【引用本文】 代鸿章, 王登红, 刘丽君, 等. 电子探针和微区X射线衍射研究陕西镇安钨-铍多金属矿床中祖母绿级绿柱石[J]. 岩矿测试, 2018, 37(3): 336-345. doi: 10.15898/j.cnki.11-2131/td.201712140193
DAI Hong-zhang, WANG Deng-hong, LIU Li-jun, et al. Study on Emerald-level Beryl from the Zhen'an W-Be Polymetallic Deposit in Shaanxi Province by Electron Probe Microanalyzer and Micro X-ray Diffractometer[J]. Rock and Mineral Analysis, 2018, 37(3): 336-345. doi: 10.15898/j.cnki.11-2131/td.201712140193

电子探针和微区X射线衍射研究陕西镇安钨-铍多金属矿床中祖母绿级绿柱石

1. 

中国地质科学院矿产资源研究所, 自然资源部成矿作用与资源评价重点实验室, 北京 100037

2. 

中国地质大学(北京)地球科学与资源学院, 北京 100083

收稿日期: 2017-12-14  修回日期: 2018-01-25  接受日期: 2018-03-21

基金项目: 国家重点研发计划专项“锂能源金属矿产基地深部探测技术示范”项目(2017YFC0602700);中国博士后科学基金资助项目“四川甲基卡矿区锂辉石、绿柱石原位微区矿物学研究”(2017M610960);中国地质调查局“矿产地质志”项目(DD20160346);中国地质调查局“华南重点矿集区稀有稀散和稀土矿产调查”项目(DD20160056)

作者简介: 代鸿章, 博士, 博士后, 主要从事矿床学研究。E-mail:303829636@qq.com

通信作者: 王登红, 研究员, 博士生导师, 主要从事矿产资源研究。E-mail:wangdenghong@sina.com

Study on Emerald-level Beryl from the Zhen'an W-Be Polymetallic Deposit in Shaanxi Province by Electron Probe Microanalyzer and Micro X-ray Diffractometer

1. 

Key Laboratory of Metallogeny and Mineral Resource Assessment, Ministry of National Resources; Institute of Mineral Resource, Chinese Academy of Geological Sciences, Beijing 100037, China

2. 

School of Earth Science and Resources, China University of Geoscience(Beijing), Beijing 100083, China

Corresponding author: WANG Deng-hong, wangdenghong@sina.com

Received Date: 2017-12-14
Revised Date: 2018-01-25
Accepted Date: 2018-03-21

摘要:南秦岭镇安地区发现了以白钨矿-绿柱石为矿石矿物组合的矿床新类型。为查明该矿床中首次发现的翠绿色祖母绿级绿柱石的致色机理并进一步揭示其成矿机制,本文在野外地质调查的基础上,对绿柱石开展了电子探针与微区X射线衍射等矿物学研究。结果表明:矿区中首次发现的祖母绿级绿柱石,呈自形晶产于石英(方解石)脉中并与白钨矿共(伴)生。祖母绿级绿柱石从核部至边缘V2O3含量较高,分别为0.64%~0.98%和1.04%~1.42%,且有增高趋势。X射线衍射数据表明区内祖母绿为“正常”绿柱石,同时存在Al↔Me2+和Be↔Li两种类质同象替换机制。V为本区祖母绿主要致色元素,来自于区内碳质板岩、金云母片岩及白云质大理岩等地层,Be、Si、Al等主要元素则来自于深部酸性岩浆岩。本次发现为该矿床中钨、铍矿产资源的综合开发利用提供了基础地质资料,并为南秦岭在区域及深部继续寻找稀有金属矿指出新的找矿方向。

关键词: 祖母绿, 矿物学, 致色机理, W-Be多金属, 南秦岭

要点

(1) 利用电子探针和微区X射线衍射技术对陕西镇安地区首次发现的祖母绿级绿柱石开展致色机理和成因机制研究。

(2) 钒为镇安地区祖母绿主要致色元素,来自于区内碳质板岩、金云母片岩及白云质大理岩等地层。

(3) 镇安地区祖母绿属“正常”绿柱石,同时存在Al↔Me2+和Be↔Li两种类质同象替换机制。

Study on Emerald-level Beryl from the Zhen'an W-Be Polymetallic Deposit in Shaanxi Province by Electron Probe Microanalyzer and Micro X-ray Diffractometer

ABSTRACT

BACKGROUND:

A new deposit type with a scheelite-beryl-molybdenite assemblage was first discovered in the Zhen'an area of Shaanxi Province.

