【引用本文】 朱志勇, 潘辰旭, 朱祥坤, . 利用套柱法快速分离提纯Sr和Nd元素[J]. 岩矿测试, 2020, 39(4): 515-524. doi: 10.15898/j.cnki.11-2131/td.201908120126
ZHU Zhi-yong, PAN Chen-xu, ZHU Xiang-kun. Rapid Purification of Sr and Nd for Isotope Analysis with Multiple-column Method[J]. Rock and Mineral Analysis, 2020, 39(4): 515-524. doi: 10.15898/j.cnki.11-2131/td.201908120126

利用套柱法快速分离提纯Sr和Nd元素

自然资源部同位素地质实验室, 中国地质科学院地质研究所, 北京 100037

收稿日期: 2019-08-12  修回日期: 2019-11-26  接受日期: 2020-04-16

基金项目: 国家自然科学基金项目(41803021);中国地质调查局中国地质科学院基本科研业务费项目(JYYWF20183102)

作者简介: 朱志勇, 博士, 副研究员(特聘), 主要从事矿床学、地球化学研究。E-mail:zhiyong_zhu@cags.ac.cn

Rapid Purification of Sr and Nd for Isotope Analysis with Multiple-column Method

Key Laboratory of Isotope Geology, Ministry of Natural Recourses; Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China

Received Date: 2019-08-12
Revised Date: 2019-11-26
Accepted Date: 2020-04-16

摘要:样品放射性成因Sr-Nd同位素比值受控于源区初始同位素组成、放射性元素母体与子体相对丰度,以及衰变时间等因素。它们具有极强的示踪能力,因而在地质学领域有广泛的应用。传统的Sr-Nd同位素分析使用的是阳离子树脂,提纯Nd元素时往往涉及有机试剂以及调节pH值等操作,其分析效率较低。近年来特效树脂的出现使得分离这些元素变得简单,但是受硫酸根等因素影响,特效树脂使用次数有限。为了提高分析效率,缩短分析时间,本文开发了一种套柱法,该方法结合阳离子树脂和特效树脂,实现了Sr-Nd元素的快速分离,并且能延长特效树脂的使用寿命。实验采用阳离子树脂、Sr特效树脂和LN稀土特效树脂对玄武岩BCR-2标样进行了分析。Sr-Nd回收率均>90%,BCR-2玄武岩87Sr/86Sr比值为0.705016±0.000016(n=36,1SD),143Nd/144Nd比值为0.512624±0.000012(n=39,1SD),与前人TIMS法获得的结果吻合(87Sr/86Sr:0.705000~0.705023;143Nd/144Nd:0.512630~0.512650)。最终分离提纯的溶液中85Rb/86Sr值小于0.01,147Sm/144Nd值小于0.001,表明该方法可以高效分离Rb-Sr和Sm-Nd,实现Sr、Nd同位素的准确分析。

关键词: Sr-Nd同位素, 特效树脂, 拖尾, 叠柱法, 快速提纯

要点

(1)阳离子树脂和特效树脂层析柱的串联使用可缩短样品分离提纯时间。

(2)可拆卸串联层析柱避免了硫酸根对特效树脂的影响。

(3)该方法可实现硅酸盐样品中Rb-Sr和Sm-Nd元素的高效分离。

Rapid Purification of Sr and Nd for Isotope Analysis with Multiple-column Method

ABSTRACT

BACKGROUND:

The Sr and Nd isotopic compositions of a sample depend on its initial isotopic ratios, the ratios between the parent nuclide and daughter product, and the decay time. Due to their significance for the tracing of reservoirs, they were widely applied in the geological studies. Traditional cation resin was applied to purify Sr and Nd for isotope analysis, which involved the organic reagent and pH adjustment. The complex chemical procedure was time-consuming. In recent years, the appearance of special resins has made it easy to separate these elements. However, due to the influence of sulfates and other factors, the use of special resins is limited.

OBJECTIVES:

To shorten the chemical purification time of Sr and Nd, and to avoid the damage of sulfate ions on the Sr and REE specific resins, we proposed a new chemical purification method, where multiple columns were utilized.

METHODS:

The method combines cationic resin and special resin to realize the rapid separation of Sr and Nd and can extend the using time of special resin. The experiment uses cationic resin, Sr special resin and LN rare earth special resin to analyze the basalt standard BCR-2.

