【引用本文】 郭东旭, 刘琰, 李自静, 等. 应用电感耦合等离子体质谱技术研究牦牛坪矿床霓长岩化蚀变矿物微量元素特征[J]. 岩矿测试, 2020, 39(6): 896-907. doi: 10.15898/j.cnki.11-2131/td.202005060003
GUO Dong-xu, LIU Yan, LI Zi-jing, et al. Determination of Trace Element Compositions of Altered Minerals in Fenitization Veins by Inductively Coupled Plasma-Mass Spectrometry[J]. Rock and Mineral Analysis, 2020, 39(6): 896-907. doi: 10.15898/j.cnki.11-2131/td.202005060003

应用电感耦合等离子体质谱技术研究牦牛坪矿床霓长岩化蚀变矿物微量元素特征

1. 

自然资源实物地质资料中心, 河北 三河 065201

2. 

中国地质科学院地质研究所, 北京 100037

收稿日期: 2020-04-30  修回日期: 2020-07-07  接受日期: 2020-09-19

基金项目: 中国地质调查局地质调查项目“实物地质资料汇集与服务”(DD20190411);国家自然资源部中国地质调查局勘测计划(DD20190060)

作者简介: 郭东旭, 硕士, 助理工程师, 研究方向为矿物学、岩石学、矿床学。E-mail:gdx2016@163.com

通信作者: 刘琰, 博士, 研究员, 从事稀有金属、稀土元素矿床研究。E-mail:ly@cags.ac.cn

Determination of Trace Element Compositions of Altered Minerals in Fenitization Veins by Inductively Coupled Plasma-Mass Spectrometry

1. 

Core and Samples Center of Land and Resources, China Geological Survey, Sanhe 065201, China

2. 

Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China

Corresponding author: LIU Yan, ly@cags.ac.cn

Received Date: 2020-04-30
Revised Date: 2020-07-07
Accepted Date: 2020-09-19

摘要:近年来全岩电感耦合等离子体质谱(ICP-MS)和原位激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)微量元素地球化学测试在地球科学领域的应用越来越广泛。霓长岩化是碳酸岩型稀土矿常见的蚀变类型,但其中的蚀变矿物微量元素特征与稀土矿化关系并不清楚。本文对川西牦牛坪矿床两期霓长岩化脉(无矿脉和含矿脉)中的霓辉石、钠铁闪石同时开展ICP-MS和LA-ICP-MS微量元素测试。结果表明:同期次的霓长岩化脉中,霓辉石、钠铁闪石全岩ΣREE含量远高于单矿物原位ΣREE含量,背散射图像显示霓辉石、钠铁闪石矿物中叠加了一些氟碳铈矿、重晶石微矿物。不同期次霓长岩化脉中霓辉石原位微量对比,含矿脉中的霓辉石具有更高的La/Nd值(0.19~0.23)、LREE/HREE值(6.58~7.79)、Ce/Nd值(0.95~1.11)、LaN/YbN值(2.07~2.33)。对比全岩微量组成,含矿脉中高含量的La、Ce、LREE、ΣREE,强烈的轻重稀土分异,可能代表了高稀土通量的霓长岩化流体。霓长岩化脉的出现以及脉体中霓辉石、钠铁闪石这些全岩微量、原位微量地球化学指标,可为碳酸岩型稀土矿床找矿勘查提供参考。

关键词: 牦牛坪, 霓长岩化, 蚀变, 微量元素, 霓辉石, 钠铁闪石

要点

(1) 霓长岩化脉可以作为碳酸岩型稀土矿床的找矿标志之一。

(2) 霓长岩化脉体中的霓辉石原位微量元素特征对矿化具有一定的指示意义。

(3) 高稀土通量的霓长岩化脉是形成大量稀土矿物的条件之一。

(4) 结合全岩微量、原位微量、显微照片分析,可以提高对地质现象的理解。

Determination of Trace Element Compositions of Altered Minerals in Fenitization Veins by Inductively Coupled Plasma-Mass Spectrometry

ABSTRACT

BACKGROUND:

In recent years, whole-rock inductively coupled plasma-mass spectrometry (ICP-MS) trace and in situ laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) trace element analyses have been increasingly more widely used in the field of earth sciences. Fenitization is a common type of alteration in carbonate-type rare earth deposits, but the relationship between the trace element characteristics of altered minerals and rare earth mineralization is not clear.

