【引用本文】 刘向磊, 孙文军, 文田耀, 等. 三酸分步消解-电感耦合等离子体质谱法测定土壤详查样品中23种金属元素[J]. 岩矿测试, 2020, 39(5): 793-800. doi: 10.15898/j.cnki.11-2131/td.201902270026
LIU Xiang-lei, SUN Wen-jun, WEN Tian-yao, et al. Determination of 23 Metal Elements in Detailed Soil Survey Samples by Inductively Coupled Plasma-Mass Spectrometry with Three Acid Stepwise Digestion[J]. Rock and Mineral Analysis, 2020, 39(5): 793-800. doi: 10.15898/j.cnki.11-2131/td.201902270026

三酸分步消解-电感耦合等离子体质谱法测定土壤详查样品中23种金属元素

1. 

河南省地矿局第一地质矿产调查院, 河南 洛阳 471023

2. 

河南省国土资源厅生态与勘查地球化学应用工程技术中心, 河南 洛阳 471023

3. 

河南省洛川县环境保护监测站, 河南 栾川 471500

收稿日期: 2019-02-27  修回日期: 2019-09-30  接受日期: 2020-06-03

基金项目: 洛阳市硒资源详查项目资金资助(洛公交易采购[2018]053号)

作者简介: 刘向磊, 硕士, 高级工程师, 主要从事痕量元素分析及分析方法技术研究。E-mail:378768348@qq.com

Determination of 23 Metal Elements in Detailed Soil Survey Samples by Inductively Coupled Plasma-Mass Spectrometry with Three Acid Stepwise Digestion

1. 

The First Institute of Geological and Mineral Resources Survey, Henan Province Geological Exploration Bureau, Luoyang 471023, China

2. 

Ecology and Exploration Geochemistry Application Engineering Technology Center of Henan Province, Luoyang 471023, China

3. 

Luanchuan County Environmental Protection Monitoring Station of Henan Province, Luanchuan 471500, China

Received Date: 2019-02-27
Revised Date: 2019-09-30
Accepted Date: 2020-06-03

摘要:土壤详查样品具有数量大、基质复杂、有机质含量高的特点,传统上采用多种混合酸体系的消解方法,不仅会造成有机质消解不完全,消解后的溶液中常有黑色的碳质存在,而且样品消解后只用稀硝酸提取,一些难溶氧化物、硫酸盐、氟化物难以形成可溶性盐,致使提取不彻底,若用逆王水提取则易大量引入氯离子造成氯的多原子离子质谱干扰。本文针对上述问题,充分利用硝酸、氢氟酸、高氯酸的不同特性,采用电热板控温,三酸分步加入法消解土壤样品,对于消解后的样品,采用硝酸-盐酸(体积比20:1)作为提取剂,有效降低了氯的多原子离子质谱干扰且提取彻底。结果表明:本方法能够消解土壤中有机质和硅酸盐组分,具有试剂用量少、氯的质谱干扰小、操作流程简单、工作效率高等优点,方法检出限(3s)更低(0.0008~0.90mg/kg)。将该方法应用于暗棕壤、石灰岩土壤、黄棕壤国家标准物质中23种元素的测定,其测定结果明显优于传统的消解方法,相对标准偏差(RSD,n=6)为0.022%~5.83%,相对误差为-8.33%~9.17%,测定时与认定值相符。该方法具有较高的适用性和可靠性。

关键词: 土壤详查样品, 金属元素, 硝酸-氢氟酸-高氯酸消解, 电感耦合等离子体质谱法

要点

(1) 三步加酸控温消解充分利用了硝酸、氢氣酸、高氣酸的不同特性。

(2)使用该方法提取试样更彻底且有效降低了氯离子的质谱干扰。

(3)该方法中,一份溶液可以同时测定23种元素,分析效率高。

Determination of 23 Metal Elements in Detailed Soil Survey Samples by Inductively Coupled Plasma-Mass Spectrometry with Three Acid Stepwise Digestion

ABSTRACT

OBJECTIVES:

In order to accurately determine 23 metal elements in soil. The analysis efficiency and quality can be improved by making full use of the different characteristics of nitric acid, hydrofluoric acid and perchloric acid in sample digestion.

METHODS:

Soil samples were digested on electric heating plate, by stepwise addition of nitric acid, hydrofluoric acid and perchloric acid. For the digested samples, nitric acid-hydrochloric acid (20:1, V/V) mixed solution was used as the extractant, effectively reducing the interference of chlorine polyatomic ion mass spectrum and extracting elements thoroughly. Twenty-three metal elements in the soil were simultaneously determined by inductively coupled plasma-mass spectrometry (ICP-MS).

