【引用本文】 侍金敏, 冯廷建, 付鹏飞, 等. 微波消解-电感耦合等离子体质谱法同时测定金属硫化矿中的稀散元素[J]. 岩矿测试, 2019, 38(6): 631-639. doi: 10.15898/j.cnki.11-2131/td.201805300066
SHI Jin-min, FENG Ting-jian, FU Peng-fei, et al. Determination of Dispersed Elements in Metal Sulfide Ores by Inductively Coupled Plasma-Mass Spectrometry Using Microwave Digestion[J]. Rock and Mineral Analysis, 2019, 38(6): 631-639. doi: 10.15898/j.cnki.11-2131/td.201805300066

微波消解-电感耦合等离子体质谱法同时测定金属硫化矿中的稀散元素

1. 

兰州海关技术中心, 甘肃 兰州 730010

2. 

中国检验认证集团甘肃有限公司, 甘肃 兰州 730010

3. 

金川集团股份有限公司, 甘肃 金昌 737100

收稿日期: 2018-05-30  修回日期: 2019-04-01  接受日期: 2019-07-16

基金项目: 国家质检总局科技计划项目"进口铜阳极泥检测鉴定及风险评估研究"(2017IK057);甘肃局科技计划项目"金属硫化矿中稀散元素的电感耦合等离子体质谱法研究"(2014GK004);国家质检总局科研项目"进出口含镍原料元素普查及相关检测技术研究"(2013IK001)

作者简介: 侍金敏, 硕士, 工程师, 从事有色金属矿产品光谱分析工作。E-mail:shijinmin@163.com

通信作者: 燕娜, 博士, 高级工程师, 研究方向为光谱及质谱分析技术在有色金属矿产品中的应用。E-mail:nianyue912@163.com

Determination of Dispersed Elements in Metal Sulfide Ores by Inductively Coupled Plasma-Mass Spectrometry Using Microwave Digestion

1. 

Lanzhou Customs Technology Center, Lanzhou 730010, China

2. 

Gansu Co., LTD, China Inspection and Certification Group, Lanzhou 730010, China

3. 

Jinchuan Group Co. LTD, Jinchuan 737100, China

Corresponding author: YAN Na, nianyue912@163.com

Received Date: 2018-05-30
Revised Date: 2019-04-01
Accepted Date: 2019-07-16

摘要:铜精矿、镍精矿和锌精矿是金属硫化矿物,且为大宗进口商品,准确分析其中的稀散元素有利于矿物的综合利用。这类矿物中的稀散元素含量极低,各元素性质各异,尤其Ge和Se在湿法消解中由于挥发损失而无法准确定值,很难进行多种元素的同时测定,传统的方法需要通过预先分离富集,采用不同的仪器进行测定。本文以铜精矿、锌精矿和镍精矿为代表性硫化矿,采用微波消解对样品进行密闭前处理,电感耦合等离子体质谱法(ICP-MS)测定稀散元素含量,实现了多种元素的同时测定。条件实验表明在同时检测镓、锗、硒、镉、铟、碲、镧、铊的过程中,总固溶量、内标、质谱干扰消除的条件对三种金属硫化矿均一致,只是前处理过程中用酸的选择有些差异。硝酸-盐酸-氢氟酸-过氧化氢体系适合于测定镍精矿和锌精矿中的Ga、Ge、Se、Cd、In、Te、La、Tl和铜精矿中的Ga、Ge、Se、Cd、In、La、Tl,各元素的回收率在85.5%~116.6%之间;王水溶样法更适合测定铜精矿中的Te。

关键词: 镍精矿, 铜精矿, 锌精矿, 稀散元素, 酸溶, 王水, 微波消解, 电感耦合等离子体质谱法

要点

(1) 微波消解-ICP-MS法实现了金属硫化矿中多种稀散元素的同时测定。

(2) 总固溶量、内标、质谱干扰消除的条件在三种金属硫化矿中的影响均一致。

(3) 前处理酸的选择是微波消解-ICP-MS测定金属硫化矿的关键。

Determination of Dispersed Elements in Metal Sulfide Ores by Inductively Coupled Plasma-Mass Spectrometry Using Microwave Digestion

ABSTRACT

BACKGROUND:

Copper nickel and zinc concentrates all belong to metal sulfide minerals and are import commodities. The rapid and accurate analysis of dispersed elements in these samples is beneficial to the comprehensive utilization of mineral. However, the content of rare elements in such minerals is extremely low, and the properties of each element are different. In particular, Ge and Se cannot be precisely determined due to volatilization loss in wet digestion, and it is difficult to simultaneously measure various elements.