OBJECTIVES:

To better understand the relationship between fenitization and REE mineralization in the Maoniuping deposit as well as to provide references for prospecting carbonate-related (including alkaline rock) REE deposits.

METHODS:

Trace elements for aegirine-augite and arfvedsonite in different stages of fenitization veins (ore-bearing or barren rocks) from the Maoniuping deposit, Dagudao area were analyzed by ICP-MS and LA-ICP-MS.

RESULTS:

In situ trace elements of aegirine-augite in different stages of fenitization veins showed that La/Nd (0.19-0.23), LREE/HREE (6.58-7.79), Ce/Nd (0.95-1.11), (La)N/(Yb)N (2.07-2.33) values of aegirine-augite in ore-bearing veins were higher than those of barren veins.

CONCLUSIONS:

Compared with whole rock trace elements, high contents of La, Ce, LREE, ΣREE in mineral veins, strong differentiation of light and heavy rare earths may represent fenitization-related fluid with high rare earth flux. The occurrence of fenitization veins and the whole-rock trace and in situ trace geochemical indicators of aegirine-augite in veins may provide references for the prospecting and exploration of carbonate-type rare earth deposits.

KEY WORDS: Maoniuping, fenitization, alteration, trace elements, aegirine-augite, arfvedsonite

HIGHLIGHTS

(1) Fenitization can be used to fingerprint carbonate-related REE deposits.

(2) In situ trace element data of aegirine-augite in fenitization veins can be used as a geochemical index for mineralization.

(3) High REE flux in the fenitization vein was one of the factors forming a number of REE minerals.

(4) Combining whole rock trace, in situ trace and photomicrograph analysis improved the understanding of geological phenomena.

本文参考文献

[1]

Elliott H A L, Wall F, Chakhmouradian A R, et al. Fenites associated with carbonatite complexes:A review[J]. Ore Geology Reviews, 2018, 93: 38-59.

[2]

王凯怡. 与碳酸岩共生的霓长岩[J]. 地质科学, 2015, 50(1): 203-212.

Wang K Y. Fenites associated with carbonatites[J]. Chinese Journal of Geology, 2015, 50(1): 203-212.

[3]

舒小超, 刘琰, 李德亮, 等. 川西冕宁-德昌稀土矿带霓长岩的地球化学特征及地质意义[J]. 岩石学报, 2019, 35(5): 1372-1388.

Shu X C, Liu Y, Li D L, et al. Geochemical characteristics and geological significance of fenites in the Mianning-Dechang REE belt, western Sichuan Province[J]. Acta Petrologica Sinica, 2019, 35(5): 1372-1388.

[4]

Cooper A F, Palin J M, Collins A K, et al. Fenitization of metabasic rocks by ferrocarbonatites at Haast River, New Zealand[J]. Lithos, 2016, 244: 109-121.

[5]

le Bas M J. Fenites associated with carbonatites[J].Canadian Mineralogist, 2008, 46: 915-932.

[6]

Woolley A R. A discussion of carbonatite evolution and nomenclature, and the generation of sodic and potassic fenites[J]. Mineralogical Magazine, 1982, 46: 13-17.

[7]

王凯怡, 张继恩, 方爱民, 等. 白云鄂博矿床成因——矿体内霓长岩化成矿作用与赋矿白云岩的联系[J]. 岩石学报, 2018, 34(3): 785-798.

Wang K Y, Zhang J E, Fang A M, et al. Genesis of the Bayan Obo deposit, Inner Mongolia:The finitized mineralization in the ore bodies and its relation to the ore bearing dolomite[J]. Acta Petrologica Sinica, 2018, 34(3): 785-798.

[8]

Rubie D C, Günter W D. The role of speciation in alkaline igneous fluids during fenite metasomatism[J]. Contributions to Mineralogy and Petrology, 1983, 82: 165-175.

[9]

Liu S, Fan H R, Yang K F, et al. Fenitization in the giant Bayan Obo REE-Nb-Fe deposit:Implication for REE mineralization[J]. Ore Geology Reviews, 2018, 94: 290-309.

