【引用本文】 宁珮莹, 张天阳, 马泓, 等. 红外光谱-显微共焦激光拉曼光谱研究天然红宝石和蓝宝石中含水矿物包裹体特征[J]. 岩矿测试, 2019, 38(6): 640-648. doi: 10.15898/j.cnki.11-2131/td.201903050033
NING Pei-ying, ZHANG Tian-yang, MA Hong, et al. Characterization of Hydrous Mineral Inclusions in Ruby and Sapphire by Infrared Spectroscopy and Microscopic Confocal Laser Raman Spectroscopy[J]. Rock and Mineral Analysis, 2019, 38(6): 640-648. doi: 10.15898/j.cnki.11-2131/td.201903050033

红外光谱-显微共焦激光拉曼光谱研究天然红宝石和蓝宝石中含水矿物包裹体特征

1. 

国家珠宝玉石质量监督检验中心深圳实验室, 广东 深圳 518026

2. 

国检中心深圳珠宝检验实验室有限公司, 广东 深圳 518026

3. 

自然资源部珠宝玉石首饰管理中心深圳珠宝研究所, 广东 深圳 518026

收稿日期: 2019-03-05  修回日期: 2019-07-10  接受日期: 2019-07-16

基金项目: 国家珠宝玉石质量监督检验中心(NGTC)科研基金项目(NGTC2019008)

作者简介: 宁珮莹, 硕士, 工程师, 从事宝石鉴定研究工作。E-mail:slamdunk861@hotmail.com

通信作者: 张天阳, 工程师, 从事宝玉石鉴定研究与实验室管理工作。E-mail:643610016@qq.com

Characterization of Hydrous Mineral Inclusions in Ruby and Sapphire by Infrared Spectroscopy and Microscopic Confocal Laser Raman Spectroscopy

1. 

National Gemstone Testing Center Shenzhen Labortory, Shenzhen 518026, China

2. 

National Gemstone Testing Center Shenzhen Labortory Company LTD, Shenzhen 518026, China

3. 

NGTC Gems & Jewelry Institute of Shenzhen, Ministry of Natural Resources, Shenzhen 518026, China

Corresponding author: ZHANG Tian-yang, 643610016@qq.com

Received Date: 2019-03-05
Revised Date: 2019-07-10
Accepted Date: 2019-07-16

摘要:天然红宝石和蓝宝石的包裹体中常见典型的含水矿物包裹体,这些含水矿物包裹体容易受外界环境升温而发生改变。微量含水矿物包裹体变化会对红宝石和蓝宝石的物理和化学性质产生明显影响,该性质为宝石热处理的鉴定提供了检测思路。本文采集了天然红宝石和蓝宝石样品,用显微镜放大观察包裹体特征,结合红外光谱与显微共焦激光拉曼光谱测试研究了含水矿物包裹体的特征。结果表明:天然红宝石和蓝宝石样品中含水矿物包裹体的外观轮廓清晰,晶形完整;红外光谱在2000~3700cm-1附近显示出2105~2110cm-1和1977~1985cm-1硬水铝石和3619cm-1和3696cm-1高岭石等水(H2O或-OH等)的特征吸收峰;拉曼光谱中可见角闪石、云母、磷灰石和长石等结晶度较好的典型含水矿物包裹体的特征拉曼位移。该系列特征揭示了红宝石和蓝宝石样品中含有水的特征,可作为红宝石和蓝宝石天然成因且未经过热处理的鉴定依据。

关键词: 红宝石, 蓝宝石, 含水矿物包裹体, 谱学特征, 热处理, 红外光谱法, 显微共焦激光拉曼光谱法

要点

(1) 总结了天然红宝石和蓝宝石中含水矿物包裹体的外观特征和谱学特征。

(2) 揭示了热处理对含水矿物包裹体的结构有直接影响。

(3) 探讨了含水矿物包裹体作为未经过热处理天然红宝石和蓝宝石鉴定依据的可行性。

Characterization of Hydrous Mineral Inclusions in Ruby and Sapphire by Infrared Spectroscopy and Microscopic Confocal Laser Raman Spectroscopy

ABSTRACT

BACKGROUND:

There are water molecules and hydrous mineral inclusions in natural ruby and sapphire. The hydrous minerals disappear easily after heat treatment, which causes the physical and chemical properties of ruby and sapphire to change. Thus the hydrous mineral inclusions have important indications for identifying whether or not ruby and sapphire have been heated.

