【引用本文】 马健生, 王卓, 张泽宇, 等. 哈尔滨市地下水中29种抗生素分布特征研究[J]. 岩矿测试, 2021, 40(6): 944-953. doi: 10.15898/j.cnki.11-2131/td.202101040001
MA Jian-sheng, WANG Zhuo, ZHANG Ze-yu, et al. Distribution Characteristics of 29 Antibiotics in Groundwater in Harbin[J]. Rock and Mineral Analysis, 2021, 40(6): 944-953. doi: 10.15898/j.cnki.11-2131/td.202101040001

哈尔滨市地下水中29种抗生素分布特征研究

中国地质调查局沈阳地质调查中心, 辽宁 沈阳 110032

收稿日期: 2021-01-04  修回日期: 2021-05-26  接受日期: 2021-07-28

基金项目: 中国地质调查局地质调查项目"松嫩平原水文地质调查"(DD20190340)

作者简介: 马健生, 硕士, 高级工程师, 主要从事有机地球化学研究。E-mail: mjs1015@163.com

通信作者: 李丽君, 硕士, 高级工程师, 主要从事有机地球化学研究。E-mail: 475876904@qq.com

Distribution Characteristics of 29 Antibiotics in Groundwater in Harbin

Shenyang Centre of Geological Survey, China Geological Survey, Shenyang 110032, China

Corresponding author: LI Li-jun, 475876904@qq.com

Received Date: 2021-01-04
Revised Date: 2021-05-26
Accepted Date: 2021-07-28

摘要:当前对抗生素滥用监管及其研究正在加强,近年来中国主要水域中抗生素均有不同程度的检出,地表水及地下水中抗生素的污染状况持续受到关注。因进入环境中的抗生素种类繁多、结构复杂,一般实验室难以实现同时分析多种类抗生素。本文在哈尔滨市共采集地下水样品26组,采样范围包括人口密集、工业生产、农畜业等生活生产地区。利用超高效液相色谱-三重四极杆串联质谱联用技术分析了样品中的磺胺类、喹诺酮类、大环内酯类、β-内酰胺类、四环素类、林可酰胺类等6大类共29种典型抗生素含量,研究了哈尔滨市地下水中典型抗生素的检出及分布状况。结果表明:①哈尔滨市地下水中6大类典型抗生素均有不同程度检出,其中以磺胺类、喹诺酮类、大环内酯类、四环素类为主,检出率分别为61.5%、46.2%、42.3%、38.5%;②哈尔滨市地下水检出的抗生素含量范围在0.02~612ng/L之间,其中磺胺噻唑、磺胺嘧啶、林可霉素检出的最高浓度超过100ng/L,相比于国内外部分地区(如中国北京、天津,西班牙巴塞罗那)喹诺酮类整体含量偏低;③检出抗生素含量较高的采样点位主要分布在城市的中部、南部和东部地区,这些区域也是该市人口相对密集区,且附近普遍分布有制药厂、家禽牲畜养殖厂、城市排污口等。由此揭示了哈尔滨市城市地下水中抗生素分布特征受人类生产生活活动影响且具有明显的相关性。

关键词: 地下水, 抗生素, 喹诺酮, 空间分布, 超高效液相色谱-三重四极杆串联质谱法

要点

(1) 通过对哈尔滨市地下水采集与测试探究该地区典型抗生素的含量及分布。

(2) 地下水典型抗生素主要检出区域集中在城市中南部及东部人口密集地区。

(3) 制药厂、畜牧业、城市污水排放对地下水中抗生素分布特征有显著影响。

Distribution Characteristics of 29 Antibiotics in Groundwater in Harbin

ABSTRACT

BACKGROUND:

At present, the supervision of antibiotic abuse and its research is being strengthened. In recent years, antibiotics have been detected in varying degrees in water in central China. This reinforces the concern of the pollution of antibiotics in surface and groundwater.

OBJECTIVES:

To investigate the distribution characteristics of 29 antibiotics in groundwater in Harbin.

METHODS:

A total of 26 groups of groundwater samples were collected in Harbin, and the sampling scope included habitation and production areas such as densely populated, industrial production, agricultural districts and animal husbandry. The ultra-performance liquid chromatography-triple quadrupole mass spectrometry method was used to analyze 29 kinds of antibiotics covering six types, including sulfonamides, quinolones, macrolides, β-lactams, tetracyclines, and lincosamides.