BAOBJECTIVES:

The research on chromatic mechanism and genetic mechanism of emerald was carried out.

METHODS:

Combined with the geological survey, Electron Microprobe and in-situ Micro X-ray Diffractomer were used to conduct mineral research.

RESULTS:

The emerald mainly occurs in the quartz (calcite) veins as euhedral crystal and is associated with scheelite. Both the core and rim of the emerald with high V2O3 contents of 0.64%-0.98% and 1.04%-1.42%, respectively, show an increased V2O3 trend from core to rim. Diffraction data show that the emerald is normal beryl and has two kinds of isomorphous substitution mechanism, Al↔Me2+ and Be↔Li. Vanadium is the main coloring element of emerald and was mainly derived from carbonaceous slate, mica schist, and dolomitic marble, whereas Be, Si and Al were derived from deep acidic igneous rocks.

CONCLUSIONS:

The discovery provides basic geological data for the comprehensive development and utilization of tungsten and antimony mineral resources in the deposit, and indicates new prospecting directions for continued searching for rare metal deposits in the region and deep areas of the South Qinling.

KEY WORDS: emerald, mineralogy, coloring mechanism, W-Be polymetallics, Southern Qinling

HIGHLIGHTS

(1) Electron Microprobe analysis and in-situ Micro X-ray Diffraction analysis were carried to study on chromatic mechanism and genetic mechanism of the newly discovered emerald in Zhen'an area, Shaanxi Province.

(2) Vanadium is the main coloring element of the emerald and derived from carbonaceous slate, mica schist and dolomitic marble.

(3) The emerald belongs to 'normal' beryl, and there are two kinds of isomorphous substitution mechanism including Al↔Me2+ and Be↔Li.

本文参考文献

[1]

胡荣荣, 张世涛. 祖母绿矿床研究现状[J]. 化工矿产地质, 2006, 28(4): 234-240.

Hu R R, Zhang S T. Current research situation of the world emerald deposits and the existing problems[J]. Geology of Chemical Minerals, 2006, 28(4): 234-240.

[2]

胡荣荣, 张世涛. 世界祖母绿矿床研究现状及存在问题[J]. 矿产与地质, 2007, 21(1): 94-99.

Hu R R, Zhang S T. Status of worldwide emerald deposit research and some problems[J]. Mineral Resources and Geology, 2007, 21(1): 94-99.

[3]

Gavrilenko E, Pérez B C, Bolibar R C, et al. Emeralds from the Delbegetey deposit (Kazakhstan):Mineralogical characteristics and fluid-inclusion study[J].Mineralogical Magazine, 2006, 70(2): 159-173. doi: 10.1180/0026461067020321

[4]

Ottaway T L, Wicks F J, Bryndzia L T, et al. Formation of the Muzo hydrothermal emerald deposit in Colombia[J].Nature, 1994, 369: 552-554. doi: 10.1038/369552a0

[5]

Bragg W L, West J. The structure of beryl, Be3Al2Si6O18[J].Royal Society of London Proceedings, 1926, 111(759): 691-714. doi: 10.1098/rspa.1926.0088

[6]

刘琰, 邓军, 孙岱生, 等. 四川虎牙雪宝顶W-Sn-Be矿床矿物学标型特征及流体对矿物形态的影响[J]. 地球科学——中国地质大学学报, 2007, 32(1): 75-81.

Liu Y, Deng J, Sun D S, et al. Morphology and gensis typomorphism of minerals in W-Sn-Be deposit of Huya, Sichuan[J]. Earth Science-Journal of China University of Geosciences, 2007, 32(1): 75-81.

[7]

阮青锋, 张良钜, 张昌龙, 等. 绿柱石的成因与特征的研究[J]. 矿产与地质, 2008, 22(3): 265-269.

Ruan Q F, Zhang L J, Zhang C L, et al. Genesis and characteristics of beryl[J]. Mineral Resources & Geology, 2008, 22(3): 265-269.

[8]

Garcí J M, Lastra A, Barriuso M T, et al. Origin of the different color of ruby and emerald[J]. Physical Review B, 2005, 72(11): 3104.

