【引用本文】 杜宝华, 盛迪波, 罗志翔, 等. 低压密闭消解-电感耦合等离子体发射光谱法测定地质样品中的硼[J]. 岩矿测试, 2020, 39(5): 690-698. doi: 10.15898/j.cnki.11-2131/td.201909250139
DU Bao-hua, SHENG Di-bo, LUO Zhi-xiang, et al. Determination of Boron in Geological Samples by ICP-OES with Low-pressure Closed Digestion[J]. Rock and Mineral Analysis, 2020, 39(5): 690-698. doi: 10.15898/j.cnki.11-2131/td.201909250139

低压密闭消解-电感耦合等离子体发射光谱法测定地质样品中的硼

湖南省核工业中心实验室, 湖南 长沙 410100

收稿日期: 2019-09-25  修回日期: 2020-01-01  接受日期: 2020-06-02

作者简介: 杜宝华, 高级工程师, 从事地质实验测试、电感耦合等离子体质谱/发射光谱等应用技术研究。E-mail:aabhdu@163.com

Determination of Boron in Geological Samples by ICP-OES with Low-pressure Closed Digestion

Hunan Nuclear Central Laboratory, Changsha 410100, China

Received Date: 2019-09-25
Revised Date: 2020-01-01
Accepted Date: 2020-06-02

摘要:采用酸溶-电感耦合等离子体发射光谱法(ICP-OES)测定地质样品中的全硼量,关键环节在于如何防止样品消解过程中硼元素的损失,降低测量过程中的基体干扰、光谱干扰和记忆效应。基于以上问题,本文采用氢氟酸-硝酸-高氯酸-磷酸在低压密闭溶样罐中消解样品,溶出的硼元素与少量磷酸充分络合,防止硼的挥发损失;以基体及主成分浓度与样品相类似的地质类固体标准物质绘制标准曲线做线性校准,有效匹配和降低样品的基体干扰;采用仪器自带的操作软件,观察分析谱线附近是否存在其他元素的干扰,来确定背景扣除最佳的位置及宽度,降低ICP-OES测量中的光谱干扰;以10%的王水作为进样系统的冲洗液,有效消减测量过程中的记忆效应。当稀释因子为200时,方法的检出限(3SD)为1.2μg/g,定量限(10SD)为4.0μg/g;用岩石、土壤及水系沉积物国家一级标准物质对精密度及准确度进行分析验证,11次测定相对标准偏差为1.8%~7.9%,相对误差为-3.6%~6.3%;以外检分析结果为参考,对硼含量在定量限以上的样品测定,相对误差为-9.3%~12.5%。

关键词: 电感耦合等离子体发射光谱法, 低压密闭消解, 标准物质校准, 地质样品, , 记忆效应

要点

(1) 采用氢氟酸-硝酸-高氯酸-磷酸消解样品,防止了硼的挥发损失。

(2) 采用基体及主成分浓度与样品相类似的地质类固体标准物质绘制标准曲线,有效降低基体干扰。

(3) 采用仪器所具备的背景校正技术,确定背景扣除最佳的位置及宽度,降低测量中的光谱干扰。

(4)针对使用ICP-OES测定硼的光谱干扰及记忆效应,优选了分析谱线和进样系统的冲洗液。

Determination of Boron in Geological Samples by ICP-OES with Low-pressure Closed Digestion

ABSTRACT

BACKGROUND:

Total boron in geological samples is determined by inductively coupled plasma-optical emission spectroscopy (ICP-OES) with acid digestion. The key steps are preventing the loss of boron during the sample digestion stage and reducing matrix interference, spectral interference and memory effect during measurement.

OBJECTIVES:

To establish a method for the determination of boron in geological samples by ICP-OES with low-pressure closed digestion.

METHODS:

Using HF-HNO3-HClO4-H3PO4 to digest samples in a low-pressure closed sample tank, the dissolved boron element is fully complexed with a small amount of phosphoric acid to prevent the volatilization loss of boron. The standard curve was calibrated using the geological solid standard material with similar concentration of matrix and major components to effectively match and reduce the matrix interference of the sample. The operating software provided by the instrument was used to observe and analyze the interference of other elements near the spectral line and to determine the best position and width of background subtraction to reduce the spectral interference in the ICP-OES measurement. 10% Aqua regia was used as the rinsing liquid of the sample introduction system, which effectively reduced the memory effect during measurement.

