【引用本文】 况琴, 吴山, 黄庭, 等. 生物质炭和钢渣对江西丰城典型富硒区土壤硒有效性的调控效果与机理研究[J]. 岩矿测试, 2019, 38(6): 705-714. doi: 10.15898/j.cnki.11-2131/td.201901190014
KUANG Qin, WU Shan, HUANG Ting, et al. Effect and Mechanism of Biomass Carbon and Steel Slag as Ameliorants on Soil Selenium Availability in a Typical Se-rich Area of Fengcheng City, Jiangxi Province[J]. Rock and Mineral Analysis, 2019, 38(6): 705-714. doi: 10.15898/j.cnki.11-2131/td.201901190014

生物质炭和钢渣对江西丰城典型富硒区土壤硒有效性的调控效果与机理研究

1. 

南昌大学资源环境与化工学院, 鄱阳湖环境与资源利用教育部重点实验室, 江西 南昌 330031

2. 

武汉中地格林环保科技有限公司, 湖北 武汉 430074

收稿日期: 2019-01-19  修回日期: 2019-04-08  接受日期: 2019-07-16

基金项目: 国家重点研发计划项目(2017YFD0800900)

作者简介: 况琴, 硕士, 环境科学与工程专业。E-mail:645262207@qq.com

通信作者: 吴代赦, 博士, 教授, 主要从事环境地球化学研究。E-mail:dswu@ncu.edu.cn

Effect and Mechanism of Biomass Carbon and Steel Slag as Ameliorants on Soil Selenium Availability in a Typical Se-rich Area of Fengcheng City, Jiangxi Province

1. 

Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education; School of Resource, Environment and Chemical Engineering, Nanchang University, Nanchang 330031, China

2. 

Wuhan Zongdy Green Environmental Protection Technology Co., LTD, Wuhan 430074, China

Corresponding author: WU Dai-she, dswu@ncu.edu.cn

Received Date: 2019-01-19
Revised Date: 2019-04-08
Accepted Date: 2019-07-16

摘要:江西丰城富硒土壤中总硒含量较高,但能被植物直接吸收利用的有效态硒含量偏低。土壤中硒的生物有效性是影响作物富硒的关键因素,寻找安全有效的改良剂对提高富硒土壤中硒的有效性至关重要。本文以生物质炭和钢渣为改良剂,共设置了8个不同处理,通过室内土培试验和盆栽实验,原子荧光光谱法测定有效态硒的含量,探究了两种改良剂在不同处理水平下对丰城富硒土壤中有效硒的调控效果。土培试验结果表明,施加不同量的生物质炭和钢渣均能提高研究区土壤pH,提升幅度为0.1~3.79个单位。元素形态分析结果表明,改良剂主要通过影响有机结合态硒来调控土壤有效态硒,施加生物质炭的土壤中有机质含量显著增加,且有机质对硒表现为固定作用,导致有效态硒含量降幅为8.4%~15.1%,使土壤有效硒含量总体偏低;而钢渣对土壤pH的显著影响有利于活化土壤中的硒元素,土壤有效态硒含量可提高1.4~2.0倍。盆栽实验结果表明,土壤经钢渣处理后小白菜硒含量提高30%以上,而经生物质炭处理后小白菜硒含量降幅在7.14%~42.8%之间。本研究认为,生物质炭不适用于调控研究区土壤中硒的有效性,钢渣可作为研究区土壤硒有效性的调控材料,既实现了固废再利用,也提高了土壤中硒的有效度。

关键词: 富硒土壤, 有效硒, 原子荧光光谱法, 土壤改良剂, 生物质炭, 钢渣

要点

(1) 揭示了土壤理化性质(pH、有机质和阳离子交换量)对土壤有效硒的影响。

(2) 对比了生物质炭和钢渣两种改良剂对富硒红壤中硒有效性的调控效果。

(3) 钢渣可提高研究区土壤中硒的有效性,生物质炭不适合作为该地区土壤硒有效性的调控材料。

Effect and Mechanism of Biomass Carbon and Steel Slag as Ameliorants on Soil Selenium Availability in a Typical Se-rich Area of Fengcheng City, Jiangxi Province

ABSTRACT

BACKGROUND:

The total selenium content in the selenium-rich red soils in Fengcheng City of Jiangxi Province was relatively high, but the available selenium content directly absorbed and utilized by plants was low. The bioavailability of selenium in soils is a key factor affecting selenium in crops.