RESULTS:

This method can effectively digest organic matter and silicate components in soil. It has the advantages of less reagent consumption, less mass spectrum interference of chlorine, simple operation process, high working efficiency, and lower detection limit (0.0008-0.90mg/kg, 3s). This method was applied to the national level standard substance such as dark brown soil, limestone soil, yellow brown soil samples for the determination of 23 elements, and the measurement result was superior to the traditional digestion method. The precision (RSD, n=6) was 0.022%-5.83% and relative error was -8.33% to 9.17%. The results are consistent with the certified values, indicating that the method is applicable and reliable.

CONCLUSIONS:

The method for the simultaneous determination of 23 elements in soil samples by ICP-MS with three acid stepwise digestion has high applicability and reliability.

KEY WORDS: detailed soil survey samples, metal elements, nitric acid-hydrofluoric acid-perchloric acid digestion, inductively coupled plasma-mass spectrometry

HIGHLIGHTS

(1) The different characteristics of nitric acid, hydrofluoric acid and perchloric acid are effectively used by the three-step acid addition and temperature control digestion method.

(2) The samples can be extracted more thoroughly by this method, and the mass spectrum interference of chloride ion can be reduceced effectively.

(3) The method can si jimulta ianeously determine 23 elements in one solution with high analysis efficiency.

本文参考文献

[1]

贺攀红, 杨珍, 龚治湘, 等. 氢化物发生-电感耦合等离子体发射光谱法同时测定土壤中的痕量砷铜铅锌镍钒[J]. 岩矿测试, 2020, 39(2): 235-242.

He P H, Yang Z, Gong Z X, et al. Simultaneous determination of trace arsenic, copper, lead, zine, niclel and vanadium in soils by hydride generation-inductively coupled plasma-optical emission spectrometry[J]. Rock and Mineral Analysis, 2020, 39(2): 235-242.

[2]

张更宇, 刘伟, 崔世荣, 等. 分类消解-电感耦合等离子体原子发射光谱法测定环境土壤中15种金属元素的含量[J]. 理化检验(化学分册), 2018, 54(4): 428-432.

Zhang G Y, Liu W, Cui S R, et al. Determination of 15 metal elements in environmental soil by inductively coupled plasma atomic emission spectrometry with classification digestion[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2018, 54(4): 428-432.

[3]

黄勤, 凤海元, 吴忠忠, 等. 电感耦合等离子体质谱法测定环境评价性土壤中铬铜镉铅[J]. 化学研究与应用, 2017, 29(9): 1444-1448.

Huang Q, Feng H Y, Wu Z Z, et al. Determination of Cr, Cu, Cd and Pb in environmental evaluation soils by inductively coupled plasma-mass spectrometry[J]. Chemical Research and Application, 2017, 29(9): 1444-1448.

[4]

赵小学, 赵宗生, 陈纯, 等. 电感耦合等离子体质谱法内标元素选择的研究[J]. 中国环境监测, 2016, 32(1): 84-87.

Zhao X X, Zhang Z S, Chen C, et al. Study on selection of internal standard element of ICP-MS[J]. Environmental Monitoring in China, 2016, 32(1): 84-87.

[5]

王云凤, 王江鱼. 四种酸体系溶样法对电感耦合等离子体质谱法测定水系沉积物中16种金属元素的影响[J]. 冶金分析, 2016, 36(7): 63-68.

Wang Y F, Wang J Y. Influence of four sample solution method with acid system on determination of sixteen metal elements in stream sediment by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2016, 36(7): 63-68.

[6]

王初丹, 罗盛旭. 硝酸-氢氟酸消解ICP-MS测定海洋沉积物中多种金属元素[J]. 桂林理工大学学报, 2016, 36(2): 337-340.

Wang C D, Luo S X. Determination of metal elements in marine sediments by nitric acid-hydrofluoric acid digestion and ICP-MS[J]. Journal of Guilin University of Technology, 2016, 36(2): 337-340.

[7]

刘向磊, 孙文军, 文田耀, 等. 负载泡塑富集-电感耦合等离子体质谱法测定地质样品中痕量金和银[J]. 分析化学, 2015, 43(9): 1371-1376.

