【引用本文】 刘喜锋, 张红清, 刘琰, 等. 世界范围内代表性碧玉的矿物特征和成因研究[J]. 岩矿测试, 2018, 37(5): 479-489. doi: 10.15898/j.cnki.11-2131/td.201712010187
LIU Xi-feng, ZHANG Hong-qing, LIU Yan, et al. Mineralogical Characteristics and Genesis of Green Nephrite from the World[J]. Rock and Mineral Analysis, 2018, 37(5): 479-489. doi: 10.15898/j.cnki.11-2131/td.201712010187

世界范围内代表性碧玉的矿物特征和成因研究

1. 

华南理工大学广州学院, 广东 广州 510800

2. 

中国地质大学(北京)珠宝学院, 北京 100083

3. 

中国地质科学院地质研究所, 北京 100037

4. 

自然资源部珠宝玉石首饰管理中心, 北京 100013

5. 

汇玉堂国际玉文化博物馆, 广东 肇庆 526200

收稿日期: 2017-12-01  修回日期: 2018-05-10  接受日期: 2018-06-11

基金项目: 中国地质调查局地质调查工作项目“中国矿产地质与成矿规律综合集成和服务(矿产地质志)”(DD20160346);中国地质科学院基本科研业务费项目(YWF201601);国家自然科学基金项目(41772044)

作者简介: 刘喜锋, 硕士, 矿物学、岩石学、矿床学专业, 主要从事宝石科研和教学工作。E-mail:liuxf@gcu.edu.cn

通讯作者: 刘琰, 副研究员, 矿物学、岩石学、矿床学专业, 主要从事稀土和稀有金属矿床研究。E-mail:ly@cags.ac.cn

Mineralogical Characteristics and Genesis of Green Nephrite from the World

1. 

Guangzhou College of South China University of Technology, Guangzhou 510800, China

2. 

School of Gemology, China University of Geosciences(Beijing), Beijing 100083, China

3. 

Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China

4. 

National Gems & Jewelry Technology Administrative Center, Ministry of Natural Resources, Beijing 100013, China

5. 

Hui Yu Tang International Jade Culture Museum, Zhaoqing 526200, China

Corresponding author: LIU Yan, ly@cags.ac.cn

Received Date: 2017-12-01
Revised Date: 2018-05-10
Accepted Date: 2018-06-11

摘要:由于碧玉的样品来源、测试技术单一,有关碧玉的成因及其与大理岩型软玉之间的成因差别都不明确。本文采集了我国青海、俄罗斯、加拿大、新西兰、巴基斯坦等全球代表性碧玉样品,采用显微镜观察、X射线粉晶衍射、电子探针、电感耦合等离子体质谱和稳定同位素质谱等技术进行岩相学、矿物组成、微量和主量元素、氢氧同位素测试,对碧玉的成因进行综合分析,同时和澳大利亚大理岩型软玉进行对比性研究,以明确两种类型的软玉之间的成因差别。碧玉样品测试结果表明:①碧玉的主要组成是透闪石,次要矿物有石英、滑石、黑云母、铬铁矿、石墨、石榴石等;②氢氧同位素组成(δD值-69.763‰~-29.251‰,δ18O值4.7‰~13.4‰)显示由明显的变质水组成;③全岩Fe2+/(Mg+Fe2+)值为0.11~0.32,Cr含量约22.9~3400 μg/g,Ni含量为700~1800 μg/g,表明了明显的幔源物质参与成矿的特征。通过对比发现,碧玉与大理岩型软玉的地球化学性质有明显不同,这种差别与两者的产出环境有关:大理岩型软玉的矿物组成和地球化学特征受控于花岗岩和镁质大理岩,而碧玉的地球化学特征与幔源物质组成和变质流体相关。

关键词: 碧玉, 地球化学, 软玉, 成因

要点

(1) 选取全球代表性碧玉样品进行综合分析。

(2) 除了对碧玉的化学成分和矿物组成进行分析外,还对其进行氢氧同位素测试研究。

(3) 碧玉的地球化学特征与幔源物质组成和变质流体相关。

Mineralogical Characteristics and Genesis of Green Nephrite from the World

ABSTRACT

BACKGROUND:

In previous studies, due to the limited samples with specific origins and limited methods for measurement, the genesis of serpentinite-related green nephrite and its relationship with dolomite-related nephrite were unclear.