OBJECTIVES:

To find safe and effective ameliorants for improving the availability of selenium in selenium-rich soils.

METHODS:

Biomass carbon and steel slag were used as modifiers, and 8 different experiments were set up. Through indoor soil test and pot experiment, the content of available selenium in the selenium-rich red soils in Fengcheng was determined by atomic fluorescence spectrometry, and the regulation effect of two kinds of ameliorants on available selenium under different treatment levels was investigated.

RESULTS:

The results of the soil tests showed that different amounts of biomass carbon and steel slag can increase the soil pH in the study area by 0.1-3.79 units. The results of elemental speciation analysis indicated that the ameliorant mainly controlled the soil available selenium by affecting the organically bound selenium. The soil organic matter content increased significantly after the application of biochar in the soil, but the organic matter showed a fixed effect on selenium. The available selenium content decreased by 8.4%-15.1%, resulted in the overall lower available selenium content in soils. The significant effect of steel slag on soil pH was beneficial to the activation of selenium in soils, and the soil available selenium content can be increased by 1.4 to 2.0 times. The results of the pot experiment showed that the selenium content of Chinese cabbage increased by more than 30% after treatment with steel slag, while the selenium content of Chinese cabbage decreased by 7.14%-42.8% after treatment with biochar.

CONCLUSIONS:

This study shows that biochar is not suitable for regulating the availability of selenium in the soil of the study area. Steel slag can be used as a control material for soil selenium availability in the study area, which not only realizes solid waste recycling, but also improves the availability of selenium in soil.

KEY WORDS: selenium-rich soil, available selenium, atomic fluorescence spectrometry, soil ameliorant, biomass carbon, steel slag

HIGHLIGHTS

(1) The effect of physical and chemical properties of soil (pH, organic and cation exchange capacity) on soil selenium availability was revealed

(2) The effects of two modifiers on the selenium availability in selenium-rich red soils were compared.

(3) Steel slag can effectively improve the availability of selenium in soils in the study area, while biochar was not suitable as a adjusting material for selenium availability in soils in the region.

本文参考文献

[1]

李杰, 刘久臣, 汤奇峰, 等. 川西高原地区水体中硒含量及分布特征研究[J]. 岩矿测试, 2018, 37(2): 183-192.

Li J, Liu J C, Tang Q F, et al. Study of the content and distribution of selenium in water samples from the Western Sichuan Plateau and the incidence of Kaschin Beck disease[J]. Rock and Mineral Analysis, 2018, 37(2): 183-192.

[2]

王锐, 余涛, 杨忠芳, 等. 富硒土壤硒生物有效性及影响因素研究[J]. 长江流域资源与环境, 2018, 27(7): 1647-1654.

Wang R, Yu T, Yang Z F, et al. Bioavailability of soil selenium and its influencing factors in selenium-enriched soil[J]. Resources and Environment in the Yangtze Basin, 2018, 27(7): 1647-1654.

[3]

曹容浩. 福建省龙海市表层土壤硒含量及影响因素研究[J]. 岩矿测试, 2017, 36(3): 282-288.

Cao R H. Study on selenium content of surface soils in Longhai, Fujian and its influencing factors[J]. Rock and Mineral Analysis, 2017, 36(3): 282-288.

[4]

杨琼, 侯青叶, 顾秋蓓, 等. 广西武鸣县典型土壤剖面Se的地球化学特征及其影响因素研究[J]. 现代地质, 2016, 30(2): 455-462. doi: 10.3969/j.issn.1000-8527.2016.02.022

Yang Q, Hou Q Y, Gu Q B, et al. Study of geochemical characteristics and influencing factors of soil selenium[J].Geoscience, 2016, 30(2): 455-462. doi: 10.3969/j.issn.1000-8527.2016.02.022

[5]

Rayman M P, Sargent M, Infante H G, et al. Food-chain selenium and human health:Emphasis on intake[J].The British Journal of Nutrition, 2008, 100(2). doi: 10.1017/S0007114508922522

[6]