OBJECTIVES:

To simultaneously determine the various elements in the sample.

METHODS:

Copper, zinc and nickel concentrates were used as representative sulfide minerals. The sample was pre-sealed by microwave digestion, and the content of rare elements was determined by inductively coupled plasma-mass spectrometry (ICP-MS). Simultaneous determination of various elements was realized. The experimental conditions of total solid solution, internal standard, mass spectrum interference elimination and pretreatment acid selection were compared.

RESULTS:

During determination of Ga, Ge, Se, Cd, In, Te, La and Tl by microwave digestion in ICP-MS analysis, total amount of solid solution, internal standard, and mass spectrum interference elimination conditions was consistent in three types of metal sulfide ores. Unfortunately, the acid types were not the same. HNO3-HCl-HF-H2O2 system was more suitable for measuring Ga, Ge, Se, Cd, In, Te, La and Tl in nickel and zinc concentrates, and Ga, Ge, Se, Cd, In, La and Tl in copper concentrate. The recoveries of these elements ranged from 85.5% to 116.6%. The HCl-HNO3 (3:1) system was more suitable for detecting Te in copper concentrate.

CONCLUSIONS:

The method is simple, and the simultaneous determination of multiple elements is realized. Other factors of the method are the same, the acid digestion system is the key to selection.

KEY WORDS: nickel concentrate, copper concentrate, zinc concentrate, rare and dispersed elements, acid dissolution, aqua regia, microwave digestion, inductively coupled plasma-mass spectrometry

HIGHLIGHTS

(1) The simultaneous determination of multiple dispersed elements in metal sulfide ores was realized by microwave digestion-ICP-MS.

(2) Total amount of solid solution, internal standard, mass spectrum interference removal conditions were consistent in three types of metal sulfide ores.

(3) The choice of pretreatment acid was the key to the determination of metal sulfide ores by microwave digestion-ICP-MS.

本文参考文献

[1]

程秀花, 唐南安, 张明祖, 等. 稀有分散元素分析方法的研究进展[J]. 理化检验(化学分册), 2013, 49(6): 757-764.

Cheng X H, Tang N A, Zhang M Z, et al. Recent advances of researches on analytical methods for rare and dispersed elements[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2013, 49(6): 757-764.

[2]

程秀花, 黎卫亮, 郑民奇, 等. 自制氢化物发生装置与电感耦合等离子体质谱仪联用测定地质样品中的稀散元素锗和碲[J]. 岩矿测试, 2016, 35(3): 265-270.

Cheng X H, Li W L, Zheng M Q, et al. Determination of germanium and tellurium in geological samples by a self-developed hydride generation device paired with inductively coupled plasma-mass spectrometer[J]. Rock and Mineral Analysis, 2016, 35(3): 265-270.

[3]

杨俊衡. 微波消解试样-原子荧光光谱法测定土壤中硒碲[J]. 理化检验(化学分册), 2008, 44(3): 240-242.

Yang J H. Microwave-assisted sample digestion AFS determination of Se and Te in soil[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2008, 44(3): 240-242.

[4]

Thangavel S, Dash K, Dhavile S M, et al. Determination of traces of As, B, Bi, Ga, Ge, P, Pb, Sb, Se, Si and Te in high-purity nickel using inductively coupled plasma optical emission spectrometry (ICP-OES)[J].Talanta, 2015, 131: 505-509. doi: 10.1016/j.talanta.2014.08.026

[5]

程秀花, 黎卫亮, 王海蓉, 等. 封闭酸溶样ICP-MS法直接测定地质样品中镓、铟、铊、锗[J]. 分析试验室, 2015, 34(10): 1204-1208.

Cheng X H, Li W L, Wang H R, et al. Determination of gallium, thallium and germanium in geological samples after pressurized acid digestion by in inductively coupled plasma-mass spectrometry[J]. Chinese Journal of Analysis Laboratory, 2015, 34(10): 1204-1208.

[6]

王佳翰, 汤凯, 向懋笔, 等. 密闭消解-电感耦合等离子体质谱法测定铅矿石中痕量镓铟铊镉锗[J]. 冶金分析, 2018, 38(12): 19-25.