RESULTS:

The recoveries of Sr and Nd with this method were larger than 90%. The 87Sr/86Sr and 143Nd/144Nd isotope ratios were 0.705016±0.000016 (n=36, 1SD) and 0.512624±0.000012 (n=39, 1SD), respectively, which were in coincidence with the values previously reported by TIMS method within the analytical error. The complied 87Sr/86Sr and 143Nd/144Nd isotope ratios obtained TIMS were 0.705000-0.705023 and 0.512630-0.512650, respectively. The 85Rb/86Sr and 147Sm/144Nd rations of the purified Sr and Nd solution were less than 0.01 and 0.001, respectively.

CONCLUSIONS:

The proposed chemical purification procedure can efficiently separate Rb, Sr, Sm and Nd, and realize the accurate analysis of Sr and Nd isotopes.

KEY WORDS: Sr-Nd isotopes, specific resins, tailing, in-series columns method, rapid purification

Highlights

(1) The serial use of cation resin and special resin chromatography column can shorten the sample separation and purification time.

(2) The detachable serial chromatography column avoids the influence of sulfate on the special resin.

(3) The chemical procedure proposed in this study could be used for separating Sr from Rb and Nd from Sm effectively.

本文参考文献

[1]

Fisher C, Bauer A, Vervoort J, et al. Disturbances in the Sm-Nd isotope system of the Acasta Gneiss Complex-Implications for the Nd isotope record of the early Earth[J].Earth and Planetary Science Letters, 2020, 530: 115900. doi: 10.1016/j.epsl.2019.115900

[2]

Tillberg M, Drake H, Zack T, , et al. In situ Rb-Sr dating of slicken fibres in deep crystalline basement faults[J].Scientific Reports, 2020, 10(1): 1-13. doi: 10.1038/s41598-019-56847-4

[3]

Pin C, Gannoun A, Dupont A, et al. Rapid, simultaneous separation of Sr, Pb, and Nd by extraction chromatography prior to isotope ratios determination by TIMS and MC-ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2014, 29(10): 1858-1870. doi: 10.1039/C4JA00169A

[4]

Wang M, Audi G, Kondev F G, et al. The AME2016 atomic mass evaluation (Ⅱ).Tables, graphs and references[J].Chinese Physics C, 2017, 41(3): 030003. doi: 10.1088/1674-1137/41/3/030003

[5] Vanhaecke F,Degryse P. Isotopic analysis[M] . Weinheim: Wiley-VCH Verlag GmbH & Co.KGaA, 2012
[6] Makishima A. Thermal ionization mass spectrometry (TIMS):Silicate digestion, separation, and measurement[M] . New Jersey: John Wiley & Sons, 2016
[7]

Egli D, Müller W, Mancktelow N, et al. Laser-cut Rb-Sr microsampling dating of deformational events in the Mont Blanc-Aiguilles Rouges region (European Alps)[J].Terra Nova, 2016, 28(1): 35-42. doi: 10.1111/ter.12184

[8]

Bolea-Fernandez E, van Malderen S J M, Balcaen L, et al. Laser ablation-tandem ICP-mass spectrometry (LA-ICP-MS/MS) for direct Sr isotopic analysis of solid samples with high Rb/Sr ratios[J].Journal of Analytical Atomic Spectrometry, 2016, 31(2): 464-472. doi: 10.1039/C5JA00404G

[9]

Hogmalm K J, Zack T, Karlsson A K O, et al. In situ Rb-Sr and K-Ca dating by LA-ICP-MS/MS:An evaluation of N2O and SF6 as reaction gases[J].Journal of Analytical Atomic Spectrometry, 2017, 32(2): 305-313. doi: 10.1039/C6JA00362A

[10]

Zack T, Hogmalm K J. Laser ablation Rb/Sr dating by online chemical separation of Rb and Sr in an oxygen-filled reaction cell[J].Chemical Geology, 2016, 437: 120-133. doi: 10.1016/j.chemgeo.2016.05.027

[11] Korkisch J. Handbook of ion exchange resins:Their application to inorganic analytical chemistry (Volume Ⅵ)[M] . Boca Raton: CRC Press, 1989
[12]

濮魏, 高剑锋, 凌洪飞, 等. 利用DCTA和HIBA快速有效分离Rb-Sr、Sm-Nd的方法[J]. 南京大学学报(自然科学版), 2005, 41(4): 445-450.