OBJECTIVES:

To analyze the characteristics of the hydrous mineral inclusions, and discuss the validity of the identification method for identifying whether or not ruby and sapphire have been heated through hydrous mineral inclusions.

METHODS:

Mineral inclusions were characterized by the gem microscope, infrared spectroscopy and microscopic confocal laser Raman spectroscopy.

RESULTS:

The hydrous mineral inclusions showed good shape and clear appearance. The infrared spectrum characteristics showed diaspore characteristic absorption peaks at 2105-2110cm-1 and 1977-1985cm-1, and kaolinite peaks at 3619cm-1 and 3696cm-1. The microscopic confocal laser Raman spectroscopy analysis showed the typical characteristic peaks of hydrous mineral inclusions such as amphibole, mica, apatite and feldspar.

CONCLUSIONS:

The features shown in the results reveal the water-containing characteristics of ruby and sapphire samples, which can be used to determine the natural rubies and sapphires without heat treatment.

KEY WORDS: ruby, sapphire, hydrous mineral inclusions, spectrum characteristics, heat treatment, infrared spectroscopy, microscopic confocal laser Raman spectroscopy

HIGHLIGHTS

(1) The appearance and spectrum characteristics of hydrous mineral inclusions in natural ruby and sapphire were summarized.

(2) The heat-treatment had significant effect on hydrous mineral inclusions.

(3) The feasibility of using aqueous mineral inclusions as identification basis for natural ruby and sapphire without heat-treatment was discussed.

本文参考文献

[1]

芶盛, 岳宗玉, 邸凯昌, 等. 火星表面含水矿物探测进展[J]. 遥感学报, 2017, 21(4): 531-548.

Gou S, Yue Z Y, Di K C, et al. Advances in aqueous minerals detection on Martian surface[J]. Journal of Remote Sensing, 2017, 21(4): 531-548.

[2]

杨燕, 夏群科, 冯敏, 等. 名义上无水矿物中水的原位变温红外光谱研究[J]. 岩石学报, 2011, 27(2): 566-578.

Yang Y, Xia Q K, Feng M, et al. In situ FTIR investigations on noninally anlydrous minerals at varying temperatures[J]. Acta Petrologica Sinica, 2011, 27(2): 566-578.

[3]

盛英明, 龚冰, 李万财, 等. 名义上无水矿物中微量结构水的分析方法研究进展[J]. 中国科学(地球科学), 2016, 46(4): 443-453.

Sheng Y M, Gong B, Li W C, et al. Methodological progresses on trace amounts of structural water in noninally anlydrous minerals[J]. Science China (Earth Sciences), 2016, 46(4): 443-453.

[4]

王志海, 叶美芳, 董会, 等. 流体包裹体盐度低温拉曼光谱测定方法研究[J]. 岩矿测试, 2014, 33(6): 813-821.

Wang Z H, Ye M F, Dong H, et al. Determining salinity of fluid inclusions by cryogenic Raman spectroscopy[J]. Rock and Mineral Analysis, 2014, 33(6): 813-821.

[5]

何佳乐, 潘忠习, 冉敬, 等. 激光拉曼光谱法在单个流体包裹体中的应用进展[J]. 岩矿测试, 2015, 34(4): 383-391.

He J L, Pan Z X, Ran J, et al. Research progress on the application of laser Raman spectroscopy in single fluid inclusions[J]. Rock and Mineral Analysis, 2015, 34(4): 383-391.

[6]

张蓓莉,SchwarzD. 世界主要彩色宝石产地研究[M] . 北京: 地质出版社, 2012

Zhang B L,Schwarz D. Geographic Origin Determination of Colored Gemstones[M] . Beijing: Geological Publishing House, 2012
[7]

陈银汉, 陈卫, 陈燕, 等. 我国红宝石, 蓝宝石及其包裹体[J]. 矿物学报, 1991, (4): 298-304. doi: 10.3321/j.issn:1000-4734.1991.04.002

Chen Y H, Chen W, Chen Y, et al. China's ruby and sapphire and their inclusions[J].Acta Mineralogica Sinica, 1991, (4): 298-304. doi: 10.3321/j.issn:1000-4734.1991.04.002

[8]

杨坤彬, 彭金辉, 张世敏, 等. 红、蓝宝石热处理现状及前景[J]. 贵州大学学报(自然科学版), 2005, 22(2): 215-220. doi: 10.3969/j.issn.1000-5269.2005.02.022

Yang K B, Peng J H, Zhang S M, et al. Advance and prospect on heat treatment of ruby and sapphire[J].Journal of Guizhou University (Natural Sciences), 2005, 22(2): 215-220. doi: 10.3969/j.issn.1000-5269.2005.02.022

[9]

Wang W Y, Scarratt K, Emmtt J L, et al. The effects of heat treatment on zircon inclusions in Madagascar[J]. Gems & Gemology, 2006, 42(2): 134-150.

