【引用本文】 程荣, 钱生平, 孙添力, 等. 基于计算机断层扫描的火山岩气孔含量及大小分布特征无损快速分析[J]. 岩矿测试, 2020, 39(3): 398-407. doi: 10.15898/j.cnki.11-2131/td.201912260179
CHENG Rong, QIAN Sheng-ping, SUN Tian-li, et al. Non-destructive and Fast Analysis of Content and Size Distribution of Vesicles in Volcanic Rock by X-ray Computed Tomography[J]. Rock and Mineral Analysis, 2020, 39(3): 398-407. doi: 10.15898/j.cnki.11-2131/td.201912260179

基于计算机断层扫描的火山岩气孔含量及大小分布特征无损快速分析

1. 

同济大学海洋与地球科学学院, 上海 200092

2. 

同济大学海洋地质国家重点实验室, 上海 200092

3. 

同济大学电子与信息工程学院, 上海 201804

收稿日期: 2019-12-26  修回日期: 2020-03-11  接受日期: 2020-04-17

基金项目: 国家自然科学基金项目重大研究计划项目(91428207);国家重点基础研究发展计划(973计划)项目(2012CB417300)

作者简介: 程荣, 硕士研究生, 海洋地质学专业。E-mail:chengrong@tongji.edu.cn

通信作者: 周怀阳, 教授, 主要从事岩石学与地球化学研究。E-mail:zhouhy@tongji.edu.cn

Non-destructive and Fast Analysis of Content and Size Distribution of Vesicles in Volcanic Rock by X-ray Computed Tomography

1. 

School of Ocean and Earth Science, Tongji University, Shanghai 200092, China

2. 

State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China

3. 

School of Electronic and Information Engineering, Tongji University, Shanghai 201804, China

Corresponding author: ZHOU Huai-yang, zhouhy@tongji.edu.cn

Received Date: 2019-12-26
Revised Date: 2020-03-11
Accepted Date: 2020-04-17

摘要:火山岩的气孔构造记录了岩浆中挥发性气体出溶、膨胀和逃逸的过程。通过对火山岩气孔特征的详细研究,有助于了解岩浆源区的挥发份含量和岩浆的上升喷发过程。目前用来研究火山岩中气孔的方法普遍存在耗时费力、采集气孔数据较少、易破坏样品等问题。本文在通过计算机断层扫描(工业CT)技术获取玄武岩投影数据的基础上,使用商用软件VG Studio MAX对样品进行三维重构和气孔体积测量,再由开源软件ImageJ对CT切片作图像处理和二维形态学运算,同时开发程序代码批量处理CT切片,快速获取气孔的含量及大小分布情况。结果表明:南海玄武岩样品在三维空间中的气孔体积分数为12.32%,大小分布呈现出对数正态分布的特点,等效球直径和最大外接圆直径分别集中分布在180~200μm、340~360μm的区间内。剖面上二维切片中的气孔含量有较大变化,但各个数值围绕体积分数波动的幅度不大,并且与气孔数密度呈显著的正相关关系。同时,通过改进海底环境下火山岩中挥发份质量分数的计算方法,得到该样品气孔体积全部转换为CO2或H2O的质量分数分别为0.233%、0.099%。研究认为,工业CT扫描结合图像处理软件可以实现火山岩气孔的无损快速统计和分析,该方法有望提高火山岩中气孔数量、体积以及挥发份含量的计算精度,为研究火山岩成因及其岩浆过程提供帮助。

关键词: 火山岩, 三维重建, 气孔大小分布, 计算机断层扫描, 挥发份含量, Matlab图像处理

要点

(1) 通过工业CT重建玄武岩气孔的三维结构,分辨率高,无损样品。

(2) 开发程序代码对CT切片进行图像批量处理,快速统计气孔含量及大小分布。

(3) 改进的火山岩气孔体积转化为挥发份质量分数的方法更加适用于海底高压环境。

Non-destructive and Fast Analysis of Content and Size Distribution of Vesicles in Volcanic Rock by X-ray Computed Tomography

ABSTRACT

BACKGROUND:

Vesicular structure of volcanic rocks records the processes of the dissolution, expansion and escape of volatile gases in the ascending magma. The detailed study of characteristics of vesicles in volcanic rocks will be helpful to understand volatile content of magma and the ascent and erupting process of magma. Although a number of methods have been developed in the last decades to study the vesicle characteristics of volcanic rocks, they generally have the problems of low efficiency, less data collection, and sample destruction.