Pu W, Gao J F, Ling H F, et al. Separation method of Rb-Sr, Sm-Nd using DCTA and HIBA[J]. Journal of Nanjing University (Natural Sciences), 2005, 41(4): 445-450.

[13]

Strelow F W E. Distribution coefficients and ion exchange behavior of 46 elements with a macroreticular cation exchange resin in hydrochloric acid[J].Analytical Chemistry, 1984, 56(6): 1053-1056. doi: 10.1021/ac00270a045

[14]

Strelow F W E. An ion exchange selectivity scale of cations based on equilibrium distribution coefficients[J].Analytical Chemistry, 1960, 32(9): 1185-1188. doi: 10.1021/ac60165a042

[15]

Strelow F W E, Rethemeyer R, Bothma C J C, et al. Ion exchange selectivity scales for cations in nitric acid and sulfuric acid media with a sulfonated polystyrene resin[J]. Analytical Chemistry, 1965, 37(1): 106-111.

[16]

Li C F, Li X H, Li Q L, et al. Rapid and precise deter-mination of Sr and Nd isotopic ratios in geological samples from the same filament loading by thermal ionization mass spectrometry employing a single-step separation scheme[J].Analytica Chimica Acta, 2012, 727: 54-60. doi: 10.1016/j.aca.2012.03.040

[17]

Li C F, Chu Z Y, Guo J H, et al. A rapid single column separation scheme for high-precision Sr-Nd-Pb isotopic analysis in geological samples using thermal ionization mass spectrometry[J].Analytical Methods, 2015, 7(11): 4793-4802. doi: 10.1039/C4AY02896A

[18]

尹鹏, 何倩, 何会军, 等. 离子交换树脂法分离沉积物中锶和钕的影响因素研究[J]. 岩矿测试, 2018, 37(4): 379-387.

Yin P, He Q, He H J, et al. Study on the factors influencing the separation of Sr and Nd in sediments by ion exchange resin[J]. Rock and Mineral Analysis, 2018, 37(4): 379-387.

[19]

韦刚健, 刘颖, 涂湘林, 等. 利用选择性特效树脂富集分离岩石样品中的锶钐和钕[J]. 岩矿测试, 2004, 23(1): 11-14.

Wei G J, Liu Y, Tu X L, et al. Separation of Sr, Sm and Nd in mineral and rock samples using selective specific resins[J]. Rock and Mineral Analysis, 2004, 23(1): 11-14.

[20]

Glennon K J, Osborn J M, Burns J D, et al. Measuring key Sm isotope ratios in irradiated UO2 for use in plutonium discrimination nuclear forensics[J].Journal of Radioanalytical and Nuclear Chemistry, 2019, 320(2): 405-414. doi: 10.1007/s10967-019-06486-w

[21]

Zhu Z Y, Yang T, Zhu X K, et al. Achieving rapid analysis of Li isotopes in high-matrix and low-Li samples with MC-ICP-MS:New developments in sample preparation and mass bias behavior of Li in ICPMS[J].Journal of Analytical Atomic Spectrometry, 2019, 34(7): 1503-1513. doi: 10.1039/C9JA00076C

[22]

朱志勇, 朱祥坤, 杨涛, 等. 自动分离提纯系统的研制及其在同位素分析测试中的应用[J]. 岩矿测试, 2020, 39(3): 384-390.

Zhu Z Y, Zhu X K, Yang T, et al. A fully automated chemical separation and purification system and its application to isotope analysis[J]. Rock and Mineral Analysis, 2020, 39(3): 384-390.

[23]

Woodhead J, Swearer S, Hergt J, et al. In situ Sr-isotope analysis of carbonates by LA-MC-ICP-MS:Interference corrections, high spatial resolution and an example from otolith studies[J].Journal of Analytical Atomic Spectrometry, 2005, 20(1): 22-27. doi: 10.1039/b412730g

[24]

Yang Y H, Wu F Y, Wilde S A, et al. In situ perovskite Sr-Nd isotopic constraints on the petrogenesis of the Ordovician Mengyin kimberlites in the North China Craton[J].Chemical Geology, 2009, 264(1-4): 24-42. doi: 10.1016/j.chemgeo.2009.02.011

[25]

Davidson J, Tepley Ⅲ F, Palacz Z, et al. Magma recharge, contamination and residence times revealed by in situ laser ablation isotopic analysis of feldspar in volcanic rocks[J]. Earth and Planetary Science Letters, 2001, 184(2): 427-442.