RESULTS:

Antibiotics in the groundwater of Harbin were mainly composed of sulfonamides, quinolones, macrolides and tetracyclines and the detection rates were 61.5%, 46.2%, 42.3% and 38.5%, respectively. The content of antibiotics detected ranged from 0.02 to 681ng/L, and the highest contents of sulfathiazole, sulfadiazine, and lincomycin were more than 100ng/L. The average content of quinolones was low compared with some domestic and international areas (such as Beijing, Tianjin, and Barcelona). Sampling sites with higher antibiotic levels were mainly found in the central, southern and eastern regions of the city. These areas are also relatively densely populated and are generally distributed around pharmaceutical factories, urban sewage outlets, and poultry and livestock farms.

CONCLUSIONS:

The distribution characteristics of antibiotics in groundwater in Harbin are strongly related to the impact of human production and living activities.

KEY WORDS: groundwater, antibiotics, quinolones, space distribution, ultra performance liquid chromatography-triple quadrupole mass spectrometry

HIGHLIGHTS

(1) The content and distribution of typical antibiotics were explored by the collection and testing of groundwater in Harbin.

(2) Typical antibiotics were detected mainly in densely populated areas in the south central and eastern parts of the city in groundwater.

(3) The discharge of pharmaceutical factories, animal husbandry and urban sewage has a significant impact on the distribution of antibiotics in groundwater.

本文参考文献

[1]

Li S, Shi W Z, You M T, et al. Antibiotics in water and sediments of Danjiangkou Reservoir, China: Spatiotemporal distribution and indicator screening[J].Environmental Pollution, 2019, 246: 435-442. doi: 10.1016/j.envpol.2018.12.038

[2]

Liu L L, Wu W, Zhang J Y, et al. Progress of research on the toxicology of antibiotic pollution in aquatic organisms[J].Acta Ecologica Sinica, 2018, 38: 36-41. doi: 10.1016/j.chnaes.2018.01.006

[3]

祁彦洁, 刘菲. 地下水中抗生素污染检测分析研究进展[J]. 岩矿测试, 2014, 33(1): 1-11. doi: 10.3969/j.issn.0254-5357.2014.01.002

Qi Y J, Liu F. Analysis of antibiotics in groundwater: A review[J]. Rock and Mineral Analysis, 2014, 33(1): 1-11. doi: 10.3969/j.issn.0254-5357.2014.01.002

[4]

王路光, 朱晓磊, 王靖飞, 等. 环境水体中的残留抗生素及其潜在风险[J]. 工业水处理, 2009, 29(5): 11-14.

Wang L G, Zhu X L, Wang J F, et al. Antibiotic residual in environmental water body and its potential risks[J]. Industrial Water Treatment, 2009, 29(5): 11-14.

[5]

Grgic I, Cizmek A M, Babic S, et al. UV filters as a driver of the antibiotic pollution in different water matrices[J]. Journal of Environmental Management, 2021, 289: 1-6.

[6]

Dickinson A W, Power A, Hansen M G, et al. Heavy metal pollution and co-selection for antibiotic resist-ance: A microbial palaeontology approach[J]. Environment International, 2019, 132: 1-10.

[7]

Barnes K K, Kolpin D W, Furlong E T, et al. A national reconnaissance of pharmaceuticals and other organic wastewater contaminants in the United States groundwater[J].Science of the Total Environment, 2008, 402(2-3): 192-200. doi: 10.1016/j.scitotenv.2008.04.028

[8]

Hunt S B, Snow D D, Powell T D, et al. Occurrence of steroid hormones and antibiotics in shallow groundwater impacted by livestock waste control facilities[J].Journal of Contaminant Hydrology, 2011, 123(3-4): 94-103. doi: 10.1016/j.jconhyd.2010.12.010

[9]

Serna R L, Jurado A, Suné E V, et al. Occurrence of 95 pharmaceuticals and transformation products in urban groundwaters underlying the metropolis of Barcelona, Spain[J].Environmental Pollution, 2013, 174: 305-315. doi: 10.1016/j.envpol.2012.11.022

[10]

Sacher F, Lange F T, Brauch H J, et al. Pharmaceuticals in groundwaters analytical methods and results of a monitoring program in Baden-Wurttemberg, Germany[J].Journal of Chromatography, 2001, 938(1-2): 199-210. doi: 10.1016/S0021-9673(01)01266-3

[11]

童蕾, 姚林林, 刘慧, 等. 抗生素在地下水系统中的环境行为及生态效应研究进展[J]. 生态毒理学报, 2016, 11(2): 27-36.