[9]

钟倩, 廖宗廷, 周征宇, 等. 水热法合成Paraíba色绿柱石的宝石学特征[J]. 宝石和宝石学杂志, 2016, 18(6): 1-7.

Zhong Q, Liao Z T, Zhou Z Y, et al. Gemmological characteristics of hydrothermal synthetic paraíba-cloour beryl[J]. Journal of Gems & Gemmology, 2016, 18(6): 1-7.

[10]

申柯娅. 天然祖母绿与合成祖母绿的成分及红外吸收光谱研究[J]. 岩矿测试, 2011, 30(2): 233-237.

Shen K Y. Study on chemical compositions and infrared absorption spectra of natural and synthetic emeralds[J]. Rock and Mineral Analysis, 2011, 30(2): 233-237.

[11]

梁婷. 云南祖母绿的呈色机理初探[J]. 宝石和宝石学杂志, 2001, 3(4): 21-24.

Liang T. Study on coluration mechanism of emerald from Yunnan Province[J]. Journal of Gems & Gemmology, 2001, 3(4): 21-24.

[12]

梁婷. 祖母绿的红外光谱特征研究[J]. 长安大学学报(地球科学版), 2003, 25(2): 10-13.

Liang T. The study on infrared absorption pectroscopic characteristics of emeralds[J]. Journal of Chang'an University (Earth Science Edition), 2003, 25(2): 10-13.

[13]

张文兰, 王汝成, 蔡淑月, 等. 超轻元素Be元素的电子探针定量分析——以绿柱石为例[J]. 电子显微学报, 2006, (Supplement 1): 293-294.

Zhang W L, Wang R C, Cai S Y, et al. Quantitative analysis of ultralight element Be by electron microprobe-Taking beryl as an example[J]. Journal of Chinese Electron Microscopy Society, 2006, (Supplement 1): 293-294.

[14]

Liu J J, Zhai D G, Dai H Z, et al. Nanoscale character-ization of Au2Te grains from the Sandaowanzi gold deposit, Northeast China[J].The Canadian Mineralogist, 2017, 55(2): 181-194. doi: 10.3749/canmin.1600077

[15]

Uher P, Chudík P, Bačík P, et al. Beryl composition and evolution trends:An example from granitic pegmatites of the beryl-columbite subtype, Western Carpathians, Slovakia[J]. Journal of Geosciences, 2010, 55(1): 69-80.

[16]

Wang R C, Che X D, Zhang W L, et al. Geochemical evolution and late re-equilibration of Na-Cs-rich beryl from the Koktokay #3 pegmatite (Altai, NW China)[J].European Journal of Mineralogy, 2009, 21(4): 795-809. doi: 10.1127/0935-1221/2009/0021-1936

[17]

Viana R R, Jordtevangelista H, Costa G M D, et al. Characterization of beryl (aquamarine variety) from pegmatites of Minas Gerais, Brazil[J].Physics and Chemistry of Minerals, 2002, 29(10): 668-679. doi: 10.1007/s00269-002-0278-y

[18]

Evensen J M. Beryllium in silicic magmas and the origin of beryl-bearing pegmatites[J]. Reviews in Mineralogy & Geochemistry, 2002, 50(1): 445-486.

[19]

Sabot B. Fluid inclusions in Ianapera emerald, Southern Madagasca[J].International Geology Review, 2005, 47(6): 647-662. doi: 10.2747/0020-6814.47.6.647

[20]

Moore T P. Emeralds of the World[M]//Mineralogical Record. 2003: 10-23, 25-33, 74-78.

[21]

Groat L A, Giuliani G, Marshall D D, et al. Emerald deposits and occurrences:A review[J].Ore Geology Reviews, 2008, 34(1-2): 87-112. doi: 10.1016/j.oregeorev.2007.09.003

[22]

Groat L A, Marshall D D, Giuliani G, et al. Mineralogical and geochemical study of the Regal Ridge emerald showing, Southeastern Yukon[J].Canadian Mineralogist, 2002, 40(5): 1313-1338. doi: 10.2113/gscanmin.40.5.1313

[23]

Cheilletz A, Féraud G, Giuliani G, et al. Time-pressure and temperature constraints on the formation of Colombian emeralds:An 40Ar/39Ar laser microprobe and fluid inclusion study[J].Economic Geology, 1994, 89: 361-380. doi: 10.2113/gsecongeo.89.2.361

[24]

代鸿章, 王登红, 王成辉, 等. 中央造山带秦巴地区发现石英脉型黑钨矿[J]. 岩矿测试, 2017, 36(5): 559-560.