OBJECTIVES:

To quantitatively characterize the content and size distribution of vesicles in volcanic rocks.

METHODS:

On the basis of three-dimensional reconstruction of vesicular basalt by X-ray computed tomography, the content and size distribution of vesicles were calculated with three software programs (VG Studio MAX, ImageJ, Matlab), and an improved method for conversion of vesicle volume to volatile mass fraction in volcanic rock was also proposed.

RESULTS:

The vesicle content in three-dimensional space for a basalt sample from the South China Sea in water depth of 1488 meter was 12.32%, and the vesicle size showed a lognormal distribution. The majority of vesicles were 180-200μm in equivalent sphere diameter and 340-360μm in maximum diameter. The content of vesicles in the two-dimensional slices on the profile varied greatly, but the amplitude of each value around the volume fraction fluctuated little, and there was a significant positive correlation with the number density of vesicles. Based on the known vesicle content, the calculated mass fractions of CO2 and H2O in the sample were 0.233% and 0.099%, respectively.

CONCLUSIONS:

The study demonstrates that industrial CT scanning combined with image processing software can produce non-destructive rapid statistics and analysis of volcanic vesicles. The proposed method will be an efficient tool to study the genesis of volcanic rocks and their magmatic processes.

KEY WORDS: volcanic rock, three-dimensional reconstruction, vesicle size distribution, X-ray computed tomography, volatile content, Matlab image processing

HIGHLIGHTS

(1) Reconstruction of three-dimensional structure of vesicles in basalt by X-ray computed tomography has the advantages of high resolution and non-destructive analysis.

(2) A Matlab program code was developed for image processing of CT slices in batches to calculate the content and size distribution of vesicles in basalt efficiently.

(3) The improved method of transforming vesicle volume of volcanic rock into volatile mass fraction was more suitable for samples formed in high-pressure submarine environments.

本文参考文献

[1]

Fiege A, Cicuy S B. Experimental constraints on bubble formation and growth during magma ascent:A review[J].American Mineralogist, 2015, 100(11-12): 2426-2442. doi: 10.2138/am-2015-5296

[2]

Le GallN, Pichavant M. Homogeneous bubble nucleation in H2O- and H2O-CO2-bearing basaltic melts:Results of high temperature decompression experiments[J].Journal of Volcanology and Geothermal Research, 2016, 327: 604-621. doi: 10.1016/j.jvolgeores.2016.10.004

[3]

Mancini S, Forestier-Coste L, Burgisser A, et al. An expansion-coalescence model to track gas bubble populations in magmas[J].Journal of Volcanology and Geothermal Research, 2016, 313: 44-58. doi: 10.1016/j.jvolgeores.2016.01.016

[4]

Sahagian D, Proussevitch A, Ancuta L D, et al. Uplift of central Mongolia recorded in vesicular basalts[J].Journal of Geology, 2016, 124(4): 435-445. doi: 10.1086/686272

[5]

冯伟, 杨淑芬, 黄若寒, 等. 青藏高原古高程重建研究现状[J]. 世界地质, 2019, 38(3): 829-842, 866. doi: 10.3969/j.issn.1004-5589.2019.03.025

Feng W, Yang S F, Huang R H, et al. Present situation on paleoelevation reconstruction of Tibetan Plateau[J].Global Geology, 2019, 38(3): 829-842, 866. doi: 10.3969/j.issn.1004-5589.2019.03.025

[6]

Goosmann E A, Buick R, Catling D C, et al. Vesicle paleobarometry in the Pongola Supergroup:A cautionary note and guidelines for future studies[J].South African Journal of Geology, 2020, 123(1): 95-104.