OBJECTIVES:

To understand the genesis of serpentinite-related green nephrite.

METHODS:

Green serpentinite-related nephrite deposits have been collected from Qinghai province in China, Russia, Canada, Australia, New Zealand and Pakistan for systematic analysis. X-ray Diffraction (XRD), Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), Electron Microprobe Analysis (EMPA), X-ray Fluorescence Spectrometry (XRF) and Stable Isotope Mass Spectrometry were employed.

RESULTS:

① Serpentinite-related green nephrite is mainly composed of tremolite with minor quartz, talc, biotite, chromite, chlorite, and garnet. ② O-H isotopic values of samples (δD=-69.763‰--29.251‰, δ18O=4.7‰-13.4‰) indicate that the ore-forming fluids are mainly metamorphic water. ③ whole-rock major elements of Fe2+/(Mg+Fe2+)values range from 0.11 to 0.32. The contents of Cr range from 22.9 to 3400 μg/g, whereas Ni ranges from 700 to 1800 μg/g. All of these geochemical characteristics indicate the input of the mantle material in the formation of serpentinite-related nephrite.

CONCLUSIONS:

Geochemical characteristics of serpentinite-related and dolomite-related nephrite are different, which are related to the geological environment. For example, the composition of dolomite-related nephrite is controlled by the granite and dolomite marble, whereas the composition of serpentinite-related green nephrite is related to the mantle material and metamorphic fluids.

KEY WORDS: serpentinite-related green nephrite, geochemistry, nephrite, genesis

HIGHLIGHTS

(1) Global representative serpentinite-related green nephrite samples were selected for comprehensive analysis.

(2) In addition to analyzing the chemical and mineral composition of serpentinite-related green nephrite, hydrogen and oxygen isotopes were also determined.

(3) The geochemical characteristics of serpentinite-related green nephrite are related to the composition of mantle materials and metamorphic fluids.

本文参考文献

[1]

Harlow G E, Sorensen S S. Jade (nephrite and jadeitite) and serpentinite:Metasomatic connections[J].International Geology Review, 2005, 47: 113-146. doi: 10.2747/0020-6814.47.2.113

[2]

Yui T F, Kwon S T. Origin of a dolomite-related jade deposit at Chuncheon, Korea[J].Economic Geology, 2002, 97: 593-601. doi: 10.2113/gsecongeo.97.3.593

[3]

Gil G, Barnes J D, Boschi C, et al. Origin of serpentinite-related nephrite from Jordanów and adjacent areas (SW Poland) and its comparison with selected nephrite occurrences[J].Geological Quarterly, 2015, 59(3): 457-472.

[4]

Liu Y, Deng J, Shi G H, et al. Geochemistry and petrology of nephrite from Alamas, Xinjiang, NW China[J].Asian Earth Sciences, 2011, 42: 440-451. doi: 10.1016/j.jseaes.2011.05.012

[5]

Liu Y, Deng J, Shi G H, et al. Geochemistry and petro-genesis of placer nephrite from Hetian, Xinjiang[J].Ore Geology Reviews, 2011, 41: 122-132. doi: 10.1016/j.oregeorev.2011.07.004

[6]

Ling X X, Schmädicke E, Li Q L, et al. Age determination of nephrite by in-situ SIMS U-Pb dating syngenetic titanite:A case study of the nephrite deposit from Luanchuan, Henan, China[J].Lithos, 2015, 220-223: 289-299. doi: 10.1016/j.lithos.2015.02.019

[7]

Grapes R H, Yun S T. Geochemistry of a New Zeland nephrite weathering rind[J].New Zealand Journal of Geology and Geophysics, 2010, 53: 413-426. doi: 10.1080/00288306.2010.514929

[8]