[10]

杨学明, 杨晓勇, 范宏瑞, 等. 霓长岩岩石学特征及其地质意义评述[J]. 地质论评, 2000, 46(5): 481-490.

Yang X M, Yang X Y, Fan H R, et al. Petrological characteristics of fenites and their geological significance[J]. Geological Review, 2000, 46(5): 481-490.

[11]

Wang K Y, Zhang J, Yu L J, et al. Fenitized wall rock geochemistry of the first carbonatite dyke at Bayan Obo, Inner Mongolia, China[J]. Acta Geologica Sinica (English Edition), 2018, 92(2): 600-603.

[12]

Hou Z Q, Liu Y, Tian S H, et al. Formation of carbonatite related giant rare-earth-element deposits by the recycling of marine sediments[J]. Scientific Reports, 2015, 5: 10231.

[13]

Xu C, Zhang H, Liu C, et al. Genesis of the carbonatite-syenite complex and REE deposit at Maoniuping, Sichuan Province, China:Evidence from Pb isotope geochemistry[J]. Geochemical Journal, 2004, 38: 67-76.

[14]

Xu C, Campbell I H, Kynicky J, et al. Comparison of the Daluxiang and Maoniuping carbonatitic REE deposits with Bayan Obo REE deposits, China[J]. Lithos, 2008, 106(1-2): 12-24.

[15]

Hou Z Q, Tian S H, Yuan Z X, et al. The Himalayan collision zone carbonatites in western Sichuan, SW China:Petrogenesis, mantle source and tectonic implication[J]. Earth and Planetary Science Letters, 2006, 244: 234-250.

[16]

Xie Y L, Hou Z Q, Yin S P, et al. Continuous carbonatitic melt-fluid evolution of a REE mineralization system:Evidence from inclusions in the Maoniuping REE deposit, western Sichuan, China[J]. Ore Geology Reviews, 2009, 36: 90-105.

[17]

Xie Y L, Li Y X, Hou Z Q, et al. A model for carbonatite hosted REE mineralisation-The Mianning-Dechang REE belt, western Sichuan Province, China[J]. Ore Geology Reviews, 2015, 70: 595-612.

[18]

Liu Y, Chakhmouradian A R, Hou Z Q, et al. Deve-lopment of REE mineralization in the giant Maoniuping deposit (Sichuan, China):Insights from mineralogy, fluid inclusions, and trace-element geochemistry[J]. Mineralium Deposita, 2019, 54(5): 701-718.

[19]

Zheng X, Liu Y. Mechanisms of element precipitation in carbonatite-related rare-earth element deposits:Evidence from fluid inclusions in the Maoniuping deposit, Sichuan Province, southwestern China[J]. Ore Geology Reviews, 2019, 107: 218-238.

[20]

Shu X C, Liu Y. Fluid inclusion constraints on the hydro-thermal evolution of the Dalucao carbonatite-related REE deposit, Sichuan Province, China[J]. Ore Geology Reviews, 2019, 107: 41-57.

[21]

Shu X C, Liu Y, Li D L, et al. Fluid inclusions as an indicator for REE mineralization in the Lizhuang deposit, Sichuan Province, southwest China[J]. Journal of Geochemical Exploration, 2020, 213: 1-15.

[22]

Yang Y H, Wu F Y, Li Y, et al. In situ U-Pb dating of bastnaesite by LA-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(6): 1017-1023.

[23]

Liu Y, Hou Z Q, Tian S H, et al. Zircon U-Pb ages of the Mianning-Dechang syenites, Sichuan Province, southwestern China:Constraints on the giant REE mineralization belt and its regional geological setting[J]. Ore Geology Reviews, 2015, 64: 554-568.

[24]

Ling X X, Li Q L, Liu Y, et al. In situ SIMS Th-Pb dating of Bastnäsite:Constraint on the mineralization time of the Himalayan Mianning-Dechang rare earth element deposits[J]. Journal of Analytical Atomic Spectrometry, 2016, 31: 1680-1687.

[25]

袁忠信,施泽民,白鸽. 川西冕宁牦牛坪轻稀土矿床[M] . 北京: 地震出版社, 1995: 1-150.