[26]

Khawassek Y M, Eliwa A A, El Sayed A H, et al. Adsorption of rare earth elements by strong acid cation exchange resin thermodynamics, characteristics and kinetics[J]. Applied Sciences, 2019, 1(1): 51.

[27]

Zawisza B, Pytlakowska K, Feist B, et al. Determination of rare earth elements by spectroscopic techniques:A review[J].Journal of Analytical Atomic Spectrometry, 2011, 26(12): 2373-2390. doi: 10.1039/c1ja10140d

[28]

Li W, Jin X, Gao B, et al. Analysis of ultra-low level rare earth elements in magnetite samples from banded iron formations using HR-ICP-MS after chemical separation[J].Analytical Methods, 2014, 6(15): 6125-6132. doi: 10.1039/C4AY00685B

[29]

Chu Z, Chen F, Yang Y, et al. Precise determination of Sm, Nd concentrations and Nd isotopic compositions at the nanogram level in geological samples by thermal ionization mass spectrometry[J].Journal of Analytical Atomic Spectrometry, 2009, 24(11): 1534-1544. doi: 10.1039/b904047a

[30]

唐索寒, 李津, 梁细荣, 等. 钕同位素比值143Nd/144Nd标准溶液研制[J]. 岩矿测试, 2017, 36(2): 163-170.

Tang S H, Li J, Liang X R, et al. Reference material preparation of 143Nd/144Nd isotope ratio[J]. Rock and Mineral Analysis, 2017, 36(2): 163-170.

[31]

Li C F, Wang X C, Li Y L, et al. Ce-Nd separation by solid-phase micro-extraction and its application to high-precision 142Nd/144Nd measurements using TIMS in geological materials[J].Journal of Analytical Atomic Spectrometry, 2015, 30(4): 895-902. doi: 10.1039/C4JA00328D

[32]

Pin C, Gannoun A. A triple tandem columns extraction chromatography method for isolation of highly purified neodymium prior to 143Nd/144Nd and 142Nd/144Nd isotope ratios determinations[J].Journal of Analytical Atomic Spectrometry, 2019, 34(2): 310-318. doi: 10.1039/C8JA00360B

[33]

Caro G, Bourdon B, Birck J L, et al. High-precision 142Nd/144Nd measurements in terrestrial rocks:Con-straints on the early differentiation of the Earth's mantle[J].Geochimica et Cosmochimica Acta, 2006, 70(1): 164-191. doi: 10.1016/j.gca.2005.08.015

[34]

Upadhyay D, Scherer E E, Mezger K, et al. Fractionation and mixing of Nd isotopes during thermal ionization mass spectrometry:Implications for high precision 142Nd/144Nd analyses[J].Journal of Analytical Atomic Spectrometry, 2008, 23(4): 561-568. doi: 10.1039/b715585a

[35]

Rudnick R L, Gao S. Composition of the continental crust[J]. Treatise on Geochemistry, 2003, 3: 659.

[36]

Lei H L, Yang T, Jiang S Y, et al. A simple two-stage column chromatographic separation scheme for strontium, lead, neodymium and hafnium isotope analyses in geological samples by thermal ionization mass spectrometry or multi-collector inductively coupled plasma mass spectrometry[J].Journal of Separation Science, 2019, 42(20): 3261-3275. doi: 10.1002/jssc.201900579

[37]

Jweda J, Bolge L, Class C, et al. High precision Sr-Nd-Hf-Pb isotopic compositions of USGS reference material BCR-2[J].Geostandards and Geoanalytical Research, 2016, 40(1): 101-115. doi: 10.1111/j.1751-908X.2015.00342.x

[38]

Weis D, Kieffer B, Maerschalk C, et al. High-precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(8): 1-30.

相似文献(共18条)

[1]

侯可军, 秦燕, 李延河, 范昌福. 磷灰石Sr-Nd同位素的激光剥蚀-多接收器电感耦合等离子体质谱微区分析. 岩矿测试, 2013, 32(4): 547-554.