Kostov R I, Protochristov C, Stoyanov C, et al. Micro-PIXE geochemical fingerprinting of nephrite Neolithic artifacts from Southwest Bulgaria[J].Geoarchaeology:An International Journal, 2012, 27: 457-469. doi: 10.1002/gea.21417

[9]

Siqin B, Qian R, Zhuo S, et al. Glow discharge mass spectrometry studies on nephrite minerals formed by different metallogenic mechanisms and geological environments[J].International Journal of Mass Spectrometry, 2012, 309: 206-211. doi: 10.1016/j.ijms.2011.10.003

[10]

Yui T F, Yeh H W, Wang L C, et al. Stable isotope studies of nephrite deposits from Fengtien, Taiwan[J].Geochimica et Cosmochimica Acta, 1988, 52: 593-602. doi: 10.1016/0016-7037(88)90321-3

[11]

Adamo I, Bocchio R. Nephrite jade from Val Malenco, Italy:Review and update[J]. Gems & Gemology, 2013, 49: 98-106.

[12]

Simandl G J, Riveros C P, Schiarizza P, et al. Nephrite (jade) deposits, Mount Ogden area, Central British Columbia (NTS 093N 13W)[J].British Columbia Geology Survey, 1999, : 339-347.

[13]

Makepeace K, Simandl G J. Jade (nephrite) in British Columbia, Canada[J].Program and Extended Abstracts for 37th Forum on the Geology of Indutrial Minerals, 2001, : 209-210.

[14]

Łapot W. Peculiar nephrite from the East Saian Mts (Siberia)[J]. Mineralogia Polonica, 2004, 35: 49-58.

[15]

Liu Y, Deng J, Shi G H, et al. Chemical zone of nephrite in Almas, Xinjiang, China[J].Resource Geology, 2010, 60: 249-259. doi: 10.1111/rge.2010.60.issue-3

[16]

Aitchison J C, Ireland T R, Blake Jr M C, et al. 530Ma zircon age for ophiolite from the New England orogen:Oldest rocks known from Eastern Australia[J].Geology, 1992, 20: 125-128. doi: 10.1130/0091-7613(1992)020<0125:MZAFOF>2.3.CO;2

[17]

Gunia P. Nephrite from South-Western Poland as poten-tial raw material of the European Neolithic artefacts[J].Krystalinikum, 2000, 26: 167-171.

[18]

Clayton R N, Mayeda T K. The use of bromine penta fl-uoride in the extraction of oxygen from oxides and silicates for isotopic analysis[J].Geochimica et Cosmochimica Acta, 1963, 27: 43-52. doi: 10.1016/0016-7037(63)90071-1

[19]

Friedman I. Deuterium content of natural waters and other substances[J].Geochimica et Cosmochimica Acta, 1953, 4: 89-103. doi: 10.1016/0016-7037(53)90066-0

[20]

Liu Y, Zhang R Q, Abuduwayiti M, et al. SHRIMP U-Pb zircon ages, mineral compositions and geochemistry of placer nephrite in the Yurungkash and Karakash River deposits, West Kunlun, Xinjiang, Northwest China:Implication for a magnesium skarn[J].Ore Geology Reviews, 2016, 72: 699-727. doi: 10.1016/j.oregeorev.2015.08.023

[21]

Liu Y, Zhang R Q, Zhang Z Y, et al. Mineral inclusions and SHRIMP U-Pb dating of zircons from the Alamas nephrite and granodiorite:Implications for the genesis of a magnesian skarn deposit[J].Lithos, 2015, 212-215: 128-144. doi: 10.1016/j.lithos.2014.11.002

[22]

Taylor Jr H P. Oxygen and hydrogen isotope relationships in hydro-thermal mineral deposits[A]. Barnes H L. Geochemistry of Hydro-thermal Ore Deposits(3rd ed. )[C]. Wiley-Interscience, New York, 1997: 229-302.

[23]

Ling X, Schmädicke E, Wu R, et al. Composition and distinction of white nephrite from Asian deposits[J].Journal of Mineralogy and Geochemistry, 2013, 190(1): 49-65.