RESULTS:

When the dilution factor was 200, the detection limit (3SD) was 1.2μg/g, and the quantitative limit (10SD) was 4.0μg/g. The precision and accuracy were analyzed and verified by using the national first-class standard substances in rock, soil and river sediment, the relative standard deviations (n=11) were from 1.8% to 7.9%, and the relative errors were from -3.6% to 6.3%. Compared with the results of external tests, the relative error of boron content above the quantitative limit ranged from -9.3% to 12.5%.

CONCLUSIONS:

The method is suitable for the accurate measurement of boron above 4.0μg/g in geological samples.

KEY WORDS: inductively coupled plasma-optical emission spectrometry, low-pressure closed digestion, calibration of reference materials, geological samples, boron, memory effect

HIGHLIGHTS

(1) Samples were digested by HF-HNO3-HClO4-H3PO4 to prevent the volatilization loss of boron.

(2) The standard curve was calibrated using the geological solid standard material with the concentration of matrix and major components similar to the sample, to effectively reduce the matrix interference of the sample.

(3) The background correction technology provided by the instrument was used to determine the optimal position and width of background deduction and reduce the spectral interference.

(4) For the determination of the rinsing solution of the sample introduction system and spectral lines optimized to eliminate the spectral interference and memory effect of boron during ICP-OES analysis.

本文参考文献

[1]

《岩石矿物分析》编委会. 岩石矿物分析[M] (第四版第二分册) . 北京: 地质出版社, 2011: 376-381.

The editorial committee of Rock and Mineral Analysis . Rock and mineral analysis[M] (The fourth editionVol.Ⅱ) . Beijing: Geological Publishing House, 2011: 376-381.
[2]

闫春燕, 伊文涛, 马培华, 等. 微量硼的测定方法研究进展[J]. 理化检验(化学分册), 2008, 44(2): 197-201.

Yan C Y, Yi W T, Ma P H, et al. Recent progress of methods for determination of micro-amounts of boron[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2008, 44(2): 197-201.

[3]

曹成东, 魏轶, 刘江斌, 等. 发射光谱法同时测定地球化学样品中微量银铍硼锡铋钼[J]. 岩矿测试, 2010, 29(4): 458-460.

Cao C D, Wei Y, Liu J B, et al. Simultaneous determination of trace silver, beryllium, boron, tin, bismuth and molybdenum in geochemical samples by emission spectrometry[J]. Rock and Mineral Analysis, 2010, 29(4): 458-460.

[4]

郝志红, 姚建贞, 唐瑞玲, 等. 直流电弧全谱直读原子发射光谱法(DC-Arc-AES)测定地球化学样品中痕量硼、钼、银、锡、铅的方法研究[J]. 光谱学与光谱分析, 2015, 35(2): 527-533.

Hao Z H, Yao J Z, Tang R L, et al. Study on the method for determination of trace boron, molybdenum, silver, tin and lead in geochemical samples by direct current arc full spectrum direct reading reading atomic emission spectrometry (DC-Arc-AES)[J]. Spectroscopy and Spectral Analysis, 2015, 35(2): 527-533.

[5]

郭颖超, 张晓敏, 姚福存, 等. CCD-Ⅰ型平面光栅电弧直读发射光谱仪测定地球化学样品中银锡硼[J]. 黄金, 2016, 37(10): 85-88.

Guo Y C, Zhang X M, Yao F C, et al. Determination of silver, tin and boron in geochemical samples by CCD-Ⅰ plane grating electric arc direct reading emission spectrometer[J]. Gold, 2016, 37(10): 85-88.

[6]

肖细炼, 王亚夫, 陈燕波, 等. 交流电弧光电直读发射光谱法测定地球化学样品中银硼锡[J]. 冶金分析, 2018, 38(7): 27-32.

Xiao X L, Wang Y F, Chen Y B, et al. Determination of silver, boron and tin in geochemical samples by alternating current arc optoelectronic direct reading emission spectrometry[J]. Metallurgical Analysis, 2018, 38(7): 27-32.

