochimica et Cosmochimica Acta, 2012, 91: 75-91. doi: 10.1016/j.gca.2012.05.024

[94]

Mavromatis V, Gautier Q, Bosc O, et al. Kinetics of Mg partition and Mg stable isotope fractionation during its incorporation in calcite[J].Geochimica et Cosmochimica Acta, 2013, 114: 188-203. doi: 10.1016/j.gca.2013.03.024

[95]

Wang Z, Hu P, Gaetani G, et al. Experimental calibration of Mg-isotope fractionation between aragonite and seawater[J].Geochimica et Cosmochimica Acta, 2013, 102: 113-123. doi: 10.1016/j.gca.2012.10.022

[96]

Mavromatis V, Pearce C R, Shirokova L S, et al. Magnesium isotope fractionation during hydrous magnesium carbonate precipitation with and without cyanobacteria[J].Geochimica et Cosmochimica Acta, 2012, 76: 161-174. doi: 10.1016/j.gca.2011.10.019

[97]

Li W, Beard B L, Li C, et al. Experimental calibration of Mg isotope fractionation between dolomite and aqueous solution and its geological implications[J].Geochimica et Cosmochimica Acta, 2015, 157: 164-181. doi: 10.1016/j.gca.2015.02.024

[98]

Pearce C R, Saldi G D, Schott J, et al. Isotopic fractionation during congruent dissolution, precipitation and at equilibrium:Evidence from Mg isotopes[J].Geochimica et Cosmochimica Acta, 2012, 92: 170-183. doi: 10.1016/j.gca.2012.05.045

[99]

Li W, Chakraborty S, Beard B L, et al. Magnesium isotope fractionation during precipitation of inorganic calcite under laboratory conditions[J]. Earth and Planetary Science Letters, 2012, 333(6): 304-316.

[100]

Schauble E A. First-principles estimates of equilibrium magnesium isotope fractionation in silicate, oxide, carbonate and hexaaqua magnesium(2+) crystals[J].Geochimica et Cosmochimica Acta, 2011, 75: 844-869. doi: 10.1016/j.gca.2010.09.044

[101]

Mavromatis V, Purgstaller B, Dietzel M, et al. Impact of amorphous precursor phases on magnesium isotope signatures of Mg-calcite[J].Earth and Planetary Science Letters, 2017, 464: 227-236. doi: 10.1016/j.epsl.2017.01.031

相似文献(共20条)

[1]

孙剑, 朱祥坤, 陈岳龙. 碳酸盐矿物铁同位素测试的选择性溶解方法研究——以白云鄂博矿床赋矿白云岩为例. 岩矿测试, 2013, 32(1): 28-33.

[2]

江冉, 付勇, 王富良, 裴浩翔, 徐志刚, 温宏利, 周文喜. 应用去除碳酸盐法研究滇黔地区“白泥塘层”硅质成分的来源. 岩矿测试, 2016, 35(3): 236-244. doi: 10.15898/j.cnki.11-2131/td.2016.03.004

[3]

李大勇, 朱志雄, 李靖, 王亮. X射线荧光光谱法半定量分析高烧失量矿物的准确度研究. 岩矿测试, 2020, 39(1): 135-142. doi: 10.15898/j.cnki.11-2131/td.201903080034

[4]

张其春, 张志军, 尹观, 周蓉生. 碳酸盐岩锶同位素比值测定中的残渣分析. 岩矿测试, 2003, (2): 151-153.

[5]

杨会, 唐伟, 吴夏, 王华, 应启和, 涂林玲. Kiel Ⅳ-IRMS双路在线分析微量碳酸盐的碳氧同位素. 岩矿测试, 2014, 33(4): 480-485.

[6]

陈 勇, 葛云锦. 实验研究碳酸盐岩储层烃类包裹体捕获模式. 岩矿测试, 2010, 29(3): 217-220.

[7]

陈成业, 刘本立. 大红山古火山口的碳酸盐围岩的氧和碳同位素研究. 岩矿测试, 1982, (4): 1-5.

[8]

张建锋, 刘汉彬, 石晓, 金贵善, 李军杰, 张佳, 韩娟, 郭东侨, 钟芳文. 五氟化溴法测定硅酸盐及氧化物矿物氧同位素组成的影响因素研究. 岩矿测试, 2019, 38(1): 45-54. doi: 10.15898/j.cnki.11-2131/td.201805170062

[9]

范晨子, 詹秀春, 曾普胜, 胡明月. 白云鄂博稀土氟碳酸盐矿物的LA-ICP-MS多元素基体归一定量分析方法研究. 岩矿测试, 2015, 34(6): 609-616. doi: 10.15898/j.cnki.11-2131/td.2015.06.002

[10]

赵志飞, 李丹, 李策, 汪慧萍. 高钙碳酸盐地质样品中铜镍的测定. 岩矿测试, 2010, 29(2): 187-189.

[11]

杜广鹏, 王旭, 张福松. GasBench Ⅱ顶空瓶内空气背景对<100 μg碳酸盐中碳氧同位素在线测定的影响及校正方法初探. 岩矿测试, 2010, 29(6): 631-638.

[12]

张志刚, 刘凯, 黄劲, 高晶, 陈泓, 魏晶晶. 王水溶样-氢醌容量法测定碳酸盐地质样品中的金. 岩矿测试, 2014, 33(2): 236-240.

[13]

秦燕, 王登红, 梁婷, 李建康, 侯可军. 广西大厂锡多金属矿区深部碳酸盐岩的稀土元素特征及其地质意义. 岩矿测试, 2014, 33(2): 296-301.

[14]

柴之芳, 周瑶琪. 离子质谱计测定地质样品中镁同位素组成方法学研究. 岩矿测试, 1995, (1): 7-14.

[15]

傅碧宏. 碳酸盐岩的反射光谱特征的研究及应用. 岩矿测试, 1996, (3): 207-209.

[16]

王兆荣, 彭子成. 热电离质谱铀系法测定碳酸盐标样. 岩矿测试, 1998, (4): 268-270.

[17]

郭建卿, 周瑶琪, 刘超英, 陈勇. 人工合成碳酸盐岩流体包裹体实验与定量分析. 岩矿测试, 2004, (3): 161-167.

[18]

高宏宇, 杨祥, 宋桢桢, 周朝昕. 热水解-离子选择电极法测定海相碳酸盐岩中的氟. 岩矿测试, 2009, 28(2): 139-142.

[19]

孙敏卓, 龙国徽, 孟仟祥, 郑建京, 王国仓, 房嬛, 王作栋. 塔里木盆地海相碳酸盐岩沥青"A"的地球化学特征. 岩矿测试, 2011, 30(5): 623-630.

[20]

刘浴辉, BELSHAW Nick, 胡超涌. 疏松质石笋碳酸盐的精确微区取样. 岩矿测试, 2012, 31(1): 103-112.

计量
  • PDF下载量(11)
  • 文章访问量(105)
  • HTML全文浏览量(11)
  • 被引次数(0)
目录

Figures And Tables

不同地质储库中的镁同位素组成及碳酸盐矿物形成过程中的镁同位素分馏控制因素

唐波, 王景腾, 付勇