[10]

Pardieu V, Saeseaw S, Detroyat S, et al.GIA lab reports on low-temperature heat treatment of Mozambique ruby[EB/OL].https://www.gia.edu/gia-news-research-low-temperature-heat-treatment-mozambique-ruby.

[11]

Tasnare S, Bbuwadol W, Tbanong L, et al. Phase transforma-tion of epigenetic iron staining:Indication of low-temperature heat treatment in Mazambique ruby[J].The Journal of Gemmology, 2016, 35(2): 156-161. doi: 10.15506/JoG.2016.35.2.156

[12]

丘志力. 宝石中的包裹体——宝石鉴定的关键[M] . 北京: 冶金工业出版社, 1988: 45-46.

Qiu Z L. Inclusions of Gemstones-The Key Identification[M] . Beijing: Metallurgical Industry Press, 1988: 45-46.
[13]

Schwarz D.宝石学中确定宝石原产地的分析方法——以不同成因的红宝石为例[C]//2009中国珠宝首饰学术交流会论文集.北京: 国家珠宝玉石质量监督检验中心, 2009.

Schwarz D.Analytical Methods Used for Origin Determination in Gemology (Case Study: Rubies Originating from Different Host Rocks)[C]//Proceedings of 2009 China Gems & Jewelry Academic Conference.Beijing: National Gemstone Testing Center, 2009.

[14]

惠鹤九, 徐永江, 潘明恩, 等. 名义上无水矿物的水含量及其地质应用[J]. 中国科学(地球科学), 2016, 46(5): 639-656.

Hui H J, Xu Y J, Pan M E, et al. On water in noninally anlydrous minerals from mantle peridotites and magmatic rocks[J]. Science China (Earth Sciences), 2016, 46(5): 639-656.

[15]

彭文世, 刘高魁. 矿物热转变的红外光谱研究[J]. 景德镇陶瓷, 1988, (4): 38-42.

Peng W S, Liu G K. The study of thermal transformation in minerals[J]. Jingde Ceramics, 1988, (4): 38-42.

[16]

吕夏. 河南省中西部石炭系铝土矿中硬水铝石的矿物学特征研究[J]. 地质论评, 1988, 34(4): 293-301. doi: 10.3321/j.issn:0371-5736.1988.04.001

[17]

韩秀伶, 陈开惠. 高岭石-多水高岭石演化系列的红外吸收光谱研究[J]. 地质科学, 1982, (1): 71-79.

Han X L, Chen K H. Study of infrared absorption spectra on the kaolinite-halloysite evolutionary series[J]. Chinese Journal of Geology, 1982, (1): 71-79.

[18]

彭文世, 刘高魁, 柯丽琴, 等. 某些磷灰石矿物的红外吸收光谱[J]. 矿物学报, 1986, (1): 28-37.

Peng W S, Liu G K, Ke L Q, et al. Infrared absorption spectra of some apatite minerals[J]. Acta Mineralogica Sinica, 1986, (1): 28-37.

[19]

刘才群. 用红外光谱法研究铝矾土矿物[J]. 中国陶瓷, 1994, (1): 12-16.

Liu C Q. A study on bauxitil clay mineral with infrared spectrometry[J]. China Ceramics, 1994, (1): 12-16.

[20]

刘劲鸿. 福建马坑铁矿中角闪石的谱学特征及成因意义[J]. 矿物岩石, 1988, (1): 20-30.

Liu J H. Spectroscopical characteristics and genetical significance of amphiboles in the Makeng iron ore deposit[J]. Journal of Mineralogy and Petrology, 1988, (1): 20-30.

[21]

顾芷娟, 张流. 围压3千巴、温度700℃时角闪石羟基的变化[J]. 地震地质, 1982, 4(3): 83-84.