相似文献(共19条)

[1]

刘晓端, 刘浏, 武佃卫, 徐清. 密云水库沉积物-水界面磷的地球化学作用. 岩矿测试, 2004, (4): 246-250.

[2]

程建平, 任萍, 朱立, 刘桂林, 李君利, 施工. 利用地球化学数据估算陆地γ辐射剂量率研究. 岩矿测试, 2004, (4): 241-245.

[3]

谢意红, 张珠福. 加州软玉和缅甸软玉特征及矿物成分的研究. 岩矿测试, 2004, (1): 33-36.

[4]

李平, 李凌丽. 软玉子料的形状规律及其应用. 岩矿测试, 2008, 27(5): 395-396.

[5]

冯晓燕, 沈美冬, 张勇, 陆太进. 软玉中的一种绿色斑点——钙铝榴石. 岩矿测试, 2013, 32(4): 608-612.

[6]

邹耀辛, 林维峰, . 天然水晶片中双晶纹的成因及其鉴定意义. 岩矿测试, 2002, (1): 66-.

[7]

戴婕, 张林奎, 潘晓东, 石洪召, 陈敏华, 王鹏, 张斌辉, 张茜, 金斌, 任静. 滇东南南秧田白钨矿矿床矽卡岩矿物学特征及成因探讨. 岩矿测试, 2011, 30(3): 269-275.

[8]

林维峰. 辽宁桓仁软玉的宝石学特征研究. 岩矿测试, 2012, 31(5): 794-797.

[9]

徐万臣, 邹耀辛, 迟广成, 林维峰. 深色天然烟晶中内含物的成因及其鉴定意义. 岩矿测试, 2005, (1): 62-64.

[10]

王冠, 杜谷, 刘书生, 石洪召, 张林奎, 任静. 电感耦合等离子体质谱法对白钨矿中稀土元素的准确测定——以云南麻栗坡南秧田白钨矿床的成因探讨为例. 岩矿测试, 2012, 31(6): 1050-1057.

[11]

鄢明才. 地球化学标准物质标准不确定度估算探讨. 岩矿测试, 2001, (4): 287-293.

[12]

杨锦发. 地球化学调查样品测试异常值抽查方法的优化. 岩矿测试, 2004, (3): 212-215.

[13]

孟郁苗, 胡瑞忠, 高剑峰, 毕献武, 黄小文. 锑的地球化学行为以及锑同位素研究进展. 岩矿测试, 2016, 35(4): 339-348. doi: 10.15898/j.cnki.11-2131/td.2016.04.002

[14]

鄢明才, 王春书. 铂族元素地球化学标准物质的研制. 岩矿测试, 1998, (1): 1-21.

[15]

罗立强. 国际地球化学研究现状与发展前沿——国际地球化学大会Goldschmidt 2011印象. 岩矿测试, 2012, 31(1): 1-6.

[16]

刘建国. 磷锑钼蓝分光光度法测定地球化学样品中的磷. 岩矿测试, 1989, (2): 150-152.

[17]

黄华谷, 黄铁兰, 周兆帅, 屈文俊. 广东三个离子吸附型稀土矿的地球化学特征及开采现状. 岩矿测试, 2014, 33(5): 737-746.

[18]

陈芳, 杜建国, 万秋, 邱军强, 汤金来. 北淮阳东段徐家湾岩体地质和地球化学特征及LA-ICP-MS锆石U-Pb年龄. 岩矿测试, 2016, 35(3): 329-338. doi: 10.15898/j.cnki.11-2131/td.2016.03.017

[19]

丁悌平. 稳定同位素地球化学的现状与展望. 岩矿测试, 1990, (1): 72-77.

计量
  • PDF下载量(11)
  • 文章访问量(57)
  • HTML全文浏览量(22)
  • 被引次数(0)
目录

Figures And Tables

世界范围内代表性碧玉的矿物特征和成因研究

刘喜锋, 张红清, 刘琰, 张勇, 李自静, 张锦洪, 郑奋