【引用本文】 赵晓亮, 李志伟, 王烨, 等. 铌钽精矿标准物质研制[J]. 岩矿测试, 2018, 37(6): 687-694. doi: 10.15898/j.cnki.11-2131/td.201711230185
ZHAO Xiao-liang, LI Zhi-wei, WANG Ye, et al. Preparation and Certification of Niobium-Tantalum Concentrate Reference Materials[J]. Rock and Mineral Analysis, 2018, 37(6): 687-694. doi: 10.15898/j.cnki.11-2131/td.201711230185

铌钽精矿标准物质研制

1. 

河南省岩石矿物测试中心, 河南 郑州 450012

2. 

河南省矿物加工与生物选矿工程技术研究中心, 河南 郑州 450012

收稿日期: 2017-11-23  修回日期: 2018-05-27  接受日期: 2018-06-11

基金项目: 自然资源部公益性行业专项“铌钽选矿过程现代实验技术及标准物质研制”(201411107-02)

作者简介: 赵晓亮, 硕士, 工程师, 主要从事矿石分析工作。E-mail:zhao121121@126.com

通信作者: 李志伟, 硕士, 高级工程师, 主要从事矿石分析工作。E-mail:lzwstudent@163.com

Preparation and Certification of Niobium-Tantalum Concentrate Reference Materials

1. 

Rock and Mineral Analysis Center of Henan Province, Zhengzhou 450012, China

2. 

Henan Mineral Processing and Biological Beneficiation Engineering Research Center, Zhengzhou 450012, China

Corresponding author: LI Zhi-wei, lzwstudent@163.com

Received Date: 2017-11-23
Revised Date: 2018-05-27
Accepted Date: 2018-06-11

摘要:铌钽精矿标准物质在监控选冶样品分析的过程起到重要作用,在选厂及冶金系统有很大的需求,国内外的文献检索均未发现铌钽精矿标准物质的报道;而铌钽矿物的性质决定了铌钽精矿的粉碎粒度及均匀性对铌钽精矿标准物质的研制提出了更高的要求。本文阐述了4个铌钽精矿标准物质的研制过程,铌钽精矿采集于宜春及尼日利亚铌钽选厂,样品经气流粉碎和高铝球磨两次细碎及机械混匀后,随机抽取包装好的样品进行均匀性和稳定性检验及定值。采用电感耦合等离子体发射光谱法与质谱法(ICP-OES/MS)进行均匀性和稳定性检验,结果表明样品的均匀性和稳定性良好。采用多个实验室协同测试的定值方式,利用不同原理的分析方法对此样品的铌钽等12个元素进行定值,给出了各定值元素的认定值和不确定度。4个铌钽精矿标准物质Ta(Nb)2O5的含量为9.89%、20.55%、40.79%、53.69%,形成一个从粗精矿到精矿较为完整的含量体系,可以满足选冶试验各阶段流程样品分析对标准物质的需求。

关键词: 铌钽精矿, 标准物质, 标准值, 不确定度, 均匀性, 稳定性, 定值

要点

(1) 选取具有代表性的铌钽精矿作为铌钽精矿标准物质的候选物。

(2) 采用气流粉碎和高铝球磨的两次细碎方法保证标准物质候选物的粒度符合要求。

(3) 该批铌钽精矿标准物质形成了一个从粗精矿到精矿较为完整的含量体系。

Preparation and Certification of Niobium-Tantalum Concentrate Reference Materials

ABSTRACT

BACKGROUND:

Niobium-tantalum concentrate reference materials play an important role in monitoring mineral smelting and sample analysis. There is a great demand of niobium-tantalum concentrate reference materials in the dressing plant and metallurgical system, but no domestic and foreign literature has reported these materials. The nature of niobium-tantalum mineral determines the crushed grain size and homogeneity of the niobium-tantalum concentrate and puts forward higher requirements for the development of a niobium-tantalum concentrate standard substance.

OBJECTIVES:

To develop the four standard materials of niobium-tantalum concentrate with different contents.

METHODS:

The preparation process of niobium-tantalum concentrate reference materials is introduced. Niobium-tantalum concentrate samples collected from the Yichun and Nigeria selection plant were finely milled and mechanically mixed by air milling and high-alumina ball milling. The packaged samples were randomly selected for homogeneity and stability testing and determined values. The homogeneity and stability of the samples were tested by Inductively Coupled Plasma-Optical Emission Spectrometry/Mass Spectrometry (ICP-OES/MS).

RESULTS:

Twelve elements of different samples are detected by the different analytical methods, with a calibration method for collaborative testing in multiple laboratories, the certified value and uncertainty of each element are given. The samples have good uniformity and stability.