[7]

Gardner J E, Jackson B A, Gonnermann H, et al. Rapid ascent and emplacement of basaltic lava during the 2005-2006 eruption of the East Pacific Rise at ca.9 degrees 51'N as inferred from CO2 contents[J].Earth and Planetary Science Letters, 2016, 453: 152-160. doi: 10.1016/j.epsl.2016.08.007

[8]

Liedl A, Buono G, Lanzafame G, et al. A 3D imaging textural characterization of pyroclastic products from the 1538AD Monte Nuovo eruption (Campi Flegrei, Italy)[J]. Lithos, 2019, 340: 316-331.

[9]

Holt S J, Carey R J, Houghton B F, et al. Eruption and fountaining dynamics of selected 1985-1986 high fountaining episodes at Kilauea volcano, Hawaii, from quantitative vesicle microtexture analysis[J].Journal of Volcanology and Geothermal Research, 2019, 369: 21-34. doi: 10.1016/j.jvolgeores.2018.11.011

[10]

Moore L R, Gazel E, Tuohy R, et al. Bubbles matter:An assessment of the contribution of vapor bubbles to melt inclusion volatile budgets[J].American Mineralogist, 2015, 100(4): 806-823. doi: 10.2138/am-2015-5036

[11]

Martel C, Iacono-Marziano G. Timescales of bubble coalescence, outgassing, and foam collapse in decompressed rhyolitic melts[J].Earth and Planetary Science Letters, 2015, 412: 173-185. doi: 10.1016/j.epsl.2014.12.010

[12]

Hajimirza S, Gonnermann H M, Gardner J E, et al. Predicting homogeneous bubble nucleation in rhyolite[J].Journal of Geophysical Research-Solid Earth, 2019, 124(3): 2395-2416. doi: 10.1029/2018JB015891

[13]

Houghton B F, Wilson C J N. A vesicularity index for pyroclastic deposits[J].Bulletin of Volcanology, 1989, 51(6): 451-462. doi: 10.1007/BF01078811

[14]

Sahagian D L, Anderson A T, Ward B, et al. Bubble coalescence in basalt flows:Comparison of a numerical model with natural examples[J].Bulletin of Volcanology, 1989, 52(1): 49-56. doi: 10.1007/BF00641386

[15]

Whitham A G, Sparks R S J. Pumice[J].Bulletin of Volcanology, 1986, 48(4): 209-223. doi: 10.1007/BF01087675

[16]

Shea T, Houghton B F, Gurioli L, et al. Textural studies of vesicles in volcanic rocks:An integrated methodology[J].Journal of Volcanology and Geothermal Research, 2010, 190(3-4): 271-289. doi: 10.1016/j.jvolgeores.2009.12.003

[17]

Mangan M T, Cashman K V, Newman S, et al. Vesiculation of basaltic magma during eruption[J].Geology, 1993, 21(2): 157-160. doi: 10.1130/0091-7613(1993)021<0157:VOBMDE>2.3.CO;2

[18]

Toramaru A. Measurement of bubble size distributions in vesiculated rocks with implications for quantitative estimation of eruption processes[J].Journal of Volcanology and Geothermal Research, 1990, 43(1-4): 71-90. doi: 10.1016/0377-0273(90)90045-H

[19]

Proussevitch A A, Mulukutla G K, Sahagian D L, et al. A new 3D method of measuring bubble size distributions from vesicle fragments preserved on surfaces of volcanic ash particles[J].Geosphere, 2011, 7(1): 62-69. doi: 10.1130/GES00559.1

[20]

Cnudde V, Boone M N. High-resolution X-ray computed tomography in geosciences:A review of the current technology and applications[J].Earth-Science Reviews, 2013, 123: 1-17. doi: 10.1016/j.earscirev.2013.04.003

[21]

Marone F, Schlepütz C M, Marti S, et al. Time resolved in situ X-ray tomographic microscopy unraveling dynamic processes in geologic systems[J].Frontiers in Earth Science, 2020, 7: 346. doi: 10.3389/feart.2019.00346

[22]

Song S R, Jones K W, Lindquist W B, et al. Synchrotron X-ray computed microtomography:Studies on vesiculated basaltic rocks[J].Bulletin of Volcanology, 2001, 63(4): 252-263. doi: 10.1007/s004450100141

[23]

Pistone M, Cordonnier B, Caricchi L, et al. The viscous to brittle transition in crystal- and bubble-bearing magmas[J]. Frontiers in Earth Science, 2015, 3: 71.

