【引用本文】 秦冲, 施畅, 万秋月, 等. 高效液相色谱-电感耦合等离子体质谱联用检测土壤中的无机硒形态[J]. 岩矿测试, 2018, 37(6): 664-670. doi: 10.15898/j.cnki.11-2131/td.201803200024
QIN Chong, SHI Chang, WAN Qiu-yue, et al. Speciation Analysis of Inorganic Selenium in Soil by High Performance Liquid Chromatography-Inductively Coupled Plasma-Mass Spectrometry[J]. Rock and Mineral Analysis, 2018, 37(6): 664-670. doi: 10.15898/j.cnki.11-2131/td.201803200024

高效液相色谱-电感耦合等离子体质谱联用检测土壤中的无机硒形态

河北省地质实验测试中心, 河北 保定 071051

收稿日期: 2018-03-20  修回日期: 2018-05-02  接受日期: 2018-07-09

基金项目: 河北省地质矿产勘查开发局科技项目(201827)

作者简介: 秦冲, 工程师, 主要从事地质实验测试工作。E-mail:qinchong0013@163.com

通信作者: 施畅, 工程师, 主要从事地质实验测试工作。E-mail:shichang1218@163.com

Speciation Analysis of Inorganic Selenium in Soil by High Performance Liquid Chromatography-Inductively Coupled Plasma-Mass Spectrometry

Hebei Research Center for Geoanalysis, Baoding 071051, China

Corresponding author: SHI Chang, shichang1218@163.com

Received Date: 2018-03-20
Revised Date: 2018-05-02
Accepted Date: 2018-07-09

摘要:土壤样品中亚硒酸盐Se(Ⅳ)和硒酸盐Se(Ⅵ)的形态分析中,提取剂的选择和检测方法是技术的关键。以往的提取剂容易导致硒形态发生转变或无法同时提取Se(Ⅳ)和Se(Ⅵ),常用的氢化物发生原子荧光光谱法无法直接测定Se(Ⅵ),而是通过差减法得出Se(Ⅵ)含量。本文对比了不同提取剂的提取能力,确定使用0.1 mol/L氢氧化钠溶液作为提取剂,在55℃超声萃取土壤样品30 min,提取液经高效液相色谱分离,电感耦合等离子体质谱检测,建立了土壤中Se(Ⅳ)和Se(Ⅵ)的形态分析方法。采用Hamilton PRP X-100色谱柱,以6 mmol/L柠檬酸为流动相,pH=5.5,在8 min内可完全分离Se(Ⅳ)和Se(Ⅵ),两者的检出限分别为0.15 μg/L、0.16 μg/L,线性相关系数(r2)均大于0.999。以土壤为基体进行加标回收试验,Se(Ⅳ)和Se(Ⅵ)的回收率在84.2%~95.8%之间,相对标准偏差为1.4%~5.3%(n=6)。该方法简单快速,具有良好的精密度和准确度,适用于土壤中无机硒的形态分析。

关键词: 土壤, 亚硒酸盐, 硒酸盐, 氢氧化钠, 高效液相色谱-电感耦合等离子体质谱法

要点

(1) 氢氧化钠溶液作为土壤中Se(Ⅳ)和Se(Ⅵ)的提取剂。

(2) 硒形态萃取方式选用超声萃取。

(3) HPLC-ICP-MS用于Se(Ⅳ)和Se(Ⅵ)的形态分析。

Speciation Analysis of Inorganic Selenium in Soil by High Performance Liquid Chromatography-Inductively Coupled Plasma-Mass Spectrometry

ABSTRACT

BACKGROUND:

In the speciation analysis of selenite Se (Ⅳ) and selenite Se (Ⅵ) in soil samples, the key problem is to select the extraction agents and detection methods. In the past, extraction agents may lead to Se species redistribution or cannot extract both Se (Ⅳ) and Se (Ⅵ). Selenium speciation has been routinely determined by Hydride Generation-Atomic Absorption Spectrometry (HG-AAS). However, Se (Ⅵ) cannot be directly measured and its concentration is calculated by the difference between analyzed total Se and Se (Ⅳ) concentrations.

OBJECTIVES:

In order to establish an analysis method for the determination of Se (Ⅳ) and Se (Ⅵ) in soil samples by selecting the appropriate extraction agent and determination technique.

METHODS:

The extraction capacity of different extraction agents was compared and 0.1 mol/L sodium hydroxide was selected for the experiment. Selenium species were quantitatively extracted in a ultrasonic field at 55℃ for 30 min. An analytical method for determination of Se (Ⅳ) and Se (Ⅵ) by High Performance Liquid Chromatography-Inductively Coupled Plasma-Mass Spectrometry (HPLC-ICP-MS) was established.