[7]

孙慧莹, 李小辉, 朱少旋, 等. 原子发射光谱法测定地球化学样品中银、锡、硼的含量[J]. 理化检验(化学分册), 2019, 55(10): 1231-1234.

Sun H Y, Li X H, Zhu S X, et al. Determination of silver, tin and boron in geochemical samples by atomic emission spectrometry[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2019, 55(10): 1231-1234.

[8]

Zeibig G. Determination of total, leachable and mobile boron in sedimentary rocks by ICP-AES[J]. Mikrochimica Acta, 1989, 99(3): 389-397.

[9]

Lihareva N, Kosturkova P, Vakarelska T, et al. Application of sodium carbonate-zinc oxide decomposition mixture on ICP-AES determination of boron in tourmaline[J]. Fresenius' Journal of Analytical Chemistry, 2000, 367(1): 84-86.

[10]

Peng Z K, Liu Z N. Accurate determination of boron content in halite by ICP-OES and ICP-MS[J]. International Journal of Analytical Chemistry, 2019, : 1-5.

[11]

李冰, 马新荣, 杨红霞, 等. 封闭酸溶-电感耦合等离子体原子发射光谱法同时测定地质样品中硼砷硫[J]. 岩矿测试, 2003, 22(4): 241-247.

Li B, Ma X R, Yang H X, et al. Determination of boron, arsenic and sulfur in geological samples by inductively coupled plasma atomic emission spectrometry with sample treatment by pressurized decomposition[J]. Rock and Mineral Analysis, 2003, 22(4): 241-247.

[12]

Kataoka H, Okamoto Y, Tsukahara S, et al. Separate vaporisation of boric acid and inorganic boron from tungsten sample cuvette-tungsten boat furnace followed by the detection of boron species by inductively coupled plasma mass spectrometry and atomic emission spectrometry (ICP-MS and ICP-AES)[J].Analytica Chimica Acta, 2008, 610(2): 179-185. doi: 10.1016/j.aca.2008.01.043

[13]

顾继红, 于媛君, 王赫男, 等. 电感耦合等离子体原子发射光谱法测定高炉渣中硼[J]. 冶金分析, 2008, 28(6): 19-23.

Gu J H, Yu Y J, Wang H N, et al. Determination of boron in blast furnace slag by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2008, 28(6): 19-23.

[14]

武明丽. ICP-AES法测定土壤样品中的硼[J]. 山东化工, 2011, 40(7): 48-49.

Wu M L. Determination of boron in soil by ICP-AES[J]. Shandong Chemical Industry, 2011, 40(7): 48-49.

[15]

辛文彩, 林学辉, 徐磊, 等. ICP-AES测定海洋沉积物中的硼[J]. 现代仪器, 2011, 17(5): 91-92.

Xin W C, Lin X H, Xu L, et al. Determination of boron in marine sediments by ICP-AES[J]. Modern Instruments, 2011, 17(5): 91-92.

[16]

赵志飞, 陈芝桂, 唐兴敏, 等. 全谱直读等离子体发射光谱法测定土壤中的硼[J]. 资源环境与工程, 2012, 26(6): 638-640.

Zhao Z F, Chen Z G, Tang X M, et al. Determination of boron in soil samples by inductively coupled plasma optical emission spectrometry[J]. Resources Environment and Engineering, 2012, 26(6): 638-640.

[17]

Turner B L, Bielnicka A, Dalling J W, et al. Interference by iron in the determination of boron by ICP-OES in mehlich-Ⅲ extracts and total element digests of tropical forest soils[J].Communications in Soil Science and Plant Analysis, 2016, 47(21): 2378-2386. doi: 10.1080/00103624.2016.1228952

[18]

王佳翰, 汤凯, 龙军桥, 等. 敞开消解-ICP-OES同时测定地球化学样品中硫、磷、砷、硼[J]. 化学试剂, 2018, 40(1): 53-56.

Wang J H, Tang K, Long J Q, et al. Simultaneous determination of sulfur, phosphorus, arsenic, and boron in geochemical samples by ICP-OES with open digestion[J]. Chemical Reagent, 2018, 40(1): 53-56.