[24]

Burgisser A, Chevalier L, Gardner J E, et al. The perco-lation threshold and permeability evolution of ascending magmas[J].Earth and Planetary Science Letters, 2017, 470: 37-47. doi: 10.1016/j.epsl.2017.04.023

[25]

Plese P, Higgins M D, Mancini L, et al. Dynamic obser-vations of vesiculation reveal the role of silicate crystals in bubble nucleation and growth in andesitic magmas[J]. Lithos, 2018, 296: 532-546.

[26]

Baker D R, Brun F, Mancini L, et al. The importance of pore throats in controlling the permeability of magmatic foams[J].Bulletin of Volcanology, 2019, 81(9): 54. doi: 10.1007/s00445-019-1311-z

[27]

卢树参, 许红, 陈勇, 等. 微焦X射线扫描成像技术在岩石物性特征研究的现状[J]. 海洋地质前沿, 2016, 32(3): 64-72.

Lu S S, Xu H, Chen Y, et al. Current status of application of micro-focus X-ray scan imaging technology to reservoir properties description[J]. Marine Geology Frontiers, 2016, 32(3): 64-72.

[28]

王羽, 汪丽华, 王建强, 等. 利用纳米透射X射线显微成像技术研究页岩有机孔三维结构特征[J]. 岩矿测试, 2017, 36(6): 563-573.

Wang Y, Wang L H, Wang J Q, et al. Investigation of organic matter pore structures of shale in three dimensions of shale using nano-X-ray microscopy[J]. Rock and Mineral Analysis, 2017, 36(6): 563-573.

[29]

贾宁洪, 吕伟峰, 常天全, 等. 高效无损岩心孔隙度精确测量新方法[J]. 石油学报, 2018, 39(7): 824-828, 844.

Jia N H, Lü W F, Chang T Q, et al. A new method for precisely measuring core porosity with high efficiency and no destruction[J]. Acta Petrolei Sinica, 2018, 39(7): 824-828, 844.

[30]

王海涛, 杨叶, 张晋言, 等. 地质多孔介质成像技术现状与进展[J]. 地球物理学进展, 2019, 34(1): 191-199.

Wang H T, Yang Y, Zhang J Y, et al. Current state and progress in imaging the microstructure of geological porous media[J]. Progress in Geophysics, 2019, 34(1): 191-199.

[31]

王羽, 金婵, 汪丽华, 等. 基于SEM图像灰度水平的页岩孔隙分割方法研究[J]. 岩矿测试, 2016, 35(6): 595-602.

Wang Yu, Jin C, Wang L H, et al. Pore segmentation methods based on gray scale of scanning electron microscopy images[J]. Rock and Mineral Analysis, 2016, 35(6): 595-602.

[32]

戚明辉, 李君军, 曹茜, 等. 基于扫描电镜和JMicroVision图像分析软件的泥页岩孔隙结构表征研究[J]. 岩矿测试, 2019, 38(3): 260-269.

Qi M H, Li J J, Cao Q, et al. The pore structure characterization of shale based on scanning electron microscopy and JMicroVision[J]. Rock and Mineral Analysis, 2019, 38(3): 260-269.

[33]

彭瑞东, 杨彦从, 鞠杨, 等. 基于灰度CT图像的岩石孔隙分形维数计算[J]. 科学通报, 2011, 56(26): 2256-2266.

Peng R D, Yang Y C, Ju Y, et al. The calculation of the fractal dimension of the pore in the rock based on gray CT image[J]. Chinese Science Bulletin, 2011, 56(26): 2256-2266.