Tong L, Yao L L, Liu H, et al. Review on the environmental behavior and ecological effect of antibiotics in groundwater system[J]. Asian Journal of Ecotoxicology, 2016, 11(2): 27-36.

[12]

Yi X Z, Lin C H, Ong E J L, et al. Occurrence and distribution of trace levels of antibiotics in surface waters and soils driven by non-point source pollution and anthropogenic pressure[J].Chemosphere, 2019, 216: 213-223. doi: 10.1016/j.chemosphere.2018.10.087

[13]

赵富强, 高会, 张克玉, 等. 中国典型河流水域抗生素的赋存状况及风险评估研究[J]. 环境污染与防治, 2021, 43(1): 94-102.

Zhao F Q, Gao H, Zhang K Y, et al. Occurrence and risk assessment of antibiotics in typical river basins in China[J]. Environmental Pollution and Control, 2021, 43(1): 94-102.

[14]

Yan C X, Yang Y, Zhou J L, et al. Antibiotics in the surface water of the Yangtze Estuary: Occurrence, distribution and risk assessment[J].Environmental Pollution, 2013, 175: 22-29. doi: 10.1016/j.envpol.2012.12.008

[15]

秦延文, 张雷, 时瑶, 等. 大辽河表层水体典型抗生素污染特征与生态风险评价[J]. 环境科学研究, 2015, 28(3): 361-368.

Qin Y W, Zhang L, Shi Y, et al. Contamination characteristics and ecological risk assessment of typical antibiotics in surface water of the Daliao River, China[J]. Research of Environmental Sciences, 2015, 28(3): 361-368.

[16]

杨常青, 王龙星, 侯晓虹, 等. 大辽河水系河水中16种抗生素的污染水平分析[J]. 色谱, 2012, 30(8): 756-762.

Yang C Q, Wang L X, Hou X H, et al. Analysis of pollution level of 16 antibiotics in the river water of Daliao River water system[J]. Chinese Journal of Chromatography, 2012, 30(8): 756-762.

[17]

章强, 辛琦, 朱静敏, 等. 中国主要水域抗生素污染现状及其生态环境效应研究进展[J]. 环境化学, 2014, 33(7): 1075-1083.

Zhang Q, Xin Q, Zhu J M, et al. The antibiotic contaminations in the main water bodies in China and the associated environmental and human health impacts[J]. Environmental Chemistry, 2014, 33(7): 1075-1083.

[18]

高立红, 史亚利, 厉文辉, 等. 抗生素环境行为及其环境效应研究进展[J]. 环境化学, 2013, 32(9): 1619-1633.

Gao L H, Shi Y L, Li W H, et al. Environmental behavior and impacts of antibiotics[J]. Environmental Chemistry, 2013, 32(9): 1619-1633.

[19]

郭婕, 张燕, 胡振国, 等. 环境水样中农药污染分析技术研究进展[J]. 岩矿测试, 2021, 40(1): 16-32.

Guo J, Zhang Y, Hu Z G, et al. A review of pesticide pollution analysis techniques for environ mental water samples[J]. Rock and Mineral Analysis, 2021, 40(1): 16-32.

[20]

徐蓉桢, 刘菲, 荆继红, 等. 典型浅层孔隙水和岩溶水中多环芳烃分布特征[J]. 岩矿测试, 2018, 37(4): 411-418.

Xu R Z, Liu F, Jing J H, et al. Distribution characteristics of polycyclic aromatic hydrocarbons in typical shallow pore water and karst water[J]. Rock and Mineral Analysis, 2018, 37(4): 411-418.

[21]

朱帅, 沈亚婷, 贾静, 等. 环境介质中典型新型有机污染物分析技术研究进展[J]. 岩矿测试, 2018, 37(5): 586-606.

Zhu S, Shen Y T, Jia J, et al. Review on the analytical methods of typical emerging organic pollutants in the environment[J]. Rock and Mineral Analysis, 2018, 37(5): 586-606.

[22]

陈卫平, 彭程伟, 杨阳, 等. 北京市地下水中典型抗生素分布特征与潜在风险[J]. 环境科学, 2017, 38(12): 5074-5080.

Chen W P, Peng C W, Yang Y, et al. Distribution characteristics and risk analysis of antibiotic in the groundwater in Beijing[J]. Environmental Science, 2017, 38(12): 5074-5080.