郭文慧, 刘庆, 史衍玺, 等. 施硒对紫甘薯硒素累积及产量和品质的影响研究[J]. 中国粮油学报, 2016, 31(9): 31-37. doi: 10.3969/j.issn.1003-0174.2016.09.006

Guo W H, Liu Q, Shi Y X, et al. Effects of applying selenium on the accumulation of selenium, yield, and quality of purple sweetpotato[J].Journal of the Chinese Cereals and Oils Association, 2016, 31(9): 31-37. doi: 10.3969/j.issn.1003-0174.2016.09.006

[7]

穆婷婷, 杜慧玲, 景小兰, 等. 外源硒对谷子产量因子及硒含量的影响[J]. 作物杂志, 2017, 14(1): 73-78.

Mu T T, Du H L, Jing X L, et al. Effects of exogenous selenium on yield components and selenium content in grain of foxtail millet[J]. Crops, 2017, 14(1): 73-78.

[8]

谢邦廷, 贺灵, 江官军, 等. 中国南方典型富硒区土壤硒有效性调控与评价[J]. 岩矿测试, 2017, 36(3): 273-281.

Xie B T, He L, Jiang G J, et al. Regulation and evaluation of selenium availability in Se-rich soils in Southern China[J]. Rock and Mineral Analysis, 2017, 36(3): 273-281.

[9]

谢珊妮, 宗良纲, 张琪惠, 等. 3种改良剂对强酸性高硒茶园土壤硒有效性调控效果与机理[J]. 茶叶科学, 2017, 37(3): 299-307. doi: 10.3969/j.issn.1000-369X.2017.03.010

Xie S N, Zong L G, Zhang Q H, et al. Effects of three amendments on selenium availability of highly acidic and Se-rich soil in tea garden and their relative mechanisms[J].Journal of Tea Science, 2017, 37(3): 299-307. doi: 10.3969/j.issn.1000-369X.2017.03.010

[10]

廖桥, 彭博, 李碧雄, 等. 炉渣建材资源化利用现状[J]. 重庆建筑, 2018, 17(3): 53-57. doi: 10.3969/j.issn.1671-9107.2018.03.53

Liao Q, Peng B, Li B X, et al. A review of resource utilization of slag building material[J].Chongqing Architecture, 2018, 17(3): 53-57. doi: 10.3969/j.issn.1671-9107.2018.03.53

[11]

杨慧, 刘立晶, 刘忠军, 等. 我国农田化肥施用现状分析及建议[J]. 农机化研究, 2014, 36(9): 260-264. doi: 10.3969/j.issn.1003-188X.2014.09.059

Yang H, Liu L J, Liu Z J, et al. Analysis and suggestions of agricultural fertilizer application in China[J].Agricultural Mechanization Research, 2014, 36(9): 260-264. doi: 10.3969/j.issn.1003-188X.2014.09.059

[12]

王怀臣, 冯雷雨, 陈银广, 等. 废物资源化制备生物质炭及其应用的研究进展[J]. 化工进展, 2012, 31(4): 907-914.

Wang H C, Feng L Y, Chen Y G, et al. Advances in biochar production from wastes and its applications[J]. Chemical Industry and Engineering Progress, 2012, 31(4): 907-914.

[13]

王晨晔, 陈艳, 郭占成, 等. 以钢渣为原料合成Ca-Mg-Al-Fe层状双金属氢氧化物及其对甲基橙的吸附[J]. 过程工程学报, 2018, 18(3): 570-574.

Wang C Y, Chen Y, Guo Z C, et al. Preparation of Ca-Mg-Al-Fe layered double hydroxides using steel-making slag as raw material and its adsorption to methyl orange[J]. The Chinese Journal of Process Engineering, 2018, 18(3): 570-574.

[14]

邓腾灏博, 谷海红, 仇荣亮, 等. 钢渣施用对多金属复合污染土壤的改良效果及水稻吸收重金属的影响[J]. 农业环境科学学报, 2011, 30(3): 455-460.

Deng Teng H B, Gu H H, Qiu R L, et al. Ameliorative effects of steel slag application on multi-metal contaminated soil and heavy metal uptake of rice[J]. Journal of Agro-Environment Science, 2011, 30(3): 455-460.