Dai H Z, Wang D H, Wang C H, et al. New discovery of quartz vein-type of wolframite ores in the Qinling-Daba area, Central Orogenic Belt, China[J]. Rock and Mineral Analysis, 2017, 36(5): 559-560.

[25]

许乃岑, 沈加林, 张静, 等. X射线衍射-X射线荧光光谱-电子探针等分析测试技术在玄武岩矿物鉴定中的应用[J]. 岩矿测试, 2015, 34(1): 75-81.

Xu N C, Shen J L, Zhang J, et al. Application of X-ray diffraction, X-ray fluorescence spectrometry and electron microprobe in the identification of basalt[J]. Rock and Mineral Analysis, 2015, 34(1): 75-81.

[26]

刘永先, 范洪斌. 云南祖母绿特征及开发利用初探[J]. 矿产综合利用, 1997, (6): 22-25.

Liu Y X, Fan H B. A preliminary study on the characteristics and exploitation and utilization of emeralds in Yunnan[J]. Multipurpose Utilization of Mineral Resources, 1997, (6): 22-25.

[27]

王濮,潘兆橹,翁玲宝. 统矿物学(中册)[M] . 北京: 地质出版社, 1982: 155-156.

Wang P,Pan Z L,Weng L B. Systematic Mineralogy (Volume 2)[M] . Beijing: Geological Publishing House, 1982: 155-156.
[28]

Aurisicchio C, Fioravanti G, Grubessi O, et al. Reappra-isal of the crystal chemistry of beryl[J]. American Minealogist, 1988, 73: 826-837.

[29]

黄文清, 倪培, 水汀, 等. 云南麻栗坡祖母绿的矿物学特征研究[J]. 岩石矿物学杂志, 2015, 34(1): 103-109.

Huang W Q, Ni P, Shui T, et al. Mineralogical characteristics of emerald from Malipo, Yunnan Province[J]. Acta Petrologica et Mineralogica, 2015, 34(1): 103-109.

[30]

任伟, 汪立今, 李甲平, 等. 电子探针和X射线衍射仪测定新疆祖母绿宝石[J]. 岩矿测试, 2010, 29(2): 179-181.

Ren W, Wang L J, Li J P, et al. Detection of emerald from Xinjiang by electron probe microanalyzer and X-ray diffractometer[J]. Rock and Mineral Analysis, 2010, 29(2): 179-181.

[31]

JCPDS. International Center for Diffraction Data[Z]. [PDF#09-0430], 1988.

[32]

Schwartz D, Giuliani G. Emerald deposits:A review[J]. Australian Gemmologist, 2001, 1: 17-23.

[33]

Vapnik Y, Moroz I, Roth M, et al. Formation of emeralds at pegmatite-ultramafic contacts based on fluid inclusions in Kianjavato emerald, Mananjary deposits, Madagascar[J].Mineralogical Magazine, 2006, 70: 141-158. doi: 10.1180/0026461067020320

[34]

汪立今, 彭雪峰, 李甲平, 等. 新疆祖母绿(绿柱石)矿产出地质特征与找矿矿物学[J]. 矿物学报, 2011, 31(3): 604-608.

Wang L J, Peng X F, Li J P, et al. A study on basic geological characteristics and mineralogy of ore prospecting in Xinjiang emerald (beryl) deposit[J]. Acta Mineralogica Sinica, 2011, 31(3): 604-608.

[35]

Dai H Z, Wang D H, Wang C H, et al. Re-Os isotopic dating of a W-Be polymetallic deposit in the Southern Qinling Region, China[J].Acta Geologica Sinica (English Edition), 2018, 92(1): 414-415. doi: 10.1111/acgs.2018.92.issue-1

[36]

刘茜. 陕西镇安钨矿床特征及成因研究[D]. 北京: 中国地质大学(北京), 2013.

Liu Q. The Characterisitcs and Genesis of the Zhen'an W Deposit, Shannxi Province, China[D]. Beijing: China University of Geoscinces (Beijing), 2013.