[23]

Hu X G, Zhou Q X, Luo Y, et al. Occurrence and source analy-sis of typical veterinary antibiotics in manure, soil vegetables and groundwater from organic vegetable base, northern China[J].Enviromental Pollution, 2010, 158(9): 2992-2998. doi: 10.1016/j.envpol.2010.05.023

[24]

王伟华. 松花江流域哈尔滨段典型抗生素归趋及风险评价[D]. 哈尔滨: 东北林业大学, 2018: 37-65.

Wang W H. The distribution, transformation and risk assessment of typical antibiotics in the Songhua River Basin of Harbin Secion[D]. Haerbin: Northeast Forestry University, 2018: 37-65.

[25]

郎朗, 董晓琪, 狄静波, 等. SPE-HPLC法测定松花江哈尔滨段水样中11种抗生素[J]. 中国给水排水, 2018, 34(20): 114-118.

Lang L, Dong X Q, Di J B, et al. Determination of 11 antibiotics in Harbin Section of Songhua River by SPE-HPLC[J]. China Water & Wastewater, 2018, 34(20): 114-118.

[26]

李冶平, 邓昌州, 杨湘奎, 等. 哈尔滨市及周边地区第四系地下水水质综合评价[J]. 东北水利水电, 2014, (1): 25-26, 55. doi: 10.3969/j.issn.1002-0624.2014.01.012

Li Y P, Deng C Z, Yang X K, et al. Comprehensive assessment of Quaternary groundwater quality in Harbin City and the surrounding area[J].Water Resources & Hydropower of Northeast, 2014, (1): 25-26, 55. doi: 10.3969/j.issn.1002-0624.2014.01.012

[27]

杨亚妹. 哈尔滨市地下水流动系统特征分析[J]. 水利科技与经济, 2014, 20(1): 68-70. doi: 10.3969/j.issn.1006-7175.2014.01.029

Yang Y M. The features analysis of flow system of groundwater in Haerbin[J].Water Conservancy Science and Technology and Economy, 2014, 20(1): 68-70. doi: 10.3969/j.issn.1006-7175.2014.01.029

[28]

孔庆轩, 董宏志, 王燕, 等. 哈尔滨地区浅层地下水质量与污染评价[J]. 地质与资源, 2015, 24(1): 70-74.

Kong Q X, Dong H Z, Wang Y, et al. Assessment for the quality and pollution of shallow groundwater in Harbin, Heilongjiang Province[J]. Geology and Resources, 2015, 24(1): 70-74.

[29]

徐晖, 吴明红, 徐刚, 等. 高效液相色谱-串联质谱法对水环境中12种抗生素的检测[J]. 上海大学学报(自然科学版), 2017, 23(3): 483-490.

Xu H, Wu M H, Xu G, et al. Determination of 12 antibiotics in aqueous environment by high performance LC-MS/MS[J]. Journal of Shanghai University (Natural Science), 2017, 23(3): 483-490.

[30]

张金, 宗栋良, 常爱敏, 等. 水环境中典型抗生素SPE-UPLC-MS/MS检测方法的建立[J]. 环境化学, 2015, 34(8): 1446-1452.

Zhang J, Zong D L, Chang A M, et al. Determination of common antibiotics in aquatic environment by solid-phase extraction and ultra pressure liquid chromatography tandem mass spectrometry (UPLC-MS/MS)[J]. Environmental Chemistry, 2015, 34(8): 1446-1452.

[31]

Tong L, Huang S B, Wang Y X, et al. Occurrence of antibiotics in the aquatic environment of Jianghan Plain, central China[J].Science of The Total Environment, 2014, 497-498: 180-187. doi: 10.1016/j.scitotenv.2014.07.068

[32]

Chen L, Lang H, Liu F, et al. Presence of antibiotics in shallow groundwater in the northern and southwestern regions of China[J].Groundwater, 2018, 56(3): 451-457. doi: 10.1111/gwat.12596

[33]

郭东赫, 蔺宝钢. 水体中的抗生素污染[J]. 生态经济, 2020, 36(7): 5-8.

Guo D H, Lin B G. Antibiotic pollution in water[J]. Ecological Economy, 2020, 36(7): 5-8.

[34]

刘昔, 王智, 王学雷, 等. 我国典型区域地表水环境中抗生素污染现状及其生态风险评价[J]. 环境科学, 2019, 40(5): 2094-2100.