[2]

韦刚健, 李献华, 刘颖, 涂湘林, 梁细荣. 利用选择性特效树脂富集分离岩石样品中的锶钐和钕. 岩矿测试, 2004, (1): 11-14.

[3]

严爽, 黄康俊, 付勇, 包志安, 马龙, 龙克树, 叶远谋, 陈蕤, 陈满志. 铝土矿中锂同位素分离提纯方法的建立. 岩矿测试, 2020, 39(1): 41-52. doi: 10.15898/j.cnki.11-2131/td.2019081201275

[4]

何应律, 佘晓蔚. 甲壳素色谱柱富集—柱前显色快速分光光度法:Ⅶ.环境水样中痕量铝的测定. 岩矿测试, 1996, (1): 27-30.

[5]

朱玉伦, 戴莺. 硼特效树脂分离分光光度法测定岩石矿物中痕量硼. 岩矿测试, 1989, (3): 204-207.

[6]

朱志勇, 朱祥坤, 杨涛. 自动分离提纯系统的研制及其在同位素分析测试中的应用. 岩矿测试, 2020, 39(3): 384-390. doi: 10.15898/j.cnki.11-2131/td.201908120123

[7]

劳玉军, 巫建华, 徐勋胜. 粤北长塘盆地晚白垩世早期流纹岩的成因:地球化学和Sr-Nd-Pb-Hf-O同位素制约. 岩矿测试, 2016, 35(5): 558-567. doi: 10.15898/j.cnki.11-2131/td.2016.05.015

[8]

唐索寒, 李津, 梁细荣, 张利国, 李国占, 濮巍, 李潮峰, 杨岳衡, 储著银, 张俊, 侯可军, 王晓明. 钕同位素比值143Nd/144Nd标准溶液研制. 岩矿测试, 2017, 36(2): 163-170. doi: 10.15898/j.cnki.11-2131/td.2017.02.010

[9]

陈家富, 马旭, 李超, 屈文俊, 都厚远, 赵然, 韩宝福. 西准噶尔谢米斯台山西北段中志留世火山岩地球化学与Sr-Nd-Os同位素特征及其地质意义. 岩矿测试, 2017, 36(3): 318-325. doi: 10.15898/j.cnki.11-2131/td.201704060051

[10]

刘颖, 韦刚健, 梁细荣, 李献华. 多收集器等离子体质谱快速精确测定钕同位素比值. 岩矿测试, 2002, (4): 247-251.

[11]

孙可, 刘颖, 高博, 涂湘林, 曾文, 胡光黔, 傅家谟, 盛国英, 梁细荣. AG-MP-1M阴离子交换树脂分离-表面热电质谱法测定沉积物中的铅同位素组成. 岩矿测试, 2008, 27(1): 9-11.

[12]

李津, 朱祥坤, 唐索寒. 双稀释剂法在非传统稳定同位素测定中的应用——以钼同位素为例. 岩矿测试, 2011, 30(2): 138-143.

[13]

蓝高勇, 吴夏, 杨会, 唐伟, 应启和, 王华. 激光同位素光谱法测量水中氢氧同位素组成的实验室间比对研究. 岩矿测试, 2017, 36(5): 460-467. doi: 10.15898/j.cnki.11-2131/td.201704060049

[14]

安娜, 韩友科. 金刚石剥层燃烧法分析其碳同位素组成. 岩矿测试, 1986, (4): 296-303.

[15]

吴静淑, 罗续荣. 制备碳、氧同位素样品的磷酸——加热300℃脱水法. 岩矿测试, 1987, (1): 73-74.

[16]

孟宪厚. 稳定同位素稀释法在岩矿测试中的应用. 岩矿测试, 1988, (3): 236-241.

[17]

杜安道, 孙亚莉. 等离子体质谱铼—锇同位素测年法研究及其应用. 岩矿测试, 1996, (4): 263-267.

[18]

李超, 屈文俊, 杜安道, 孙文静. 铼-锇同位素定年法中丙酮萃取铼的系统研究. 岩矿测试, 2009, 28(3): 233-238.

计量
  • PDF下载量(19)
  • 文章访问量(180)
  • HTML全文浏览量(43)
  • 被引次数(0)
目录

Figures And Tables

利用套柱法快速分离提纯Sr和Nd元素

朱志勇, 潘辰旭, 朱祥坤