[15]

韩笑, 周越, 吴文良, 等. 富硒土壤硒含量及其与土壤理化性状的关系——以江西丰城为例[J]. 农业环境科学学报, 2018, 37(6): 1177-1183.

Han X, Zhou Y, Wu W L, et al. Selenium content of farmland soils and their relationship with main soil properties in Fengcheng, Jiangxi[J]. Journal of Agro-Environment Science, 2018, 37(6): 1177-1183.

[16]

李家熙,张光弟. 人体硒缺乏与过剩的地球化学环境特征及其预测[M] . 北京: 地质出版社, 2000

Li J X,Zhang G D. Characteristics and Prediction of Human Selenium Deficiency and Excess Geochemical Environment[M] . Beijing: Geological Publishing House, 2000
[17]

诸旭东, 宗良纲, 马迅, 等. 内源调控与外源补硒对红壤中硒有效性及水稻产量的影响[J]. 土壤通报, 2016, 47(2): 398-404.

Zhu X D, Zong L G, Ma X, et al. Effects of endogenous and exogenous regulation on effectiveness of selenium and rice yield in selenium enriched soil[J]. Chinese Journal of Soil Science, 2016, 47(2): 398-404.

[18]

瞿建国, 徐伯兴, 龚书椿, 等. 连续浸提技术测定土壤和沉积物中硒的形态[J]. 环境化学, 1997, 16(3): 277-283.

Qu J G, Xu B X, Gong S C, et al. Sequential extraction techniques for determination of selenium speciation in soils and sediments[J].Environmental Chemistry, 1997, 16(3): 277-283.

[19]

贺攀红, 杨珍, 荣耀, 等. 氢化物发生-电感耦合等离子体发射光谱法测定铀矿地质样品中痕量硒[J]. 岩矿测试, 2016, 35(2): 139-144.

He P H, Yang Z, Rong Y, et al. Determination of trace selenium in uranium-bearing geological samples by hydride generation-inductively coupled plasma-optimal emission spectrometry[J]. Rock and Mineral Analysis, 2016, 35(2): 139-144.

[20]

陈再明, 陈宝梁, 周丹丹, 等. 水稻秸秆生物碳的结构特征及其对有机污染物的吸附性能[J]. 环境科学学报, 2013, 33(1): 9-19.

Chen Z M, Chen B L, Zhou D D, et al. Composition and sorption properties of rice-straw derived biochars[J]. Acta Scientiae Circumstantiae, 2013, 33(1): 9-19.

[21]

赵世翔, 于小玲, 李忠徽, 等. 不同温度制备的生物质炭对土壤有机碳及其组分的影响:对土壤活性有机碳的影响[J]. 环境科学, 2017, 38(1): 333-342.

Zhao S X, Yu X L, Li Z H, et al. Effects of biochar pyrolyzed at varying temperatures on soil organic carbon and its components:Influence on the soil active organic carbon[J]. Environmental Science, 2017, 38(1): 333-342.

[22]

赵世翔, 于小玲, 李忠徽, 等. 不同温度制备的生物质炭对土壤有机碳及其组分的影响:对土壤腐殖物质组成及性质的影响[J]. 环境科学, 2017, 38(2): 769-782.

Zhao S X, Yu X L, Li Z H, et al. Effects of biochar pyrolyzed at varying temperatures on soil organic carbon and its components:Influence on the composition and properties of humic substances[J]. Environmental Science, 2017, 38(2): 769-782.

[23]

Wang D, Xue M Y, Wang Y K, et al. Effects of straw amendment on selenium aging in soils mechanism and influential factors[J]. Science of the Total Environment, 2019, 657(20): 871-881.

[24]

袁金华, 徐仁扣. 生物质炭对酸性土壤改良作用的研究进展[J]. 土壤, 2012, 44(4): 541-547. doi: 10.3969/j.issn.0253-9829.2012.04.003

Yuan J H, Xu R K. Research progress of amelioration effects of biochars on acid soils[J].Soil, 2012, 44(4): 541-547. doi: 10.3969/j.issn.0253-9829.2012.04.003

[25]

韩学博.不同生物质炭对植烟土壤理化性状、重金属生物有效性及烤烟生长的影响[D].临安: 浙江农林大学, 2017.