Wang J H, Tang K, Xiang M B, et al. Determination of tracegallium, indium, thallum, cadmium and germaniumin lead ore by inductively coupled plasma mass spectrometry with closed digestion[J]. Metallurgical Analysis, 2018, 38(12): 19-25.

[7]

张洁, 阳国运. 树脂交换分离-电感耦合等离子体质谱法测定铅锌矿中钨钼锡锗硒碲[J]. 岩矿测试, 2018, 37(6): 657-663.

Zhang J, Yang G Y. Determination of tungsten, molybdenum, tin, germanium, selenium and tellurium in lead-zinc ore by inductively coupled plasma-mass spectrometry with resin exchange separation[J]. Rock and Mineral Analysis, 2018, 37(6): 657-663.

[8]

陈浩凤, 于亚辉, 刘军, 等. 电感耦合等离子体质谱法测定多金属矿中铟和铊[J]. 理化检验(化学分册), 2018, 54(2): 220-222.

Chen H F, Yu Y H, Liu J, et al. Determination of indium and bismuth in polymetallic ore by inductively coupled plasma mass spectrometry[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2018, 54(2): 220-222.

[9]

Satyanarayanan M, Balaram V, Sawant S S, et al. Rapid determination of REEs, PGEs, and other trace elements in geological and environmental materials by high resolution inductively coupled plasma mass spectrometry[J]. Atomic Spectroscopy, 2018, 39(1): 1-15.

[10]

李湘, 王雪枫, 王奎, 等. 氢化物发生-原子荧光光谱法同时测定铜精矿中硒和碲的含量[J]. 理化检验(化学分册), 2017, 53(1): 64-67.

Li X, Wang X F, Wang K, et al. Simultaneous determination of Se and Te in copper concentrate by HG-AFS[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2017, 53(1): 64-67.

[11]

黎香荣, 罗明贵, 韦新红, 等. 微波消解-电感耦合等离子体质谱法测定锌精矿中痕量铊[J]. 冶金分析, 2016, 36(7): 74-78.

Li X R, Luo M G, Wei X H, et al. Determination of trace thallium in zinc concentrate by microwave digestion-inductively coupled plasm mass spectrometry[J]. Metallurgical Analysis, 2016, 36(7): 74-78.

[12]

李超, 刘英波, 刘维理, 等. 电感耦合等离子体质谱法测定铅精矿和锌精矿中铊的含量[J]. 云南冶金, 2016, 45(4): 66-70. doi: 10.3969/j.issn.1006-0308.2016.04.015

Li C, Liu Y B, Liu W L, et al. The determination on thallium content in lead and zinc concentrate by inductively coupled plasma mass spectrometry[J].Yunnan Metallurgy, 2016, 45(4): 66-70. doi: 10.3969/j.issn.1006-0308.2016.04.015

[13]

王洪桂, 陶丽萍, 胡兰基, 等. 微波消解-电感耦合等离子体质谱法(ICP-MS)测定锌精矿中的铟和锗[J]. 中国无机分析化学, 2015, 5(1): 38-40. doi: 10.3969/j.issn.2095-1035.2015.01.011

Wang H G, Tao L P, Hu L J, et al. Determination of indium and germanium in zinc concentrate by microwave digestion-ICP-MS[J].Chinese Journal of Inorganic Analytical Chemistry, 2015, 5(1): 38-40. doi: 10.3969/j.issn.2095-1035.2015.01.011

[14]

陈永欣, 黎香荣, 谢毓群, 等. 微波消解-等离子体发射光谱法测定含铜物料中9种组分[J]. 岩矿测试, 2011, 30(2): 200-204. doi: 10.3969/j.issn.0254-5357.2011.02.016

Chen Y X, Li X R, Xie Y Q, et al. Inductively coupled plasma-atomic emission spectrometric determination of 9 components in materials containing copper with microwave-assisted digestion[J]. Rock and Mineral Analysis, 2011, 30(2): 200-204. doi: 10.3969/j.issn.0254-5357.2011.02.016

[15]

杨丽飞, 苏明跃, 郭芬, 等. 铜精矿样品的高压密封微波消解方法研究[J]. 冶金分析, 2011, 31(11): 58-62. doi: 10.3969/j.issn.1000-7571.2011.11.012