[19]

肖凡, 张宁, 姜云军, 等. 密闭酸溶-电感耦合等离子体原子发射光谱法测定地球化学调查样品中硼[J]. 冶金分析, 2018, 38(6): 50-54.

Xiao F, Zhang N, Jiang Y J, et al. Determination of boron in geochemical survey samples by inductively coupled plasma atomic emission spectrometry after acid dissolution in closed system[J]. Metallurgical Analysis, 2018, 38(6): 50-54.

[20]

张军. ICP-AES测定农用地土壤详查深层土中的硼[J]. 广州化工, 2019, 47(7): 110-111.

Zhang J. Determination of boron in deep soil of agricultural soil by ICP-AES[J]. Guangzhou Chemical Industry, 2019, 47(7): 110-111.

[21]

魏双, 王力强, 郑智慷, 等. 微波消解-电感耦合等离子体发射光谱仪测定土壤样品中的硼[J]. 地质调查与研究, 2019, 42(4): 256-258.

Wei S, Wang L Q, Zheng Z K, et al. Determination of Boron in soils by microwave digester and ICP-OES[J]. Geological Survey and Research, 2019, 42(4): 256-258.

[22]

姚海云, 鲁红仙, 黎金标, 等. 同位素稀释等离子体质谱法测定地质样品中痕量硼[J]. 分析测试学报, 2006, 25(1): 73-76.

Yao H Y, Lu H X, Li J B, et al. Determination of trace boron in geological samples by isotope dilution-inductively coupled plasma mass spectrometry[J]. Journal of Instrumental Analysis, 2006, 25(1): 73-76.

[23]

赵玲, 冯永明, 李胜生, 等. 碱熔-电感耦合等离子体质谱法测定化探样品中硼和锡[J]. 岩矿测试, 2010, 29(4): 355-358.

Zhao L, Feng Y M, Li S S, et al. Determination of boron and tin in geochemical exploration samples by inductively coupled plasma mass spectrometry with alkali fusion sample preparation[J]. Rock and Mineral Analysis, 2010, 29(4): 355-358.

[24]

宋伟娇, 代世峰, 赵蕾, 等. 微波消解-电感耦合等离子体质谱法测定煤中的硼[J]. 岩矿测试, 2014, 33(3): 327-331.

Song W J, Dai S F, Zhao L, et al. Determination of boron in coal samples with microwave digestion by inductively coupled plasma mass spectrometry[J]. Rock and Mineral Analysis, 2014, 33(3): 327-331.

[25]

杨贤, 张洁, 蔡金芳, 等. 电感耦合等离子体质谱法测定地质样品中硼[J]. 冶金分析, 2014, 34(6): 7-10.

Yang X, Zhang J, Cai J F, et al. Determination of boron in geological samples by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2014, 34(6): 7-10.

[26]

Al-Ammar A, Reitznerová E, Barnes R M, et al. Improving boron isotope ratio measurement precision with quadrupole inductively coupled plasma-mass spectrometry[J].Spectrochimica Acta Part B:Atomic Spectroscopy, 2000, 55(12): 1861-1867. doi: 10.1016/S0584-8547(00)00282-2

[27]

Menard G, Vlastélic I, Ionov D A, et al. Precise and accurate determination of boron concentration in silicate rocks by direct isotope dilution ICP-MS:Insights into the B budget of the mantle and B behavior in magmatic systems[J].Chemical geology, 2013, 354: 139-149. doi: 10.1016/j.chemgeo.2013.06.017

[28]

Liu T, He T, Shi Q H, et al. Rapid determination of boron in 61 soil, sediment, and rock reference materials by ICP-MS[J]. Atomic Spectroscopy, 2019, 40(2): 55-62.

相似文献(共20条)

[1]

张静梅, 张培新, 高孝礼, 黄光明, 窦银萍. 电感耦合等离子体质谱法同时测定地下水中硼溴碘. 岩矿测试, 2008, 27(1): 25-28.

[2]

林立, 周谙非, 张曼玲, 田艳玲, 杨彦丽. 微波消解-电感耦合等离子体发射光谱法分析食品中的总硼. 岩矿测试, 2008, 27(1): 21-24.