[34]

Edmonds M, Wallace P J. Volatiles and exsolved vapor in volcanic systems[J].Elements, 2017, 13(1): 29-34. doi: 10.2113/gselements.13.1.29

[35]

Petrelli M, El Omari K, Spina L, et al. Timescales of water accumulation in magmas and implications for short warning times of explosive eruptions[J].Nature Communications, 2018, 9: 770. doi: 10.1038/s41467-018-02987-6

[36]

Moretti R, Arienzo I, Di Renzo V, et al. Volatile segregation and generation of highly vesiculated explosive magmas by volatile-melt fining processes:The case of the Campanian Ignimbrite eruption[J].Chemical Geology, 2019, 503: 1-14. doi: 10.1016/j.chemgeo.2018.10.001

[37]

Head J W, Wilson L. Deep submarine pyroclastic eruptions:Theory and predicted landforms and deposits[J].Journal of Volcanology and Geothermal Research, 2003, 121(3-4): 155-193. doi: 10.1016/S0377-0273(02)00425-0

[38] Lemmon E W,Huber M L,Mclinden M O. NIST standard reference database 23:NIST reference fluid thermodynamic and transport properties-REFPROP[M] . USA: National Institute of Standards and Technology, 2013: 51-54.
[39]

Proussevitch A A, Sahagian D L, Carlson W D, et al. Statistical analysis of bubble and crystal size distributions:Application to Colorado Plateau basalts[J].Journal of Volcanology and Geothermal Research, 2007, 164(3): 112-126. doi: 10.1016/j.jvolgeores.2007.04.006

[40]

Ohashi M, Ichihara M, Toramaru A, et al. Bubble deformation in magma under transient flow conditions[J].Journal of Volcanology and Geothermal Research, 2018, 364: 59-75. doi: 10.1016/j.jvolgeores.2018.09.005

[41]

Rust A C, Manga M, Cashman K V, et al. Determining flow type, shear rate and shear stress in magmas from bubble shapes and orientations[J].Journal of Volcanology and Geothermal Research, 2003, 122(1-2): 111-132. doi: 10.1016/S0377-0273(02)00487-0

[42]

彭年, 朱晓艳, 刘永顺, 等. 天池火山三期浮岩气孔形态的复杂性及其动力学成因[J]. 地学前缘, 2019, 26(6): 271-280.

Peng N, Zhu X Y, Liu Y S, et al. Complexity and dynamics of vesicle shapes of pumices formed in the three Tianchi volcano eruptions[J]. Earth Science Frontiers, 2019, 26(6): 271-280.

[43]

Bottinga Y, Javoy M. Mid-ocean ridge basalt degassing:Bubble nucleation[J].Journal of Geophysical Research-Solid Earth and Planets, 1990, 95(B4): 5125-5131. doi: 10.1029/JB095iB04p05125

[44]

Bottinga Y, Javoy M. MORB degassing:Bubble growth and ascent[J].Chemical Geology, 1990, 81(4): 255-270. doi: 10.1016/0009-2541(90)90050-H

[45]

Capriolo M, Marzoli A, Aradi L E, et al. Deep CO2 in the End-Triassic Central Atlantic Magmatic Province[J].Nature Communications, 2020, 11: 1670. doi: 10.1038/s41467-020-15325-6

[46]

Yoshimura S. Diffusive fractionation of H2O and CO2 during magma degassing[J].Chemical Geology, 2015, 411: 172-181. doi: 10.1016/j.chemgeo.2015.07.003

[47] Parfitt E A,Wilson L. Fundamentals of physical volcanology[M] . USA: Blackwell Publishing, 2008: 64-76.
[48]

张茂亮, 刘真, 陈德峰, 等. 利用三维CT扫描技术定量计算熔岩流气泡体积的研究与实现[J]. 岩石学报, 2014, 30(12): 3709-3716.

Zhang M L, Liu Z, Chen D F, et al. Research and implementation on vesicle volume calculation of lava flows using three-dimensional computerized tomography (CT) scanning technology[J]. Acta Petrologica Sinica, 2014, 30(12): 3709-3716.