RESULTS:

The results show that Se (Ⅳ) and Se (Ⅵ) can be separated within 8 min by using a Hamilton PRP X-100 reversed-phase anion exchange column with 6 mol/L citric acid as mobile phase under pH of 5.5. The detection limits of Se (Ⅳ) and Se (Ⅵ) are 0.15 μg/L and 0.16 μg/L, respectively. Linear correlation coefficient (r2) is more than 0.999, the recoveries are 84.2%-95.8%, and the relative standard deviations are 1.4%-5.3% (n=6).

CONCLUSIONS:

The proposed method is simple and fast and has good accuracy and high precision, which meets the requirements for analyzing inorganic selenium in soil.

KEY WORDS: soil, selenite, selenate, sodium hydroxide, High Performance Liquid Chromatography-Inductively Coupled Plasma-Mass Spectrometry

HIGHLIGHTS

(1) Sodium hydroxide solution was selected for the extraction agents for Se.

(2) Selenium species were quantitatively extracted in an ultrasonic field.

(3) Se (Ⅳ) and Se (Ⅵ) were determined by HPLC-ICP-MS.

本文参考文献

[1]

Kápolna E, Fodor P. Speciation analysis of selenium enriched green onions (allium fistulosum) by HPLC-ICP-MS[J]. Microchemical Journal, 2006, 84(1): 56-62.

[2]

王丙涛, 谢丽琪, 林燕奎, 等. 高效液相色谱-电感耦合等离子体质谱联用检测食品中的五种硒形态[J]. 色谱, 2011, 29(3): 223-227.

Wang B T, Xie L Q, Lin Y K, et al. Determination of selenium species in food by high performance liquid chromatography with inductively coupled plasma mass spectrometry[J]. Chinese Journal of Chromatography, 2011, 29(3): 223-227.

[3]

Uden P C, Boakye H T, Kahakachchi C, et al. Selective detection and identification of Se containing compounds-Review and recent developments[J].Journal of Chromatography A, 2004, 1050(1): 85-93. doi: 10.1016/j.chroma.2004.05.077

[4]

王欣, 幸苑娜, 陈泽勇, 等. 高效液相色谱-电感耦合等离子体质谱法检测富硒食品中6种硒形态[J]. 分析化学, 2013, 41(11): 1669-1674.

Wang X, Xing Y N, Chen Z Y, et al. Determination of 6 selenium species in selenium-enriched food by hyphenated technique of high performance liquid chromatography-inductively coupled plasma mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2013, 41(11): 1669-1674.

[5]

Dumont E, Vanhaecke F, Cornelis R, et al. Selenium speciation from food source to metabolites:A critical review[J]. Analytical & Bioanalytical Chemistry, 2006, 385(7): 1304-1323.

[6]

Połatajko A, Jakubowski N, Szpunar J, et al. State of the art report of selenium speciation in biological samples[J].Journal of Analytical Atomic Spectrometry, 2006, 21(7): 639-654. doi: 10.1039/B605654G

[7]

邱建华, 王秋泉, 黄本立, 等. 硒形态分析研究进展[J]. 光谱学与光谱分析, 2006, 26(9): 1692-1701. doi: 10.3321/j.issn:1000-0593.2006.09.032

Qiu J H, Wang Q Q, Huang B L, et al. New approaches to selenium speciation[J].Spectroscopy and Spectral Analysis, 2006, 26(9): 1692-1701. doi: 10.3321/j.issn:1000-0593.2006.09.032

[8]

B'Hymer C, Caruso J A. Selenium speciation analysis using inductively coupled plasma-mass spectrometry[J].Journal of Chromatography A, 2006, 1114(1): 1. doi: 10.1016/j.chroma.2006.02.063

[9]

Ogra Y, Anan Y. Selenometabolomics:Identification of selenometabolites and specification of their biological significance by complementary use of elemental and molecular mass spectrometry[J].Journal of Analytical Atomic Spectrometry, 2009, 24(11): 1477-1488. doi: 10.1039/b910235c

[10]

Rayman M P. Food-chain selenium and human health:Emphasis on intake[J]. British Journal of Nutrition, 2008, 100(2): 254-268.

[11]

Antanaitis A, Lubyte J, Antanaitis S, et al. Selenium con-centration dependence on soil properties[J].Journal of Food, Agriculture & Environment, 2008, 6(1): 163-167.

[12]

Muchowski P. Assessing the speciation and the bioge-ochemical processes affecting the mobility of selenium from a geological repository of radioactive wastes to the biosphere[J].Analysis, 1998, 26(5): 193-197.

[13]

Abrams M M, Burau R G, Zasoski R J, et al. Organic selenium distribution in selected California soils[J].Soil Science Society of America Journal, 1990, 54(4): 979-982. doi: 10.2136/sssaj1990.03615995005400040007x

[14]

Zhang Y, Moore J N. Selenium fractionation and spe-ciation in a wetland system[J].Environmental Science & Technology, 1996, 30(8): 2613-2619.