Yang L F, Su M Y, Guo F, et al. Study on high pressure sealed microwave digestion method of copper concentrate samples[J].Metallurgical Analysis, 2011, 31(11): 58-62. doi: 10.3969/j.issn.1000-7571.2011.11.012

[16]

陈玉红, 王海舟, 张华, 等. 微波消解电感耦合等离子体质谱法测定铝合金中多元素[J]. 冶金分析, 2008, 28(7): 1-6. doi: 10.3969/j.issn.1000-7571.2008.07.001

Chen Y H, Wang H Z, Zhang H, et al. Determination of multi-elements in aluminum alloys by using microwave digestion inductively coupled plasma mass spectrometry[J].Metallurgical Analysis, 2008, 28(7): 1-6. doi: 10.3969/j.issn.1000-7571.2008.07.001

[17]

陈波, 刘洪青, 邢应香, 等. 电感耦合等离子体质谱法同时测定地质样品中锗硒碲[J]. 岩矿测试, 2014, 33(2): 192-196. doi: 10.3969/j.issn.0254-5357.2014.02.006

Chen B, Liu H Q, Xing Y X, et al. Simultaneous determination of Ge, Se and Te in geological samples by inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2014, 33(2): 192-196. doi: 10.3969/j.issn.0254-5357.2014.02.006

[18]

任丽. 密闭消解-ICP-MS法测定地质样品中稀有、稀土、稀散元素[J]. 新疆有色金属, 2018, 41(2): 93-95.

Ren L. Determination of rare, rare earth and rare elements in geological samples by closed digestion-ICP-MS[J]. Xinjiang Nonferrous Metals, 2018, 41(2): 93-95.

[19]

雷超海. 微波消解-ICP-MS法测定昆布中15种稀土元素[J]. 广州化工, 2017, 45(5): 68-69. doi: 10.3969/j.issn.1001-9677.2017.05.025

Lei C H. Determination of 15 rare earth elements in Ecklonia Kurome determinated with microwave digestion-ICP-MS[J].Guangzhou Chemical Industry, 2017, 45(5): 68-69. doi: 10.3969/j.issn.1001-9677.2017.05.025

[20]

叶青, 刘林海, 肖莉红, 等. 湿法消解和微波消解微量滴定法测定铜试样中铜的含量[J]. 岩矿测试, 2007, 26(6): 493-494. doi: 10.3969/j.issn.0254-5357.2007.06.015

Ye Q, Liu L H, Xiao L H, et al. Determination of copper-containing samples by micro-titrimetry with wet digestion and microwave digestion[J]. Rock and Mineral Analysis, 2007, 26(6): 493-494. doi: 10.3969/j.issn.0254-5357.2007.06.015

[21]

于亚辉, 李振, 陈浩凤, 等. 电感耦合等离子体质谱法测定岩石中的稀散元素锗[J]. 当代化工, 2016, 45(2): 432-434. doi: 10.3969/j.issn.1671-0460.2016.02.074

Yu Y H, Li Z, Chen H F, et al. Determination of dilute element Ge in rock by inductively coupled plasma-mass spectrometry[J].Contemporary Chemical Industry, 2016, 45(2): 432-434. doi: 10.3969/j.issn.1671-0460.2016.02.074

[22]

李华玲, 郑荣华, 沈加林, 等. 高分辨电感耦合等离子体质谱法测定地质样品中的微量锗[J]. 理化检验(化学分册), 2014, 50(9): 1101-1103.

Li H L, Zheng R H, Shen J L, et al. High resolution ICP-MS determination of trace amout of germanium in geological samples[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2014, 50(9): 1101-1103.

[23]

王洪桂, 肖娟, 陶丽萍, 等. 微波消解ICP-MS测试铅精矿中的铟和锗[J]. 中国非金属矿工业导刊, 2015, (1): 22-23. doi: 10.3969/j.issn.1007-9386.2015.01.008

Wang H G, Xiao J, Tao L P, et al. Microwave digestion ICP-MS test of indium and germanium in Pb concentrate[J].China Non-Metallic Mining Industry Guide, 2015, (1): 22-23. doi: 10.3969/j.issn.1007-9386.2015.01.008

[24]

蒋天成, 刘守廷, 梁利诚, 等. 微波消解ICP-MS法测定广西北部湾海鸭蛋中硒和锗的含量[J]. 化学分析计量, 2012, 21(4): 27-30. doi: 10.3969/j.issn.1008-6145.2012.04.008