[3]

李刚, 曹小燕. 电感耦合等离子体质谱法测定地质样品中锗和镉的干扰及校正. 岩矿测试, 2008, 27(3): 197-200.

[4]

李刚, 苏文峰. 焙烧分离-氢化物发生-原子荧光光谱法测定土壤样品中微量硒. 岩矿测试, 2008, 27(2): 120-122.

[5]

马新荣, 何红蓼, 杨红霞, 李冰. 封闭酸溶-电感耦合等离子体原子发射光谱法同时测定地质样品中硼砷硫. 岩矿测试, 2003, (4): 241-247.

[6]

吕彩芬, 马新荣, 温宏利, 史世云, 李冰, 何红蓼. 电感耦合等离子体质谱法同时测定地质样品中痕量碘溴硒砷的研究Ⅰ.不同介质及不同阴离子形态对测定信号的影响. 岩矿测试, 2001, (3): 161-166.

[7]

杜米芳. 电感耦合等离子体发射光谱法同时测定玻璃中铝钙铁钾镁钠钛硫. 岩矿测试, 2008, 27(2): 146-148.

[8]

王烨, 赵淑杰, 李滦宁. 发射光谱载体蒸馏法测定地质样品中微量硼铍锡银. 岩矿测试, 2004, (1): 30-32.

[9]

曹成东, 魏轶, 刘江斌. 发射光谱法同时测定地球化学样品中微量银铍硼锡铋钼. 岩矿测试, 2010, 29(4): 458-460.

[10]

宋继芳. 电感耦合等离子体发射光谱法测定油田水中的硼. 岩矿测试, 2012, 31(4): 613-616.

[11]

阳国运, 唐裴颖, 张洁, 战大川, 覃盛, 何雨珊. 电感耦合等离子体质谱法测定地球化学样品中的硼碘锡锗. 岩矿测试, 2019, 38(2): 154-159. doi: 10.15898/j.cnki.11-2131/td.201805070055

[12]

张雪梅, 张勤. 发射光谱法测定勘查地球化学样品中银硼锡钼铅. 岩矿测试, 2006, 25(4): 323-326.

[13]

宋伟娇, 代世峰, 赵蕾, 李霄, 王佩佩, 李甜, 王西勃. 微波消解-电感耦合等离子体质谱法测定煤中的硼. 岩矿测试, 2014, 33(3): 327-331.

[14]

赵玲, 冯永明, 李胜生, 时晓露, 王金云. 碱熔-电感耦合等离子体质谱法测定化探样品中硼和锡. 岩矿测试, 2010, 29(4): 355-358.

[15]

盛献臻, 张汉萍, 李展强, 李海萍, 何光涛. 电感耦合等离子体发射光谱法同时测定地质样品中次量钨锡钼. 岩矿测试, 2010, 29(4): 383-386.

[16]

秦晓丽, 田贵, 李朝长, 蒋智林. 电感耦合等离子体发射光谱法同时测定地质样品中的钍和氧化钾. 岩矿测试, 2019, 38(6): 741-746. doi: 10.15898/j.cnki.11-2131/td.201812290142

[17]

赵敦敏, 王淑贤, 孙德忠, 杜安道, 屈文俊. 铼—锇定年法中碱熔分解样品方法的改进. 岩矿测试, 2002, (2): 100-104.

[18]

王学伟, 彭南兰, 唐琦平, 金婷婷. 四酸溶样电感耦合等离子体发射光谱法测定地质样品中的钪. 岩矿测试, 2014, 33(2): 212-217.

[19]

李冰, , 史世云. 电感耦合等离子体质谱法同时测定地质样品中痕量碘溴硒砷的研究:Ⅱ.土壤及沉积物标准物质分析. 岩矿测试, 2001, (4): 241-246.

[20]

赵志琦, 刘丛强, . 河水样品中硼的分离及其同位素组成测定. 岩矿测试, 2002, (4): 279-283.

计量
  • PDF下载量(46)
  • 文章访问量(615)
  • HTML全文浏览量(170)
  • 被引次数(0)
目录

Figures And Tables

低压密闭消解-电感耦合等离子体发射光谱法测定地质样品中的硼

杜宝华, 盛迪波, 罗志翔, 王全