[37]

盛继福,王登红. 中国矿产地质志·钨矿卷[M] . 北京: 地质出版社(待出版), 2018

Sheng J F,Wang D H. China's Mineral Geology (Tungsten Ore Volume)[M] . Beijing: Geological Publishing House, 2018

相似文献(共19条)

[1]

邢莹莹, 亓利剑, 王海涛. 秘鲁蓝色蛋白石矿物学性质及致色机理初探. 岩矿测试, 2017, 36(6): 608-613. doi: 10.15898/j.cnki.11-2131/td.201707250121

[2]

乔鑫, 周征宇, 农佩臻, 赖萌, 李英搏, 郭恺鹏, 钟倩, 王含, 周彦. 贫碱结构水类型祖母绿红外光谱特征及其控制因素探究. 岩矿测试, 2019, 38(2): 169-178. doi: 10.15898/j.cnki.11-2131/td.201804070039

[3]

田隆. 五颜六色的黄龙玉及致色机理. 岩矿测试, 2012, 31(2): 306-311.

[4]

侯梅芳, , 马北雁. 我国各地膨润土的矿物学性质. 岩矿测试, 2002, (3): 190-194.

[5]

鲁麟, 梁婷, 陈郑辉, 王勇, 黑欢, 谢星. 利用X射线粉晶衍射和电感耦合等离子体质谱法研究江西西华山钨矿床中黑钨矿的矿物学特征及指示意义. 岩矿测试, 2015, 34(1): 150-160. doi: 10.15898/j.cnki.11-2131/td.2015.01.019

[6]

杨全喜. 山东蒙阴苏家沟科马提岩岩石学特征. 岩矿测试, 2000, (1): 58-62.

[7]

申柯娅. 天然祖母绿与合成祖母绿的成分及红外吸收光谱研究. 岩矿测试, 2011, 30(2): 233-237.

[8]

戴婕, 张林奎, 潘晓东, 石洪召, 陈敏华, 王鹏, 张斌辉, 张茜, 金斌, 任静. 滇东南南秧田白钨矿矿床矽卡岩矿物学特征及成因探讨. 岩矿测试, 2011, 30(3): 269-275.

[9]

张勇, 周丹怡, 陈华, 陆太进, 柯捷. 应用同步辐射技术解析黄色-红色石英质玉石中的致色矿物. 岩矿测试, 2016, 35(5): 513-520. doi: 10.15898/j.cnki.11-2131/td.2016.05.010

[10]

余晓艳. 山东蓝宝石的宝石矿物学特征. 岩矿测试, 1999, (1): 41-.

[11]

廖宗廷, 周征宇, 李玉加, 陈盈, 马婷婷. 青海软玉的岩石矿物学特征. 岩矿测试, 2008, 27(1): 17-20.

[12]

张家菁, 吴木森, 陈郑辉, 刘善宝, 李立兴, 邱良明, 吴斌, 黄安杰, 祝平俊. 江西省上饶县金竹坪钼多金属矿床成矿年代学研究. 岩矿测试, 2009, 28(3): 228-232.

[13]

任伟, 汪立今, 李甲平. 电子探针和X射线衍射仪测定新疆祖母绿宝石. 岩矿测试, 2010, 29(2): 179-181.

[14]

叶大年. 环状硅酸盐的结构光性矿物学研究. 岩矿测试, 1983, (1): 25-34.

[15]

王福泉. 江苏某含铬镁铝榴石的宝石矿物学研究. 岩矿测试, 1984, (1): 33-39.

[16]

周鸿勳. 北京密云半截峪一带太古代变质铁矿的成因矿物学. 岩矿测试, 1983, (3): 197-205.

[17]

张荣英, 王月翠, 彭志忠. 富硒硫银锗矿的矿物学研究. 岩矿测试, 1984, (2): 124-130.

[18]

江秀杰, 刘金定, 王义昌, 黄典豪. 黄龙铺钡天青石的矿物学研究及其意义. 岩矿测试, 1983, (2): 118-124.

[19]

伍超群. 电子探针在工艺矿物学中的应用. 岩矿测试, 1994, (1): 45-48.

计量
  • PDF下载量(30)
  • 文章访问量(308)
  • HTML全文浏览量(105)
  • 被引次数(0)
目录

Figures And Tables

电子探针和微区X射线衍射研究陕西镇安钨-铍多金属矿床中祖母绿级绿柱石

代鸿章, 王登红, 刘丽君, 黄凡, 王成辉