Jiang T C, Liu S T, Liang L C, et al. Determination of selenium and germanium in sea duck eggs from Guangxi Beibu Gulf by microwave digestion-inductively coupled plasma mass spectrometry[J].Chemical Analysis and Meterage, 2012, 21(4): 27-30. doi: 10.3969/j.issn.1008-6145.2012.04.008

[25]

赵小龙, 燕娜, 侍金敏, 等. 微波消解-电感耦合等离子体质谱法测定镍精矿中Ga、Ge、Se、Cd、In、Te、La和Tl[J]. 理化检验(化学分册), 2017, 53(9): 1031-1035.

Zhao X L, Yan N, Shi J M, et al. Determination of Ga, Ge, Se, Cd, In, Te, La and Tl in nickel concentrates by ICP-MS combined with microwave digestion[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2017, 53(9): 1031-1035.

[26]

燕娜, 赵生国, 赵伟, 等. 微波消解-电感耦合等离子体质谱测定铜精矿中7种稀有金属元素[J]. 岩矿测试, 2014, 33(2): 197-202. doi: 10.3969/j.issn.0254-5357.2014.02.007

Yan N, Zhao S G, Zhao W, et al. Determination of seven rare metal elements in copper concentrates by inductively coupled plasma-mass spectrometry combined with microwave digestion[J]. Rock and Mineral Analysis, 2014, 33(2): 197-202. doi: 10.3969/j.issn.0254-5357.2014.02.007

[27]

李冰, 周剑雄, 詹秀春, 等. 无机多元素现代仪器分析技术[J]. 地质学报, 2011, 85(11): 1878-1916.

Li B, Zhou J X, Zhan X C, et al. Inorganic multi-element modern instrument analysis technology[J]. Acta Geologica Sinica, 2011, 85(11): 1878-1916.

[28]

孙朝阳, 董利明, 贺颖婷, 等. 电感耦合等离子体质谱法测定地质样品中钪镓锗铟镉铊时的干扰及其消除方法[J]. 理化检验(化学分册), 2016, 52(9): 1026-1030.

Sun C Y, Dong L M, He Y T, et al. Elimination of interferences in ICP-MS determination of Se, Ga, Ge, In, Cd and Tl in geological samples[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2016, 52(9): 1026-1030.

[29]

熊英, 吴赫, 王龙山, 等. 电感耦合等离子体质谱法同时测定铜铅锌矿石中微量元素镓铟铊钨钼的干扰消除[J]. 岩矿测试, 2011, 30(1): 7-11. doi: 10.3969/j.issn.0254-5357.2011.01.002

Xiong Y, Wu H, Wang L S, et al. Elimination of interference in simultaneous determination of trace Ga, In, Ta, W and Mo in copper, lead and zinc ores by inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2011, 30(1): 7-11. doi: 10.3969/j.issn.0254-5357.2011.01.002

[30]

赵小学, 张霖琳, 张建平, 等. ICP-MS在环境分析中的质谱干扰及其消除[J]. 中国环境监测, 2014, 30(3): 101-106. doi: 10.3969/j.issn.1002-6002.2014.03.022

Zhao X X, Zhang L L, Zhang J P, et al. Spectral interference and elimination of environmental analysis with ICP-MS[J].Environmental Monitoring in China, 2014, 30(3): 101-106. doi: 10.3969/j.issn.1002-6002.2014.03.022

[31]

李国榕, 王亚平, 孙元方, 等. 电感耦合等离子体质谱法测定地质样品中稀散元素铬镓铟碲铊[J]. 岩矿测试, 2010, 29(3): 255-258. doi: 10.3969/j.issn.0254-5357.2010.03.012

Li G R, Wang Y P, Sun Y F, et al. Determination of Cr, Ga, In, Te and Tl in geological samples by inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2010, 29(3): 255-258. doi: 10.3969/j.issn.0254-5357.2010.03.012

相似文献(共20条)

[1]

肖晓辉, 黄晓刚, 陈振, 宋波. 中性浸出-硫氰酸汞-硫酸高铁铵分光光度法测定锌精矿中的氯量. 岩矿测试, 2008, 27(3): 227-229.