Liu X L, Sun W J, Wen T Y, et al. Determination of Au and Ag in geological samples by loaded polyurethane foam-inductively coupled plasma-mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2015, 43(9): 1371-1376.

[8]

张萍, 谢华林. ORS-ICP-MS测定工业污泥中的重金属元素[J]. 环境工程学报, 2014, 8(7): 3089-3062.

Zhang P, Xie H L. Determination of heavy metal elements in industrial sludge by ORS-ICP-MS[J]. Chinese Journal of Environmental Engineering, 2014, 8(7): 3089-3062.

[9]

李斌, 赵春江. 我国当前农产品产地土壤重金属污染形势及检测技术分析[J]. 农业资源与环境学报, 2013, 30(5): 1-7.

Li B, Zhao C J. Current situation of heavy metals pollution in soil at farmland and detection technologies analysis in China[J]. Journal of Agricultural Resources and Environment, 2013, 30(5): 1-7.

[10]

张霖琳, 梁宵, 西里甫汗加那尔别克, 等. 在土壤及底泥重金属测定中不同前处理和分析方法的比较[J]. 环境化学, 2013, 32(2): 302-306.

Zhang L L, Liang X, Janarbek X, et al. Comparison of different pretreatment and analytical method of heavy metals in soil and sediment samples[J]. Environmental Chemistry, 2013, 32(2): 302-306.

[11]

刘晔, 第五春荣, 柳小明, 等. 密闭高温高压溶样ICP-MS测定56种国家地质标准物质中的36种痕量元素——对部分元素参考值修正和定值的探讨[J]. 岩矿测试, 2013, 32(2): 221-228.

Liu Y, Diwu C R, Liu X M, et al. Determination of 36 trace elements in 56 Chinese national standard reference materials by ICP-MS with pressurized acid-digestion[J]. Rock and Mineral Analysis, 2013, 32(2): 221-228.

[12]

鲁照玲, 胡红云, 姚洪, 等. 土壤中重金属元素电感耦合等离子体质谱定量分析方法的研究[J]. 岩矿测试, 2012, 31(2): 241-246.

Lu Z L, Hu H Y, Yao H, et al. Study on quantitative analysis method for several heavy metals in soil sample by inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2012, 31(2): 241-246.

[13]

朱晓贤, 王攀峰, 邰文亮, 等. ICP-MS测量土壤中重金属元素的方法研究[J]. 地下水, 2020, 42(2): 97-100.

Zhu X X, Wang P F, Tai W L, et al. Study on the method of measuring heavy metal elements in soil by ICP-MS[J]. Ground Water, 2020, 42(2): 97-100.

[14]

徐聪, 赵婷, 池海涛, 等. 微波消解-ICP-MS法测定土壤及耕作物小麦中的8种重金属元素[J]. 中国测试, 2019, 45(5): 85-92.

Xu C, Zhao T, Chi H T, et al. Determination of eight kinds of heavy metal elements in cultivated soil and the wheat by microwave digestion-ICP-MS method[J]. China Measurement & Test, 2019, 45(5): 85-92.

[15]

文典, 严冬, 赵沛华, 等. 快速高通量全消解ICP-MS法测定《全国土壤污染状况详查》项目中14种元素[J]. 环境化学, 2018, 37(6): 1432-1435.

Wen D, Yan D, Zhao P H, et al. Fast determination of 14 elements in China soil pollution survey with high throughput full digestion method by ICP-MS[J]. Environmental Chemistry, 2018, 37(6): 1432-1435.

[16]

孙杰, 吴玥, 蒋沄泱, 等. 稀酸酸解-电感耦合等离子体质谱法测定土壤中14种无机元素的含量[J]. 理化检验(化学分册), 2017, 54(3): 315-321.

Sun J, Wu Y, Jiang Y Y, et al. ICP-MS determination of inorganic elements in soil using dilute acid dissolution[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2017, 54(3): 315-321.

[17]

彭杨, 吴婧, 巢静波, 等. 土壤/沉积物中14种金属元素的ICP-MS准确测定方法[J]. 环境化学, 2017, 36(1): 175-182.

Peng Y, Wu J, Chao J B, et al. A method for the the accurate determination of 14 metal elements in soils sediments by ICP-MS[J]. Environmental Chemistry, 2017, 36(1): 175-182.

[18]

李自强, 李小英, 钟琦, 等. 电感耦合等离子体质谱法测定土壤重金属普查样品中铬铜镉铅的关键环节研究[J]. 岩矿测试, 2016, 35(1): 37-41.