Han X B.Effect of Different Biochars on Soil Physical and Chemical Properties, Heavy Metal Bioavailability and Tobacco Growth[D].Lin'an: Zhejiang Agriculture & Forestry University, 2017.

[26]

朱李俊, 刘国威, 王磊, 等. 钢渣对稀土矿区酸性土壤的改良效果[J]. 安徽农业科学, 2016, 44(6): 159-162. doi: 10.3969/j.issn.0517-6611.2016.06.054

Zhu L J, Liu G W, Wang L, et al. Improvement effect of steel slag on acid soil in rare earth mining area[J].Journal of Anhui Agricultural Sciences, 2016, 44(6): 159-162. doi: 10.3969/j.issn.0517-6611.2016.06.054

[27]

Kamei-Ishikawa N, Tagami K, Uchida S, et al. Sorption kinetics of selenium on humic acid[J].Journal of Radioanalytical and Nuclear Chemistry, 2007, 274(3): 555-561. doi: 10.1007/s10967-006-6951-8

[28]

卢再亮, 李九玉, 徐仁扣, 等. 钢渣与生物质炭配合施用对红壤酸度的改良效果[J]. 土壤, 2013, 45(4): 722-726.

Lu Z L, Li J Y, Xu R K, et al. Amelioration effects of steel slag combined with biochar on red soil acidity[J]. Soil, 2013, 45(4): 722-726.

[29]

花莉, 金素素, 唐志刚, 等. 生物质炭输入对土壤CO2释放影响的研究[J]. 安徽农业科学, 2012, 40(11): 6501-6503. doi: 10.3969/j.issn.0517-6611.2012.11.061

Hua L, Jin S S, Tang Z G, et al. Effect of bio-charcoal on release of carbon dioxide in soil[J].Journal of Anhui Agricultural Sciences, 2012, 40(11): 6501-6503. doi: 10.3969/j.issn.0517-6611.2012.11.061

[30]

何振立, 杨肖娥, 祝军, 等. 中国几种土壤中的有机态硒及其分布特征[J]. 环境科学学报, 1993, 13(3): 281-287.

He Z L, Yang X E, Zhu J, et al. Organic selenium and its distribution in soils[J]. Journal of Environmental Science, 1993, 13(3): 281-287.

[31]

章海波, 骆永明, 吴龙华, 等. 香港土壤研究Ⅱ.土壤硒的含量、分布及其影响因素[J]. 土壤学报, 2005, 42(3): 404-410. doi: 10.3321/j.issn:0564-3929.2005.03.009

Zhang H B, Luo Y M, Wu L H, et al. Hong Kong soil researches Ⅱ.Distribution and content of selenium in soils[J].Acta Pedologica Sinica, 2005, 42(3): 404-410. doi: 10.3321/j.issn:0564-3929.2005.03.009

[32]

王文艳, 张丽萍, 刘俏, 等. 黄土高原小流域土壤阳离子交换量分布特征及影响因子[J]. 水土保持学报, 2012, 26(5): 123-127.

Wang W Y, Zhang L P, Liu Q, et al. Distribution and affecting factors of soil cation exchange capacity in watershed of the Loess Plateau[J]. Journal of Soil and Water Conservation, 2012, 26(5): 123-127.

相似文献(共20条)

[1]

林光西. 氢化物发生-原子荧光光谱法直接测定地球化学样品中痕量碲. 岩矿测试, 2008, 27(2): 151-152.

[2]

冯辉, 张学君, 张群, 杜丽娜. 北京大清河流域生态涵养区富硒土壤资源分布特征和来源解析. 岩矿测试, 2019, 38(6): 693-704. doi: 10.15898/j.cnki.11-2131/td.201905270071

[3]

陈志兵. 碱性模式氢化物发生—原子荧光光谱法测定土壤中的痕量硒. 岩矿测试, 2002, (4): 311-314.

[4]

周姣花, 汪建宇, 钟莅湘, 陈浩风, 王玉林. 氢化物发生-原子荧光光谱法测定生物样品中的硒. 岩矿测试, 2011, 30(2): 214-216.

[5]

刘琳娟, 张琪, 陆培培. 标准加入-原子吸收光谱法测定钢渣中的铁. 岩矿测试, 2010, 29(6): 699-702.