Yuan Z X,Shi Z M,Bai G. The Maoniuping rare earth ore deposit, Mianning County, Sichuan Province[M] . Beijing: Seismological Publishing House, 1995: 1-150.
[26]

郭东旭, 刘琰, 陈超, 等. 川西冕宁-德昌稀土矿带正长岩-碳酸岩杂岩体中锆石矿物学特征与矿化过程[J]. 岩石矿物学杂志, 2017, 36(3): 343-359.

Guo D X, Liu Y, Chen C, et al. Mineral characteristics of zircons in the syenite-carbonatite complex in the Mianning-Dechang REE ore belt, Sichuan Province, SW China:Indicative of REE mineralization[J]. Acta Petrologica et Mineralogica, 2017, 36(3): 343-359.

[27]

Liu Y, Chen Z Y, Yang Z S, et al. Mineralogical and geochemical studies of brecciated ores in the Dalucao REE deposit, Sichuan Province, southwestern China[J]. Ore Geology Reviews, 2015, 70: 613-636.

[28]

Liu Y, Zhu Z M, Chen C, et al. Geochemical and minera-logical characteristics of weathered ore in the Dalucao REE deposit, Mianning-Dechang REE Belt, western Sichuan Province, southwestern China[J]. Ore Geology Reviews, 2015, 71: 437-456.

[29]

Liu Y, Hou Z Q, Zhang R Q, et al. Zircon alteration as a proxy for REE mineralization processes in carbonatite-nordmarkite complexes of the Mianning-Dechang REE belt, China[J].Economic Geology, 2019, . doi: 10.5382/econgeo.0000

[30]

Liu Y, Hou Z Q. A synthesis of mineralization styles with an integrated genetic model of carbonatite-syenite-hosted REE deposits in the Cenozoic Mianning-Dechang REE metallogenic belt, the eastern Tibetan Plateau, southwestern China[J]. Journal of Asian Earth Sciences, 2017, 137(15): 35-79.

[31]

刘琰, 陈超, 舒小超, 等. 青藏高原东部碳酸岩-正长岩杂岩体型REE矿床成矿模式——以大陆槽REE矿床为例[J]. 岩石学报, 2017, 33(7): 1978-2000.

Liu Y, Chen C, Shu X C, et al. The formation model of the carbonatite-syenite complex REE deposits in the east of Tibetan Plateau:A case study of Dalucao REE deposit[J]. Acta Petrologica Sinica, 2017, 33(7): 1978-2000.

[32]

侯增谦, 田世洪, 谢玉玲, 等. 川西冕宁-德昌喜马拉雅期稀土元素成矿带:矿床地质特征与区域成矿模型[J]. 矿床地质, 2008, 27(2): 145-176.

Hou Z Q, Tian S H, Xie Y L, et al. Mianning-Dechang Himalayan REE belt associated with carbonatite-alkalic complex in eastern Indo-Asian collision zone, southwest China:Geological characteristics of REE deposits and a possible metallogenic model[J]. Mineral Deposits, 2008, 27(2): 145-176.

[33]

Hou Z Q, Tian S H, Xie Y L, et al. The Himalayan Mianning-Dechang REE belt associated with carbonatite-alkaline complexes, eastern Indo-Asian collision zone, SW China[J]. Ore Geology Reviews, 2009, 36: 65-89.

[34]

Guo D X, Liu Y. Occurrence and geochemistry of bastnä-site in carbonatite-related REE deposits, Mianning-Dechang REE belt, Sichuan Province, SW China[J]. Ore Geology Reviews, 2019, 107: 266-282.

[35]

李小渝. 四川德昌大陆槽稀土矿床地质特征[J]. 矿床地质, 2005, 24(2): 151-160.

Li X Y. Geological characteristics of Dalucao REE deposit in Dechang County, Sichuan Province[J]. Mineral Deposits, 2005, 24(2): 151-160.

[36]

Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1-2): 34-43.

[37]

Hu M Y, Fan X T, Stoll B, et al. Preliminary chara-cterisation of new reference materials for microanalysis:Chinese geological standard glasses CGSG-1, CGSG-2, CGSG-4 and CGSG-5[J].Geostandards and Geoanalytical Research, 2011, 35(1-2): 235-251.