[15]

Masscheleyn P H, Delaune R D, Patrick W H J, et al. Trans-formations of selenium as affected by sediment oxidation-reduction potential and pH[J]. Environmental Science & Technology, 1990, 24(1): 91-96.

[16]

Masscheleyn P H, Delaune R D, Patrick W H, et al. Arsenic and selenium chemistry as affected by sediment redox potential and pH[J]. Journal of Environmental Quality, 1991, 20(3): 522-527.

[17]

方金梅. 福州市土壤硒形态分析及其迁移富集规律[J]. 岩矿测试, 2008, 27(2): 28-32.

Fang J M. Selenium speciation analysis and its transformation and enrichment in soils of Fuzhou city[J]. Rock and Mineral Analysis, 2008, 27(2): 28-32.

[18]

徐强, 迟凤琴, 匡恩俊, 等. 基于通径分析的土壤性质与硒形态的关系——以黑龙江省主要类型土壤为例[J]. 土壤, 2016, 48(5): 992-999.

Xu Q, Chi F Q, Kuang E J, et al. Relationship between soil physico-chemical properties and selenium species based on path analysis[J]. Soils, 2016, 48(5): 992-999.

[19]

Favorito J E, Luxton T P, Eick M J, et al. Selenium speciation in phosphate mine soils and evaluation of a sequential extraction procedure using XAFS[J].Environmental Pollution, 2017, 229: 911-921. doi: 10.1016/j.envpol.2017.07.071

[20]

耿建梅, 王文斌, 罗丹, 等. 不同浸提剂对海南稻田土壤有效硒浸提效果比较[J]. 土壤, 2010, 42(4): 624-629.

Geng J M, Wang W B, Luo D, et al. Comparative studies on effects of several extractants on available selenium of paddy soils in Hainan[J]. Soils, 2010, 42(4): 624-629.

[21]

温国灿, 黄艳, 郭永玲, 等. 酸性土壤有效硒提取条件优化的研究[J]. 农业环境科学学报, 2007, 26(5): 1996-2000. doi: 10.3321/j.issn:1672-2043.2007.05.079

Wen G C, Huang Y, Guo Y L, et al. Optimal conditions of extraction method for available selenium in acid soils[J].Journal of Agro-Environment Science, 2007, 26(5): 1996-2000. doi: 10.3321/j.issn:1672-2043.2007.05.079

[22]

Wright M T, Parker D R, Amrhein C, et al. Critical evaluation of the ability of sequential extraction procedures to quantify discrete forms of selenium in sediments and soils[J]. Environmental Science & Technology, 2003, 37(20): 4709-4716.

[23]

Stroud J L, McGrath S P, Zhao F J, et al. Selenium speciation in soil extracts using LC-ICP-MS[J].International Journal of Environmental Analytical Chemistry, 2012, 92(2): 222-236. doi: 10.1080/03067310903111661

[24]

Zhang Y, Jr W T F. Determination of selenium frac-tionation and speciation in wetland sediments by parallel extraction[J].International Journal of Environmental Analytical Chemistry, 2003, 83(4): 315-326. doi: 10.1080/0306731031000076850

[25]

Bujdoš M, Kubová J, Streško V, et al. Problems of selenium fractionation in soils rich in organic matter[J]. Analytica Chimica Acta, 2000, 408(1): 103-109.

[26]

薛超群, 郭敏. 氢化物发生-原子荧光光谱法测定土壤样品中不同价态的硒[J]. 岩矿测试, 2012, 31(6): 980-984. doi: 10.3969/j.issn.0254-5357.2012.06.012

Xue C Q, Guo M. Analysis of different valence states of selenium in geological samples by hydride generation-atomic fluorescence spectrometry[J]. Rock and Mineral Analysis, 2012, 31(6): 980-984. doi: 10.3969/j.issn.0254-5357.2012.06.012

[27]

彭岚, 谈明光, 李玉兰, 等. 微波辅助萃取-液质联用技术测底泥砷、硒的化学形态[J]. 分析试验室, 2006, 25(5): 10-14. doi: 10.3969/j.issn.1000-0720.2006.05.003

Peng L, Tan M G, Li Y L, et al. Simultaneous speciation of arsenic and selenium by high-performance liquid chromatography on-line with inductively coupled plasma collision cell mass spectrometry in sediment samples[J].Chinese Journal of Analytical Laboratory, 2006, 25(5): 10-14. doi: 10.3969/j.issn.1000-0720.2006.05.003

[28]

Hsieh Y J, Jiang S J. Determination of selenium com-pounds in food supplements using reversed-phase liquid chromatography-inductively coupled plasma mass spectro-metry[J].Microchemical Journal, 2013, 110(9): 1-7.