[6]

赵宗生, 赵小学, 姜晓旭, 赵林林, 张霖琳. 原子荧光光谱测定土壤和水系沉积物中硒的干扰来源及消除方法. 岩矿测试, 2019, 38(3): 333-340. doi: 10.15898/j.cnki.11-2131/td.201809190106

[7]

何炼. 原子荧光光谱法直接测定铜矿中的硒. 岩矿测试, 2004, (3): 235-237.

[8]

, 梅俊, 熊采华. 氢化物发生原子荧光光谱法测定土壤中络合态锑. 岩矿测试, 2002, (4): 275-278.

[9]

李文莉, 李刚. 氢化物-原子荧光法测定铜矿中微量硒和碲. 岩矿测试, 2002, (3): 223-226.

[10]

谢薇, 杨耀栋, 菅桂芹, 李国成, 赵新华, 侯佳渝. 四种浸提剂对果园与菜地土壤有效硒浸提效果的对比研究. 岩矿测试, 2020, 39(3): 434-441. doi: 10.15898/j.cnki.11-2131/td.201905150063

[11]

赵 斌, 陈志兵, 董 丽. 氢化物发生-原子荧光光谱法测定植物样品中汞硒砷. 岩矿测试, 2010, 29(3): 319-321.

[12]

何贵, 常继秀, 周晓润, 王禄军. 仪器残留物对氢化物发生-原子荧光光谱法测定硒和碲的影响探讨. 岩矿测试, 2013, 32(2): 229-243.

[13]

马生明, 朱立新, 汤丽玲, 唐世新. 城镇周边和江河沿岸土壤中Hg和Cd存在形式解析与生态风险评估. 岩矿测试, 2020, 39(2): 225-234. doi: 10.15898/j.cnki.11-2131/td.201906060081

[14]

顾涛, 赵信文, 雷晓庆, 黄长生, 曾敏, 刘学浩, 王节涛. 珠江三角洲崖门镇地区水稻田土壤-植物系统中硒元素分布特征及迁移规律研究. 岩矿测试, 2019, 38(5): 545-555. doi: 10.15898/j.cnki.11-2131/td.201811030118

[15]

贺灵, 孙彬彬, 吴超, 成晓梦, 吴正丰, 周荣强, 候树军. 浙江省江山市猕猴桃果园土壤环境质量与生态风险评价. 岩矿测试, 2019, 38(5): 524-533. doi: 10.15898/j.cnki.11-2131/td.201901080003

[16]

田志仁, 封雪, 姜晓旭, 李宗超, 李妤, 夏新. 生态环境监测工作中应用AAS/AFS和XRF法测定土壤重金属数据质量评价. 岩矿测试, 2019, 38(5): 479-488. doi: 10.15898/j.cnki.11-2131/td.201811080119

[17]

杨文蕾, 沈亚婷. 水稻对砷吸收的机理及降低水稻对砷吸收的途径研究进展. 岩矿测试, 2020, 39(4): 475-492. doi: 10.15898/j.cnki.11-2131/td.202004160052

[18]

李杰, 刘久臣, 汤奇峰, 孟拓, 袁欣, 马博, 朱晓华. 川西高原地区水体中硒含量及分布特征研究. 岩矿测试, 2018, 37(2): 183-192. doi: 10.15898/j.cnki.11-2131/td.201709250154

[19]

杨妍萍, 刘晓端, 刘久臣, 汤奇峰, 孟拓, 朱晓华. 川西高原地区岩石中硒的地球化学特征和影响因素. 岩矿测试, 2020, 39(1): 115-126. doi: 10.15898/j.cnki.11-2131/td.201808290098

[20]

余广学, 张金震, 王烨, 丁莉, 付志辉. 郑州市土壤重金属污染状况和质量评价. 岩矿测试, 2015, 34(3): 340-345. doi: 10.15898/j.cnki.11-2131/td.2015.03.014

计量
  • PDF下载量(22)
  • 文章访问量(222)
  • HTML全文浏览量(66)
  • 被引次数(0)
目录

Figures And Tables

生物质炭和钢渣对江西丰城典型富硒区土壤硒有效性的调控效果与机理研究

况琴, 吴山, 黄庭, 吴代赦, 向京