CONCLUSIONS:

The contents of Ta(Nb)2O5 in the four antimony concentrates are 9.89%, 20.55%, 40.79% and 53.69%, respectively, forming a complete system from crude concentrates to concentrates, which meets the sample requirements for reference materials in the stages of metallurgical tests.

KEY WORDS: niobium-tantalum concentrate, reference materials, standard values, uncertainty, uniformity, stability, certified values

HIGHLIGHTS

(1) Representative niobium-tantalum concentrate was selected as the candidate of niobium-tantalum concentrate standard materials.

(2) The particle size of the standard material candidate can be guaranteed by air-jet crushing and high-alumina ball grinding.

(3) The standard substance of niobium-tantalum concentrate constituted a relatively complete content system from coarse concentrate to concentrate.

本文参考文献

[1]

常学东. 测定稀有金属矿中锂、铍、铌、钽的方法选择[J]. 新疆有色金属, 2016, (3): 64-66.

Chang X D. Method for determination of lithium, beryllium, niobium and tantalum in rare metal ores[J]. Xinjiang Nonferrous Metals, 2016, (3): 64-66.

[2]

王汾连, 赵太平, 陈伟, 等. 铌钽矿研究进展和攀西地区铌钽矿成因初探[J]. 矿床地质, 2012, 31(2): 293-308. doi: 10.3969/j.issn.0258-7106.2012.02.010

Wang F L, Zhao T P, Chen W, et al. Advances in study of Nb-Ta ore deposits in Panxi area and tentative discussion on genesis of these ore deposits[J].Mineral Deposits, 2012, 31(2): 293-308. doi: 10.3969/j.issn.0258-7106.2012.02.010

[3]

何季麟, 张宗国. 中国钽铌工业的现状与发展[J]. 中国金属通报, 2006, (48): 2-8.

He J L, Zhang Z G. Present situation and development of tantalum and niobium industry in China[J]. China Metal Bulletin, 2006, (48): 2-8.

[4]

宋翔宇, 唐志中, 徐靖, 等. 某钾长石英岩型铌钽矿的综合利用研究[J]. 稀有金属, 2014, 38(3): 502-508.

Song X Y, Tang Z Z, Xu J, et al. Comprehensive utilization of a potassium feldspar and quartzite type of niobium-tantalum ore[J]. Chinese Journal of Rare Metals, 2014, 38(3): 502-508.

[5]

田敏, 王盘喜, 郭俊刚, 等. 河南某含电气石、长石铌钽矿综合回收试验研究[J]. 矿产保护与利用, 2016, (2): 28-34.

Tian M, Wang P X, Guo J G, et al. Comprehensive recovery research on a niobium-tantalum polymetallic ore containing tourmaline and feldspar in Henan[J]. Conservation and Utilization of Mineral Resources, 2016, (2): 28-34.

[6]

余生根. 某大型铌钽矿综合利用试验研究[J]. 有色金属(选矿部分), 2005, (5): 13-18. doi: 10.3969/j.issn.1671-9492.2005.05.004

Yu S G. Comprehensive utilization tests and studies on a large-sieve Nb-Ta deposit[J].Nonferrous Metals (Mineral Processing Section), 2005, (5): 13-18. doi: 10.3969/j.issn.1671-9492.2005.05.004

[7]

李志伟, 赵晓亮, 李珍, 等. 敞口酸熔ICP-OES法测定稀有多金属矿选矿样品中的铌钽和伴生元素[J]. 岩矿测试, 2017, 36(6): 611-617.

Li Z W, Zhao X L, Li Z, et al. Determination of niobium, tantalum and associated elements in niobium tantalum ore by inductively coupled plasma optical emission spectrometry with open acid dissolution[J]. Rock and Mineral Analysis, 2017, 36(6): 611-617.

[8]

王毅民, 王晓红, 高玉淑, 等. 中国地质标准物质制备技术与方法研究进展[J]. 地质通报, 2010, 29(7): 1090-1104. doi: 10.3969/j.issn.1671-2552.2010.07.016

Wang Y M, Wang X H, Gao Y S, et al. Advances in preparing techniques for geochemical reference materials in China[J].Geological Bulletin of China, 2010, 29(7): 1090-1104. doi: 10.3969/j.issn.1671-2552.2010.07.016

[9]

金秉慧. 地质标准物质十年回顾[J]. 岩矿测试, 2003, 22(3): 188-200. doi: 10.3969/j.issn.0254-5357.2003.03.007

Jin B H. Geological certified reference materials:A review since 1992[J]. Rock and Mineral Analysis, 2003, 22(3): 188-200. doi: 10.3969/j.issn.0254-5357.2003.03.007

[10]