Gu Z J, Zhang L. The change of hydroxyl in hornblende at confining pressure 3kb and temperature 700℃[J]. Seismology and Geology, 1982, 4(3): 83-84.

[22]

Aines R D, Rossman G R. The high temperature behavior of trace hydrous components in silicate minerals[J]. American Mineralogist, 1985, 70: 1169-1179.

[23]

Tokiwai K, Nakashima S. Dehydration kinetics of mus-covite by in situ infrared microspectroscopy[J]. Physics & Chemistry of Minerals, 2010, 37(2): 91-101.

[24]

曹淑慧, 张立飞, 孙樯, 等. 高压下多硅白云母的拉曼光谱学研究[J]. 岩石矿物学杂志, 2006, 25(1): 71-76. doi: 10.3969/j.issn.1000-6524.2006.01.009

Cao S H, Zhang L F, Sun Q, et al. A Raman spectroscopic study of phengite under high pressure[J].Acta Petrologica et Mineralogica, 2006, 25(1): 71-76. doi: 10.3969/j.issn.1000-6524.2006.01.009

[25]

张蓓莉. 系统宝石学(第二版)[M] . 北京: 地质出版社, 2006

Zhang B L. Systematic Gemmology[M] . Beijing: Geological Publishing House, 2006
[26]

刘羽. 磷灰石振动光谱的研究现状[J]. 武汉工程大学学报, 2002, 24(1): 21-27. doi: 10.3969/j.issn.1674-2869.2002.01.004

Liu Y. Review on the vibrational spectroscopy of apatites[J].Journal of Wuhan Institute of Chemical Technology, 2002, 24(1): 21-27. doi: 10.3969/j.issn.1674-2869.2002.01.004

[27]

屈树新, DewijnR. 羟基磷灰石生物陶瓷体外溶解实验的拉曼光谱分析[J]. 光散射学报, 1995, (2): 170-171.

Qu S X, Dewijn R. Laser Raman analysis of HA in vitro[J]. Chinese Journal of Light Scattering, 1995, (2): 170-171.

[28]

白利平, 杜建国, 刘巍, 等. 高温高压下含水矿物脱水对斜长岩纵波速度的影响[J]. 地质科技情报, 2003, (2): 17-20. doi: 10.3969/j.issn.1000-7849.2003.02.004

Bai L P, Du J G, Liu W, et al. Effects of dehydration on the p-wave velocity of anorthosite at high pressure and high temperature[J].Geological Science and Technology Infomation, 2003, (2): 17-20. doi: 10.3969/j.issn.1000-7849.2003.02.004

[29]

Abraham J S D. Heat treating corundum:The Bangkok operation[J]. Gems & Gemology, 1982, 18(2): 79-82.

[30]

刘学良.云南红宝石的宝石学特征及改善工艺研究[D].上海: 华东理工大学, 2011.

Liu X L.Research on Gemological Characteristics and Enhancement Process of Rubies from Yunnan Province[D].Shanghai: East China University of Science and Technology, 2011.

[31]

郑越.缅甸红宝石热处理工艺及其机理研究[D].上海: 同济大学, 2014.

Zheng Y.Mechanism Study on Rubies of Myanmar and Its Heat Treatment Techniques[D].Shanghai: Tongji University, 2014.

[32]

张恩, 彭明生. 优化处理的红、蓝宝石中包裹体的变化和应用[J]. 矿产与地质, 2002, 16(1): 40-43. doi: 10.3969/j.issn.1001-5663.2002.01.012

Zhang E, Peng M S. The changes of inclusions in ruby and sapphire after treatment and enhancement and its applications[J].Mineral Resources and Geology, 2002, 16(1): 40-43. doi: 10.3969/j.issn.1001-5663.2002.01.012

相似文献(共20条)

[1]

余晓艳. 山东蓝宝石的宝石矿物学特征. 岩矿测试, 1999, (1): 41-.

[2]

张然, 许虹, 李梅梅. 稀有矿物天津蓟县锰方硼石振动光谱特征研究. 岩矿测试, 2018, 37(2): 139-145. doi: 10.15898/j.cnki.11-2131/td.201703160034

[3]

戴慧, 蒋小平, 张敏, 贾云波, 李宁, 俞雷. 一种罕见的红宝石与蓝晶石共生玉石. 岩矿测试, 2010, 29(4): 478-480.