Li Z Q, Li X Y, Zhong Q, et al. Determination of Cr, Cu, Cd and Pb in soil samples by inductively coupled plasma-mass spectrometry for an investigation of heavy metal pollution[J]. Rock and Mineral Analysis, 2016, 35(1): 37-41.

[19]

荆淼, 王其枫, 王艳萍, 等. 电感耦合等离子体质谱法测定土壤中常规元素及稀土元素[J]. 环境化学, 2016, 35(11): 2445-2446.

Jing M, Wang Q F, Wang Y P, et al. Detection of metallic elements and rare earth elements in soil by inductively coupled plasma-mass spectrometry[J]. Environmental Chemistry, 2016, 35(11): 2445-2446.

[20]

孙婧, 马丽, 杨兆光, 等. 混酸微波辅助萃取ICP-MS测定不同性质土壤中的重金属元素[J]. 环境化学, 2015, 34(6): 1057-1063.

Sun J, Ma L, Yang Z G, et al. Determination of heavy metal elements in various soils by microwave assisted extraction with acid mixture and ICP-MS[J]. Environmental Chemistry, 2015, 34(6): 1057-1063.

[21]

梁淑轩, 王欣, 吴虹, 等. 微波消解/ICP-MS测定水系沉积物中的9种重金属元素[J]. 光谱学与光谱分析, 2012, 32(3): 809-812.

Liang S X, Wang X, Wu H, et al. Determination of 9 heavy metal elements in sediment by ICP-MS using microwave digestion for sample preparation[J]. Spectroscopy and Spectral Analysis, 2012, 32(3): 809-812.

[22]

王志广, 陈发荣, 郑立, 等. 微波消解-电感耦合等离子体质谱同时测定普里兹湾沉积物中微量元素[J]. 分析试验室, 2012, 31(8): 50-54.

Wang Z G, Chen F R, Zheng L, et al. Simultaneous determination of trace elements in sediments of Prydz Bay by microwave digestion-inductively coupled plasma mass spectrometry[J]. Chinese Journal of Analysis Laboratory, 2012, 31(8): 50-54.

[23]

王君玉, 吴葆存, 李志伟, 等. 敞口酸溶-电感耦合等离子体质谱法同时测定地质样品中45个元素[J]. 岩矿测试, 2011, 30(4): 440-445.

Wang J Y, Wu B C, Li Z W, et al. Determination of elemental content in geological samples by one-time acid dissolution and inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2011, 30(4): 440-445.

[24]

贾建丽,于妍,王晨. 环境土壤学[M] . 北京: 地质出版社, 2012: 9-37.

Jia J L,Yu Y,Wang C. Environmental pedology[M] . Beijing: Chemical Industry Press, 2012: 9-37.
[25]

贾维斯K E, 格雷A L, 霍克R S(著).尹明, 李冰(译).电感耦合等离子体质谱手册[M].北京:原子能出版社, 1997:120-124.

Jarvis K E, Glay A L, Hawk R S (Editor).Yin M, Li B(Translator).Handbook of inductively coupled plasma-mass spectrometry[M].Beijing:Geological Publishing House, 1997:120-124.

[26]

《岩石矿物分析》编委会.岩石矿物分析(第四版第四分册)[M].北京: 地质出版社, 2011: 807-809.

[27] The editorial committee of Rock and Mineral Analysis. Rock and mineral analysis (The fourth edition:Vol.Ⅳ)[M] . Beijing: Geological Publishing House, 2011: 807-809.

相似文献(共20条)

[1]

李刚, 曹小燕. 电感耦合等离子体质谱法测定地质样品中锗和镉的干扰及校正. 岩矿测试, 2008, 27(3): 197-200.

[2]

张静梅, 张培新, 高孝礼, 黄光明, 窦银萍. 电感耦合等离子体质谱法同时测定地下水中硼溴碘. 岩矿测试, 2008, 27(1): 25-28.

[3]

尹周澜, 王薇惟, 覃祚明, 黄旭. 电感耦合等离子体质谱法测定高纯铟中铁. 岩矿测试, 2008, 27(3): 193-196.