周敏娟, 李婷, 张磊, 等. 宜春钽铌矿地质特征及找矿标志[J]. 四川有色金属, 2017, (2): 32-34. doi: 10.3969/j.issn.1006-4079.2017.02.013

Zhou M J, Li T, Zhang L, et al. The geological characteristics and ore prospecting marks of Yichun tantalum-niobium mine[J].Sichuan Nonferrous Metals, 2017, (2): 32-34. doi: 10.3969/j.issn.1006-4079.2017.02.013

[11]

邓斌, 雷德正, 刘海风, 等. 尼日利亚乔斯宾盖地区铌钽锡砂矿成矿地质特征及物质来源[J]. 四川地质学报, 2017, 37(2): 253-256. doi: 10.3969/j.issn.1006-0995.2017.02.018

Deng B, Lei D Z, Liu H F, et al. Ore material origin of Nb-Ta-Sn placer in Pingell, Jos Plateau, Nigeria[J].Acta Geologica Sichuan, 2017, 37(2): 253-256. doi: 10.3969/j.issn.1006-0995.2017.02.018

[12]

王毅民, 顾铁新, 高玉淑, 等. 富钴结壳铂族元素超细标准物质研制[J]. 分析测试学报, 2009, 28(10): 1105-1110. doi: 10.3969/j.issn.1004-4957.2009.10.001

Wang Y M, Gu T X, Gao Y S, et al. Preparation and study of two seamount Co-rich crust PGEs ultra-fine reference materials:MCPt-l and MCPt-2[J].Journal of Instrumental Analysis, 2009, 28(10): 1105-1110. doi: 10.3969/j.issn.1004-4957.2009.10.001

[13]

王晓红, 高玉淑, 王毅民, 等. 超细地质标准物质及其应用[J]. 自然科学进展, 2006, 16(3): 309-315. doi: 10.3321/j.issn:1002-008X.2006.03.009

Wang X H, Gao Y S, Wang Y M, et al. Superfine geological standard material and its application[J].Progress in Natural Science, 2006, 16(3): 309-315. doi: 10.3321/j.issn:1002-008X.2006.03.009

[14]

宋丽华, 郝原芳, 杨柳, 等. 地质标准物质的研制方法[J]. 地质与资源, 2013, 22(5): 419-421. doi: 10.3969/j.issn.1671-1947.2013.05.013

Song L H, Hao Y F, Yang L, et al. Preparation method of geochemical reference materials[J].Geology and Resources, 2013, 22(5): 419-421. doi: 10.3969/j.issn.1671-1947.2013.05.013

[15]

袁建, 王亚平, 许春雪, 等. 湖泊沉积物中磷形态标准质研制[J]. 岩矿测试, 2014, 33(6): 857-862.

Yuan J, Wang Y P, Xu C X, et al. Preparation of phosphorus speciation reference materials from lake sediments[J]. Rock and Mineral Analysis, 2014, 33(6): 857-862.

[16]

杨理勤. 常量金标准物质标准值的不确定度评定方法[J]. 黄金, 2015, 36(9): 80-82.

Yang L Q. Discussion about the assessment method of the uncertainty degree of certified values from ore gold reference materials[J]. Gold, 2015, 36(9): 80-82.

[17]

郑存江. 地质标准物质不确定度评估方法初探[J]. 岩矿测试, 2005, 24(4): 284-286. doi: 10.3969/j.issn.0254-5357.2005.04.010

Zheng C J. Primary investigation for evaluation of uncertainty of geological reference materials[J]. Rock and Mineral Analysis, 2005, 24(4): 284-286. doi: 10.3969/j.issn.0254-5357.2005.04.010

[18]

丁仕兵, 岳春雷, 曲晓霞, 等. 化学分析法测量结果不确定度的计算[J]. 分析测试技术与仪器, 2005, 11(3): 206-210. doi: 10.3969/j.issn.1006-3757.2005.03.013

Ding S B, Yue C L, Qu X X, et al. Uncertainties calculation of chemical analysis methods[J].Analysis and Testing Technology and Instruments, 2005, 11(3): 206-210. doi: 10.3969/j.issn.1006-3757.2005.03.013

[19]

鄢明才. 地球化学标准物质标准值的不确定度估算探讨[J]. 岩矿测试, 2001, 20(4): 289-293.

Yan M C. Discussion on estimation of uncertainty of certified values from geochemical standard reference materials[J]. Rock and Mineral Analysis, 2001, 20(4): 289-293.

[20]

刘瑱, 马玲, 时晓露, 等. 石英岩化学成分分析标准物质研制[J]. 岩矿测试, 2014, 33(6): 849-856.

Liu Z, Ma L, Shi X L, et al. Preparation of quartzite reference materials for chemical composition analysis[J]. Rock and Mineral Analysis, 2014, 33(6): 849-856.