相似文献(共19条)

[1]

陈家富, 马旭, 李超, 屈文俊, 都厚远, 赵然, 韩宝福. 西准噶尔谢米斯台山西北段中志留世火山岩地球化学与Sr-Nd-Os同位素特征及其地质意义. 岩矿测试, 2017, 36(3): 318-325. doi: 10.15898/j.cnki.11-2131/td.201704060051

[2]

叶先仁, 吴茂炳, . 岩矿样品中稀有气体同位素组成的质谱分析. 岩矿测试, 2001, (3): 174-178.

[3]

王羽, 汪丽华, 王建强, 姜政, 金婵, 王彦飞. 基于聚焦离子束-扫描电镜方法研究页岩有机孔三维结构. 岩矿测试, 2018, 37(3): 235-243. doi: 10.15898/j.cnki.11-2131/td.201612210188

[4]

罗立强, 应志春. 国外XRFA中计算机软件和数据处理方法的研究. 岩矿测试, 1991, (2): 136-141.

[5]

中国地质学会岩石专业委员会火山岩分类命名小组. 火山岩的分类和命名(熔岩部分)(国内推荐方案). 岩矿测试, 1984, (4): 289-300.

[6]

张玉芳, 林锦璇. 计算机在岩矿测试数据处理方面的应用实例砂矿物鉴定数据处理程序. 岩矿测试, 1985, (2): 173-175.

[7]

陈可睦, 宁仁祖, 江建明. 宁芜北段某些次火山岩和蚀变岩中的稀土元素. 岩矿测试, 1985, (2): 97-103.

[8]

徐翠, 李林庆, 张洁, 何丽, 张桂凤, 王艳龙. X射线荧光光谱-电子探针在中酸性火山岩鉴定中的应用. 岩矿测试, 2016, 35(6): 626-633. doi: 10.15898/j.cnki.11-2131/td.2016.06.009

[9]

姜赟赟, 来雅文, 段太成, 石厚礼. 长白山地区火山岩中稀土元素特征及赋存状态初探. 岩矿测试, 2013, 32(5): 825-831.

[10]

彭礼贵. 甘肃省白银厂黄铁矿型铜矿床火山岩—石英角斑岩熔化实验的初步研究. 岩矿测试, 1983, (2): 99-100.

[11]

火岩. 中国地质学会岩石专业委员会火山岩分类命名小组扩大会圆满结束. 岩矿测试, 1983, (3): 181-181.

[12]

陈振宇, 王登红, 陈郑辉, 侯可军, 赵正. 赣南兴国田新白垩纪火山岩的锆石U-Pb定年及其构造背景. 岩矿测试, 2012, 31(3): 543-548.

[13]

万秋, 李延河, 王利民, 段超, 施珂, 谭德兴. 北淮阳晓天火山岩盆地片麻状花岗岩成岩年代学及地球化学特征. 岩矿测试, 2020, 39(4): 620-630. doi: 10.15898/j.cnki.11-2131/td.201908120125

[14]

荣庆丰, 赵雅云, 周志恒. 三维旋转式自动进样器的研制. 岩矿测试, 2004, (4): 291-294.

[15]

梁汉文. Sharp Pc-1500计算机应用实例. 岩矿测试, 1985, (4): 368-371.

[16]

应志春, 邓赛文. 实验室计算机通信网络. 岩矿测试, 1991, (2): 125-127.

[17]

. 计算机译谱鉴定会及计算机在岩矿分析中的应用. 岩矿测试, 1985, (1): 91-92.

[18]

王羽, 汪丽华, 王建强, 姜政, 金婵, 王彦飞. 利用纳米透射X射线显微成像技术研究页岩有机孔三维结构特征. 岩矿测试, 2017, 36(6): 563-573. doi: 10.15898/j.cnki.11-2131/td.201703240038

[19]

刘金堂, 赵桂英. 分析化学中计算机应用程序选编(Ⅰ). 岩矿测试, 1987, (3): 228-240.

计量
  • PDF下载量(13)
  • 文章访问量(263)
  • HTML全文浏览量(58)
  • 被引次数(0)
目录

Figures And Tables

基于计算机断层扫描的火山岩气孔含量及大小分布特征无损快速分析

程荣, 钱生平, 孙添力, 周怀阳