[4]

王娜, 徐铁民, 魏双, 王家松, 曾江萍, 张楠. 微波消解-电感耦合等离子体质谱法测定超细粒度岩石和土壤样品中的稀土元素. 岩矿测试, 2020, 39(1): 68-76. doi: 10.15898/j.cnki.11-2131/td.201904010043

[5]

马生凤, 赵文博, 朱云, 孙红宾, 王蕾, 温宏利. 碘化氨除锡后封闭酸溶-电感耦合等离子体质谱测定锡矿石中的共生和伴生元素. 岩矿测试, 2018, 37(6): 650-656. doi: 10.15898/j.cnki.11-2131/td.201804190047

[6]

奥地利安东帕. HPA—S高温高压消解铂族金属. 岩矿测试, 2007, 26(3): 文后I-文后I.

[7]

刘洪青, 孙月婷, 时晓露, 章勇. 微波消解-电感耦合等离子体质谱法测定生物样品中14个微量元素. 岩矿测试, 2008, 27(6): 427-430.

[8]

藏吉良, 李志伟, 赵伟, 刘延霞, 严洁. 风冷回流消解-电感耦合等离子体质谱法同时测定植物样品中46个元素. 岩矿测试, 2012, 31(2): 247-252.

[9]

侍金敏, 冯廷建, 付鹏飞, 汤勇武, 陈大林, 张春翔, 燕娜. 微波消解-电感耦合等离子体质谱法同时测定金属硫化矿中的稀散元素. 岩矿测试, 2019, 38(6): 631-639. doi: 10.15898/j.cnki.11-2131/td.201805300066

[10]

陈永欣, 黎香荣, 韦新红, 吕泽娥, 谢毓群, 蔡维专. 微波消解-电感耦合等离子体质谱法测定土壤和沉积物中痕量稀土元素. 岩矿测试, 2011, 30(5): 560-565.

[11]

赵雷, 邱会东, 原金海. 微波消解-原子吸收光谱法测定岩芯中的8种金属元素. 岩矿测试, 2011, 30(4): 461-464.

[12]

沈宇, 张尼, 高小红, 李皓, 马怡飞. 微波消解电感耦合等离子体质谱法测定地球化学样品中钒铬镍锗砷. 岩矿测试, 2014, (5): 649-654.

[13]

薛静, 安帅, 汪寅夫, 高慧莉, 史佳铭. 王水水浴消解-电感耦合等离子体质谱法测定土壤中的硒. 岩矿测试, 2020, 39(5): 720-725. doi: 10.15898/j.cnki.11-2131/td.202003050025

[14]

林学辉, 刘昌岭. 等离子体发射光谱法同时测定大气气溶胶中多种金属元素. 岩矿测试, 1998, (2): 143-146.

[15]

李景喜, 陈发荣, 杨春茹, 崔维刚, 郑立, 王小如. 有机溶剂辅助微波消解-电感耦合等离子体质谱法测定多种原油中微量金属元素. 岩矿测试, 2011, 30(1): 12-16.

[16]

贺攀红, 杨珍, 龚治湘. 氢化物发生-电感耦合等离子体发射光谱法同时测定土壤中的痕量砷铜铅锌镍钒. 岩矿测试, 2020, 39(2): 235-242. doi: 10.15898/j.cnki.11-2131/td.201904160048

[17]

汤 行, 李艳香, 代杰瑞, 庞绪贵, 胡圣虹. 密闭消解电感耦合等离子体质谱法同时测定苹果中多元素含量及其分布. 岩矿测试, 2010, 29(3): 250-254.

[18]

李志伟, 邰自安, 任文岩, 高志军, 李艳华. 微波消解电感耦合等离子体质谱法测定黑色页岩中稀有稀土元素. 岩矿测试, 2010, 29(3): 259-262.

[19]

陈贺海, 荣德福, 付冉冉, 余清, 廖海平, 任春生, 鲍惠君. 微波消解-电感耦合等离子体质谱法测定铁矿石中15个稀土元素. 岩矿测试, 2013, 32(5): 702-708.

[20]

张楠, 徐铁民, 吴良英, 魏双, 方蓬达, 王家松. 微波消解-电感耦合等离子体质谱法测定海泡石中的稀土元素. 岩矿测试, 2018, 37(6): 644-649. doi: 10.15898/j.cnki.11-2131/td.201803160023

计量
  • PDF下载量(14)
  • 文章访问量(409)
  • HTML全文浏览量(158)
  • 被引次数(0)
目录

Figures And Tables

三酸分步消解-电感耦合等离子体质谱法测定土壤详查样品中23种金属元素

刘向磊, 孙文军, 文田耀, 李永新, 王腾飞, 刘学理, 闫宇, 李怀超