Liu X, Wang Z, Wang X L, et al. Status of antibiotic contamination and ecological risks assessment of several typical Chinese surface-water environments[J]. Environmental Science, 2019, 40(5): 2094-2100.

相似文献(共20条)

[1]

张静梅, 张培新, 高孝礼, 黄光明, 窦银萍. 电感耦合等离子体质谱法同时测定地下水中硼溴碘. 岩矿测试, 2008, 27(1): 25-28.

[2]

宋淑玲, 饶竹, 李松. 全国地下水调查中12种半挥发性必检组分的测定. 岩矿测试, 2008, 27(2): 91-94.

[3]

祁彦洁, 刘菲. 地下水中抗生素污染检测分析研究进展. 岩矿测试, 2014, 33(1): 67-73.

[4]

余蕾, 张小毅. 气相色谱-三重四极杆质谱法测定地下水中44种有机物污染物. 岩矿测试, 2021, 40(3): 365-374. doi: 10.15898/j.cnki.11-2131/td.202008310120

[5]

刘裕明, 彭林, 曾凡刚, 陈名樑. 太原市大气总悬浮颗粒物中正构烷烃和多环芳烃空间分布及来源分析. 岩矿测试, 2003, (3): 206-210.

[6]

郭晓辰, 饶竹, 高冉. 气相色谱法测定地下水中拟除虫菊酯有机氯百菌清等24种农药残留. 岩矿测试, 2014, 33(3): 406-412.

[7]

付宇, 曹文庚, 张娟娟. 基于随机森林建模预测河套盆地高砷地下水风险分布. 岩矿测试, 2021, 40(6): 860-870. doi: 10.15898/j.cnki.11-2131/td.202108170099

[8]

左海英, 张琳, 刘菲. 固相萃取-液相色谱/质谱法测定地下水中三嗪类和. 岩矿测试, 2014, 33(1): 96-101.

[9]

李松, 饶竹, 宋淑玲, 田芹, 赵威. 气相色谱-质谱在地下水检测过程中的重要性. 岩矿测试, 2010, 29(5): 518-522.

[10]

宋淑玲, 饶竹. 气相色谱电子捕获法检测地下水中5种残留农药. 岩矿测试, 2011, 30(2): 174-177.

[11]

张琢, 邵超英, 温晓华, 何中发. 地下水中钙和镁的离子色谱法同时测定. 岩矿测试, 2010, 29(5): 621-624.

[12]

张永涛, 张莉, 左海英, 桂建业, 李晓亚, 李桂香. 重氮甲烷衍生气相色谱-质谱法检测地下水中17种酸性除草剂. 岩矿测试, 2010, 29(4): 345-349.

[13]

李松, 饶竹. 超高效液相色谱法检测地下水中苯并(a)芘. 岩矿测试, 2010, 29(6): 679-682.

[14]

李泽岩, 黄福杨, 刘丹丹, 刘艳君, 刘菲. 海河流域滹沱河冲洪积扇地下水中农药污染及分布特征. 岩矿测试, 2019, 38(2): 186-194. doi: 10.15898/j.cnki.11-2131/td.201808030091

[15]

贾静, 杨志鹏. 吹扫捕集-气相色谱/质谱法测定地下水中1,4-二噁烷. 岩矿测试, 2014, 33(4): 556-560.

[16]

饶竹, 谢原利, 陈巍. 液液萃取-固相萃取富集地下水中毒杀芬的对比研究. 岩矿测试, 2012, 31(4): 653-659.

[17]

曹攽, 马军, 李云木子. 荧光-紫外检测器高效液相色谱法检测地下水中16种多环芳烃. 岩矿测试, 2010, 29(5): 539-542.

[18]

王海娇, 王娜, 汪寅夫, 李丽君. 高效液相色谱法分析地下水和饮用水中苯并(a)芘. 岩矿测试, 2010, 29(5): 625-627.

[19]

冯静, 王海娇, 何超君, 张激光. 高效液相色谱法测定地下水中苯并(a)芘的不确定度评定. 岩矿测试, 2011, 30(5): 617-622.

[20]

刘永刚, , 刘菲. 顶空气相色谱法测定北京市地下水中的氯代烃. 岩矿测试, 2002, (1): 55-58.

计量
  • PDF下载量(9)
  • 文章访问量(427)
  • HTML全文浏览量(166)
  • 被引次数(0)
目录

Figures And Tables

哈尔滨市地下水中29种抗生素分布特征研究

马健生, 王卓, 张泽宇, 刘强, 李丽君