[38]

Sun S S, McDonough W F.Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[M]//Saunders A D, Norry M J.Magmatism in the ocean basins.Geological Society of London Special Publication, 1989:313-345.]

相似文献(共19条)

[1]

刘先国, 方金东. 电感耦合等离子体原子发射光谱法测定硅铁中微量元素. 岩矿测试, 2002, (1): 63-65.

[2]

韩江伟, 熊小林, 朱照宇, 吴金花. 等离子体质谱法测定玄武岩中微量元素三种样品预处理方法的比较. 岩矿测试, 2008, 27(5): 325-328.

[3]

徐学明, 张培萍. 尿石—发样—土壤中微量元素分析及意义. 岩矿测试, 1999, (4): 280-283.

[4]

黄典文, 张宁. 甲基绿显色分光光度法测定微量铈. 岩矿测试, 2003, (2): 158-160.

[5]

何煦, 陈林, 李青会, 顾冬红, 干福熹, 李飞, 李珍. 竹山和马鞍山绿松石微量元素和稀土元素特征. 岩矿测试, 2011, 30(6): 709-713.

[6]

沈恒培. 深海沉积物及多金属结核中微量元素的光谱测定. 岩矿测试, 1997, (2): 91-97.

[7]

周世俊, 张建军. 含金矿物中金及微量元素的质子探针分析. 岩矿测试, 1999, (4): 284-287.

[8]

王成云, 谢意红. 不同颜色翡翠的微量元素及红外光谱特征. 岩矿测试, 2003, (3): 183-187.

[9]

加丽森·依曼哈孜, 邱海鸥, 王奥, 王大波, 汤少展, 汤志勇. 海相沉积物碳酸盐相中微量元素的分析方法研究. 岩矿测试, 2013, 32(4): 627-631.

[10]

邓娟. 人发中微量元素分析质量监控实践. 岩矿测试, 2000, (4): 304-306.

[11]

梁细荣, 李献华. 激光探针等离子体质谱同时测定锆石微区铀—铅年龄及微量元素. 岩矿测试, 1999, (4): 253-258.

[12]

王松君, 常平, . 电感耦合等离子体原子发射光谱法测定黄铁矿中微量元素. 岩矿测试, 2002, (4): 304-306.

[13]

叶青. 微波消解-原子吸收法初步分析葛根中微量元素与种植土质的相关性. 岩矿测试, 2006, 25(4): 387-388390.

[14]

刘洪青, 孙月婷, 时晓露, 章勇. 微波消解-电感耦合等离子体质谱法测定生物样品中14个微量元素. 岩矿测试, 2008, 27(6): 427-430.

[15]

张德贤. 磁铁矿中微量元素的激光剥蚀-电感耦合等离子体质谱分析方法探讨. 岩矿测试, 2012, 31(1): 120-126.

[16]

姜贞贞, 刘高令, 王祝, 李明礼, 卓玛曲西, 邵蓓, 董锐, 王伟. 电感耦合等离子体质谱法测定高海拔地区地热水中的微量元素. 岩矿测试, 2016, 35(5): 475-480. doi: 10.15898/j.cnki.11-2131/td.2016.05.005

[17]

林伟龙, 王正海, 王娟, 蒋丽怡, 范朝焰. 电感耦合等离子体质谱测定灌木枝叶中微量元素的样品预处理方法研究. 岩矿测试, 2015, 34(4): 430-435. doi: 10.15898/j.cnki.11-2131/td.2015.04.009

[18]

张旗, 陈友红. 双沟蛇绿岩中地幔交代作用的质子微探针研究. 岩矿测试, 1996, (3): 168-172.

[19]

万秋, 李延河, 王利民, 段超, 施珂, 谭德兴. 北淮阳晓天火山岩盆地片麻状花岗岩成岩年代学及地球化学特征. 岩矿测试, 2020, 39(4): 620-630. doi: 10.15898/j.cnki.11-2131/td.201908120125

计量
  • PDF下载量(10)
  • 文章访问量(557)
  • HTML全文浏览量(113)
  • 被引次数(0)
目录

Figures And Tables

应用电感耦合等离子体质谱技术研究牦牛坪矿床霓长岩化蚀变矿物微量元素特征

郭东旭, 刘琰, 李自静, 孙东询, 王浩