[4]

任叶叶, 张俭, 严俊, 林剑, 陈思杭, 盛嘉伟. 应用X射线衍射-红外光谱等技术研究滑石在机械力研磨中的形貌和晶体结构变化及影响机制. 岩矿测试, 2015, 34(2): 181-186. doi: 10.15898/j.cnki.11-2131/td.2015.02.005

[5]

胡海祥, 范作鹏, 牛桂强, 刘洪澜, 刘海龙, 王攀志. 焦家金矿选厂旋流器溢流产品工艺矿物学分析. 岩矿测试, 2014, 33(4): 535-544.

[6]

周丹怡, 陈华, 陆太进, 柯捷, 何明跃. 基于拉曼光谱-红外光谱-X射线衍射技术研究斜硅石的相对含量与石英质玉石结晶度的关系. 岩矿测试, 2015, 34(6): 652-658. doi: 10.15898/j.cnki.11-2131/td.2015.06.008

[7]

孟洁, 李妍. 应用光谱-电镜-热解析手段表征两种金属有机配合物及其对多环芳烃的吸附性能研究. 岩矿测试, 2014, 33(6): 876-884.

[8]

兰延, 陆太进, 陈伟明, 刘洋, 梁榕, 马瑛, 张小虎. 基于相对密度和X射线粉晶衍射技术测定硬玉岩中硬玉的含量. 岩矿测试, 2015, 34(2): 207-212. doi: 10.15898/j.cnki.11-2131/td.2015.02.009

[9]

何佳乐, 潘忠习, 冉敬. 激光拉曼光谱法在单个流体包裹体中的应用进展. 岩矿测试, 2015, 34(4): 383-391. doi: 10.15898/j.cnki.11-2131/td.2015.04.002

[10]

周彦, 亓利剑, 戴慧, 张青, 蒋小平. 安徽马鞍山磷铝石宝石矿物学特征研究. 岩矿测试, 2014, 33(5): 690-697.

[11]

李志明, 施伟军, SHERWOOD Neil, 刘文斌, 蒋宏. 激光拉曼光谱法分析多种显微组分荧光变化及其应用. 岩矿测试, 2008, 27(5): 341-345.

[12]

钟辉, 陈英丽. 黝帘石质玉的宝石学特征. 岩矿测试, 2007, 26(6): 465-468.

[13]

林维峰. 辽宁桓仁软玉的宝石学特征研究. 岩矿测试, 2012, 31(5): 794-797.

[14]

尚文郁, 谢曼曼, 王淑贤, 孙青, 岑况. 应用近红外光谱法研究泻湖湿地沉积物重金属元素活动态特征及生态风险评价. 岩矿测试, 2020, 39(4): 597-608. doi: 10.15898/j.cnki.11-2131/td.202001010001

[15]

张志坚, 何谋春. 显微激光拉曼光谱在矿床学中的应用. 岩矿测试, 2001, (1): 43-47.

[16]

王福泉. 江苏某含铬镁铝榴石的宝石矿物学研究. 岩矿测试, 1984, (1): 33-39.

[17]

佟柏龄, 徐维并. 反射红外光谱法研究改性超滤膜. 岩矿测试, 1999, (2): 113-116.

[18]

陈安福. 拉曼光谱在矿物包裹体成分分析中的应用. 岩矿测试, 1985, (3): 231-237.

[19]

段凯波, 王登红, 何汉江, 郑国栋, 熊先孝, 袁建国, 贺宝宝, 屈云燕. 应用电感耦合等离子体质谱/光谱法研究上扬子区新华磷块岩稀土元素特征及沉积学意义. 岩矿测试, 2015, 34(2): 261-267. doi: 10.15898/j.cnki.11-2131/td.2015.02.018

[20]

冉敬, 杜谷, 潘忠习. 衰减全反射-傅里叶红外光谱法快速测试干酪根样品. 岩矿测试, 2010, 29(2): 113-117.

计量
  • PDF下载量(26)
  • 文章访问量(252)
  • HTML全文浏览量(63)
  • 被引次数(0)
目录

Figures And Tables

红外光谱-显微共焦激光拉曼光谱研究天然红宝石和蓝宝石中含水矿物包裹体特征

宁珮莹, 张天阳, 马泓, 谢俊, 丁汀, 黎辉煌, 梁榕