[21]

曾美云, 刘金, 邵鑫, 等. 磷矿石化学成分分析标准物质研制[J]. 岩矿测试, 2017, 36(6): 633-640.

Zeng M Y, Liu J, Shao X, et al. Preparation of phosphate ore reference materials for chemical composition analysis[J]. Rock and Mineral Analysis, 2017, 36(6): 633-640.

相似文献(共20条)

[1]

洪飞, 刘耀华, 吕振生, 赵伟, 王卿, 张英明. 钛铁矿化学成分标准物质研制. 岩矿测试, 2014, 33(1): 63-73.

[2]

余宇, 刘江斌, 党亮, 陈月源, 曹成东, 谈建安, 赵峰. X射线荧光光谱法同时测定石灰石中主次痕量组分. 岩矿测试, 2008, 27(2): 149-150.

[3]

黄仁忠. 硫脲介质-石墨炉原子吸收光谱法测定化探样品中微量银. 岩矿测试, 2008, 27(3): 237-238.

[4]

程志中, 刘妹, 张勤, 顾铁新, 黄宏库. 水系沉积物标准物质研制. 岩矿测试, 2011, 30(6): 714-722.

[5]

曾美云, 刘金, 邵鑫, 邹棣华. 磷矿石化学成分分析标准物质研制. 岩矿测试, 2017, 36(6): 633-640. doi: 10.15898/j.cnki.11-2131/td.201705170082

[6]

蔡玉曼. 硅钼蓝分光光度法测定钛铁矿中二氧化硅不确定度评定. 岩矿测试, 2008, 27(2): 123-126.

[7]

白亚之, 朱爱美, 崔菁菁, 施美娟, 高晶晶, 张俊. 中国近海沉积物氮和有机碳标准物质的研制. 岩矿测试, 2014, 33(1): 74-80.

[8]

程志中, 刘妹, 黄宏库, 顾铁新, 鄢卫东. 镍矿石和镍精矿标准物质研制. 岩矿测试, 2013, 32(4): 600-607.

[9]

李刚, 苏文峰. 焙烧分离-氢化物发生-原子荧光光谱法测定土壤样品中微量硒. 岩矿测试, 2008, 27(2): 120-122.

[10]

林立, 周谙非, 张曼玲, 田艳玲, 杨彦丽. 微波消解-电感耦合等离子体发射光谱法分析食品中的总硼. 岩矿测试, 2008, 27(1): 21-24.

[11]

林光西. 氢化物发生-原子荧光光谱法直接测定地球化学样品中痕量碲. 岩矿测试, 2008, 27(2): 151-152.

[12]

徐婷婷, 夏宁, 张波. 熔片制样-X射线荧光光谱法测定海洋沉积物样品中主次量组分. 岩矿测试, 2008, 27(1): 74-76.

[13]

李刚, 曹小燕. 电感耦合等离子体质谱法测定地质样品中锗和镉的干扰及校正. 岩矿测试, 2008, 27(3): 197-200.

[14]

张琳, 刘福亮, 贾艳琨, 刘君. 水中系列氢氧同位素标准物质的研制. 岩矿测试, 2013, 32(5): 7/80-784.

[15]

刘瑱, 马玲, 时晓露, 查立新. 石英岩化学成分分析标准物质研制. 岩矿测试, 2014, 33(6): 849-856.

[16]

曾美云, 陈燕波, 刘金, 王迪民. 高磷铁矿石成分分析标准物质研制. 岩矿测试, 2019, 38(2): 212-221. doi: 10.15898/j.cnki.11-2131/td.201808150094

[17]

房丽萍, 吴忠祥, 王伟, 宋祥梅, 封跃鹏, 田衎, 王晓燕. 河流沉积物多环芳烃标准样品的制备与定值. 岩矿测试, 2013, 32(5): 767-774.

[18]

屈文俊, 李超, 杜安道. 铜镍硫化物铼-锇标准物质定值的溯源性讨论及总不确定度评估. 岩矿测试, 2011, 30(6): 664-668.

[19]

程志中, 顾铁新, 范永贵, 黄宏库, 刘 妹, 鄢卫东, 鄢明才. 九个铁矿石标准物质研制. 岩矿测试, 2010, 29(3): 305-308.

[20]

凌进中. 标准值的不确定度及其表达. 岩矿测试, 1997, (2): 141-144.

计量
  • PDF下载量(13)
  • 文章访问量(77)
  • HTML全文浏览量(29)
  • 被引次数(0)
目录

Figures And Tables

铌钽精矿标准物质研制

赵晓亮, 李志伟, 王烨, 王君玉, 仲伟路, 陈砚