[2]

林立, 周谙非, 张曼玲, 田艳玲, 杨彦丽. 微波消解-电感耦合等离子体发射光谱法分析食品中的总硼. 岩矿测试, 2008, 27(1): 21-24.

[3]

燕娜, 赵生国, 赵伟, 郑红文. 微波消解-电感耦合等离子体质谱测定铜精矿中7种稀有金属元素. 岩矿测试, 2014, 33(2): 197-202.

[4]

陈昌俊, 马红岩, 胡海明, 陈彦侠, 吴世平. 微波炉消解原子吸收法测定铜精矿中多元素. 岩矿测试, 1993, (1): 28-30.

[5]

胡德新, 谷松海, 任海, 马德起, 杨丽飞, 苏明跃. D290树脂-活性炭吸附富集电感耦合等离子体质谱法测定铜精矿中铂钯. 岩矿测试, 2013, 32(4): 572-575.

[6]

王建琴, 王劲榕. 铜精矿中铅锌的连续测定. 岩矿测试, 2000, (4): 295-297.

[7]

张静梅, 张培新, 高孝礼, 黄光明, 窦银萍. 电感耦合等离子体质谱法同时测定地下水中硼溴碘. 岩矿测试, 2008, 27(1): 25-28.

[8]

尹周澜, 王薇惟, 覃祚明, 黄旭. 电感耦合等离子体质谱法测定高纯铟中铁. 岩矿测试, 2008, 27(3): 193-196.

[9]

李刚, 曹小燕. 电感耦合等离子体质谱法测定地质样品中锗和镉的干扰及校正. 岩矿测试, 2008, 27(3): 197-200.

[10]

沈宇, 张尼, 高小红, 李皓, 马怡飞. 微波消解电感耦合等离子体质谱法测定地球化学样品中钒铬镍锗砷. 岩矿测试, 2014, (5): 649-654.

[11]

胡小云, 蔡泓. 阴离子交换柱分离—火焰原子吸收法测定铜精矿中微量金. 岩矿测试, 1999, (1): 65-68.

[12]

程志中, 刘妹, 黄宏库, 顾铁新, 鄢卫东. 镍矿石和镍精矿标准物质研制. 岩矿测试, 2013, 32(4): 600-607.

[13]

张宁, 刘海波, 方增坤. 电感耦合等离子体发射光谱法测定锌精矿中的二氧化硅. 岩矿测试, 2011, 30(3): 325-327.

[14]

崔翔, 刘顺琼, 陈永欣, 谢毓群, 吕泽娥. 电感耦合等离子体发射光谱法测定铜精矿中银砷铅锌. 岩矿测试, 2007, 26(6): 497-499.

[15]

周庆华, 龙洲雄. 原子吸收分光光度法测定锌精矿中锌. 岩矿测试, 1999, (1): 69-71.

[16]

唐碧玉, 施意华, 杨仲平, 邱丽, 古行乾, 彭光菊. 灰化酸溶-电感耦合等离子体质谱法测定煤炭中的镓锗铟. 岩矿测试, 2018, 37(4): 371-378. doi: 10.15898/j.cnki.11-2131/td.201711250186

[17]

田琼, 张文昔, 宋嘉宁, 吕善胜. 波长色散X射线荧光光谱法测定锌精矿中主次量成分. 岩矿测试, 2012, 31(3): 463-467.

[18]

李国榕, 王亚平, 孙元方, 董天姿, 王海鹰. 电感耦合等离子体质谱法测定地质样品中稀散元素铬镓铟碲铊. 岩矿测试, 2010, 29(3): 255-258.

[19]

熊采华, 储溱, 赵志飞, 熊玉祥, 柳建一. 硝酸-氢氟酸酸溶电感耦合等离子体质谱法测定黑钨矿单矿物中稀土元素. 岩矿测试, 2012, 31(4): 602-606.

[20]

陈少鸿, 王谦, 陈建国, 应晓浒. 铜精矿样品的氧化条件及其机理探讨. 岩矿测试, 2005, (1): 47-50.

计量
  • PDF下载量(19)
  • 文章访问量(124)
  • HTML全文浏览量(20)
  • 被引次数(0)
目录

Figures And Tables

微波消解-电感耦合等离子体质谱法同时测定金属硫化矿中的稀散元素

侍金敏, 冯廷建, 付鹏飞, 汤勇武, 陈大林, 张春翔, 燕娜