[29]

Zheng J, Ohata M, Furuta N, et al. Speciation of selenium compounds with ion-pair reversed-phase liquid chromatography using inductively coupled plasma mass spectrometry as element-specific detection[J].Journal of Chromatography A, 2000, 874(1): 55-64. doi: 10.1016/S0021-9673(00)00077-7

相似文献(共20条)

[1]

方金梅. 福州市土壤硒形态分析及其迁移富集规律. 岩矿测试, 2008, 27(2): 103-107.

[2]

黄园英, 吴淑琪, 佟玲, 张玲金. 土壤中持久性有机污染物分析的前处理方法. 岩矿测试, 2008, 27(2): 81-86.

[3]

李刚, 苏文峰. 焙烧分离-氢化物发生-原子荧光光谱法测定土壤样品中微量硒. 岩矿测试, 2008, 27(2): 120-122.

[4]

江林, 刘晓端, 张静. 土壤中不同形态砷的分析方法. 岩矿测试, 2008, 27(3): 179-183.

[5]

齐璐璐, 赵会芹, 陈子学, 郑育锁, 孟凡辉, 肖波, 张颖. 连续光源原子吸收光谱法测定土壤水溶性盐中钙镁. 岩矿测试, 2008, 27(2): 95-98.

[6]

刘广民, 尹莉莉, 董永亮, 肖宇芳. 土壤中五氯酚的快速测定. 岩矿测试, 2008, 27(2): 117-119.

[7]

李冰, , 史世云. 电感耦合等离子体质谱法同时测定地质样品中痕量碘溴硒砷的研究:Ⅱ.土壤及沉积物标准物质分析. 岩矿测试, 2001, (4): 241-246.

[8]

佘小林. 离子色谱法快速测定土壤中碘量. 岩矿测试, 2005, (2): 145-147.

[9]

陈志慧, 孙洛新, 钟莅湘, 王琰, 尚保忠, 肖抒. 快速催化极谱法测定土壤中的有效态钼. 岩矿测试, 2014, 33(4): 584-588.

[10]

王琰, 孙洛新, 张帆, 张华, 陈志慧. 电感耦合等离子体发射光谱法测定含刚玉的铝土矿中硅铝铁钛. 岩矿测试, 2013, 32(5): 719-723.

[11]

杨红霞, 刘崴, 李冰. 碱消解-高效液相色谱-电感耦合等离子体质谱法测定生物样品中的甲基汞和乙基汞. 岩矿测试, 2008, 27(6): 405-408.

[12]

何中发, 邵超英, 温晓华, 张琢. 悬浮液进样-氢化物发生原子荧光光谱法测定土壤中痕量砷锑硒. 岩矿测试, 2007, 26(6): 460-464.

[13]

杨红霞, 何红蓼, 李冰, 倪哲明. 环境样品中痕量元素的化学形态分析Ⅱ.砷汞镉锡铅硒铬的形态分析. 岩矿测试, 2005, (2): 118-128.

[14]

万国江, 葛晓立. 张家口克山病地区土壤硒的地球化学形态研究. 岩矿测试, 2000, (4): 254-258.

[15]

陈志兵. 碱性模式氢化物发生—原子荧光光谱法测定土壤中的痕量硒. 岩矿测试, 2002, (4): 311-314.

[16]

王龙山, 胡建平, 王光照, 郝辉. 偏硼酸锂熔矿-超声提取-电感耦合等离子体发射光谱法测定岩石水系沉积物土壤样品中硅铝铁等10种元素. 岩矿测试, 2008, 27(4): 287-290.

[17]

王瑞敏. 泡沫塑料富集-电感耦合等离子体质谱法测定土壤中超痕量金铂钯. 岩矿测试, 2011, 30(3): 295-298.

[18]

贺攀红, 吴领军, 杨珍, 张伟, 荣耀, 龚治湘. 氢化物发生-电感耦合等离子体发射光谱法同时测定土壤中痕量砷锑铋汞. 岩矿测试, 2013, 32(2): 240-243.

[19]

吴峥, 熊英, 王龙山. 自制氢化物发生系统与电感耦合等离子体发射光谱法联用测定土壤和水系沉积物中的砷锑铋. 岩矿测试, 2015, 34(5): 533-538. doi: 10.15898/j.cnki.11-2131/td.2015.05.006

[20]

魏峰, 沈小明, 陈海英, 沈加林. 土壤和沉积物中22种有机氯农药和8种多氯联苯的气相色谱分析. 岩矿测试, 2013, 32(6): 952-958.

计量
  • PDF下载量(9)
  • 文章访问量(76)
  • HTML全文浏览量(21)
  • 被引次数(0)
目录

Figures And Tables

高效液相色谱-电感耦合等离子体质谱联用检测土壤中的无机硒形态

秦冲, 施畅, 万秋月, 王磊, 刘爱琴, 安彩秀