【引用本文】 薛静, 安帅, 汪寅夫, 等. 王水水浴消解-电感耦合等离子体质谱法测定土壤中的硒[J]. 岩矿测试, 2020, 39(5): 720-725. doi: 10.15898/j.cnki.11-2131/td.202003050025
XUE Jing, AN Shuai, WANG Yin-fu, et al. Determination of Selenium in Soil by Inductively Coupled Plasma-Mass Spectrometry with Aqua Regia Digestion in Water Bath[J]. Rock and Mineral Analysis, 2020, 39(5): 720-725. doi: 10.15898/j.cnki.11-2131/td.202003050025

王水水浴消解-电感耦合等离子体质谱法测定土壤中的硒

1. 

中国地质调查局沈阳地质调查中心, 辽宁 沈阳 110032

2. 

辽宁省有色地质勘查总院有限责任公司, 辽宁 沈阳 110121

收稿日期: 2020-03-05  修回日期: 2020-04-20  接受日期: 2020-06-26

作者简介: 薛静, 硕士, 工程师, 主要从事土壤、岩石矿物等无机元素的分析工作。E-mail:may927@163.com

Determination of Selenium in Soil by Inductively Coupled Plasma-Mass Spectrometry with Aqua Regia Digestion in Water Bath

1. 

Shenyang Centre of Geological Survey, China Geological Survey, Shenyang 110032, China

2. 

Liaoning Nonferrous Geological Exploration Institute Co. LTD, Shenyang 110121, China

Received Date: 2020-03-05
Revised Date: 2020-04-20
Accepted Date: 2020-06-26

摘要:随着富硒产品关注度越来越高,对土壤中硒含量测定的研究也越来越受到人们的重视。应用传统电感耦合等离子体质谱法(ICP-MS)测定土壤样品中的硒时,受到的基体效应和多原子离子干扰比较显著,准确测定硒含量的难度较大。本文建立了采用50%王水-沸水浴消解体系,ICP-MS测定土壤样品中硒含量的方法,实验中采用动能歧视模式(KED)消除质谱干扰,选用103Rh元素作为在线加入内标以消除仪器信号漂移。用该方法对有证土壤标准物质进行分析,其结果均在不确定度范围内,测定值与认定值的相对误差介于-2.01%~2.99%之间,相对标准偏差(RSD)小于6.60%,检出限为0.012μg/g,测定下限为0.048μg/g。应用该方法与国家环境保护标准方法(HJ680—2013)对20个土壤实际样品进行比对分析,其结果基本一致。该方法适合于分析测定地质等行业大批量土壤样品中的硒。

关键词: 水浴消解, 土壤, , 电感耦合等离子体质谱法, 动能歧视模式

要点

(1)将50%王水-沸水浴消解与ICP-MS法相结合测定土壤样品中的硒。

(2)样品前处理过程一步完成,提高了方法准确性和效率,适合大批量土壤样品中硒的分析。

(3) 应用动能歧视模式(KED)拓展了ICP-MS在地球化学分析领域的适用范围。

Determination of Selenium in Soil by Inductively Coupled Plasma-Mass Spectrometry with Aqua Regia Digestion in Water Bath

ABSTRACT

OBJECTIVES:

To establish a method for accurate determination of Se in soil.

METHODS:

The content of selenium in soil samples was determined by ICP-MS with 50% aqua regia-boiling water digestion. Kinetic energy discrimination mode (KED) was adopted to eliminate mass spectrum interference, and the 103Rh element was selected as the internal standard for on-line addition to eliminate instrument signal drift.

RESULTS:

The results of the analysis of certified soil standard materials were consistent with those of certified standard materials within the uncertainty. The results showed that the relative errors (REs) of this method were between -2.01% and 2.99%, the relative standard deviation (RSD) was less than 6.60%, the detection limit was 0.012μg/g, and the minimum quantitative detection limit was 0.048μg/g. The method was applied to analyze 20 soil samples, and the results were consistent with those obtained by national environmental protection standard HJ680-2013.

Conclusion:

The study results are suitable for the determination of selenium in large numbers of soil samples from the geological industry.

KEY WORDS: water bath digestion, soil, selenium, inductively coupled plasma-mass spectrometry, kinetic energy discrimination

HIGHLIGHTS

(1) The 50% aqua regia-boiling water bath digestion combined with ICP-MS method was used to determine selenium in soil samples.

(2) The sample pretreatment process was completed in one step to improve the accuracy and efficiency of the method and was suitable for the analysis of selenium in large numbers of soil samples.

(3) The application of kinetic energy discrimination mode (KED) expanded the application scope of ICP-MS in the field of geochemical analysis.

本文参考文献

[1]

《岩石矿物分析》编委会. 岩石矿物分析(第四版第三分册)[M] . 北京: 地质出版社, 2011

The editorial committee of < Rock and mineral analysis> . Rock and mineral analysis (The fourth edition:Vol.Ⅲ)[M] . Beijing: Geological Publishing House, 2011
[2]

刘金巍, 刘雪松, 边超, 等. 甲烷动态反应电感耦合等离子体质谱法测定地下水中痕量硒[J]. 岩矿测试, 2019, 38(1): 85-91.

Liu J W, Liu X S, Bian C, et al. Determination of trace selenium in groundwater by DRC ICP-MS[J]. Rock and Mineral Analysis, 2019, 38(1): 85-91.

[3]

王俊伟, 钱蜀, 李海霞, 等. 电感耦合等离子体质谱法测定土壤样品中的痕量硒元素[J]. 中国环境监测, 2012, 28(3): 97-100.

Wang J W, Qian S, Li H X, et al. Determination of trace selenium in soils by inductively coupled plasma-mass spectrometry[J]. Environmental Monitoring in China, 2012, 28(3): 97-100.

[4]

钱薇, 唐昊冶, 王如海, 等. 一次消解土壤样品测定汞、砷和硒[J]. 分析化学, 2017, 45(8): 1215-1221.

Qian W, Tang H Y, Wang R H, et al. Determination of mercury, arsenic and selenium in soils by one-time digestion[J]. Chinese Journal of Analytical Chemistry, 2017, 45(8): 1215-1221.

[5]

谭芳维, 黄菲, 唐秀龙, 等. 水浴消解-原子荧光法测定土壤中硒、锑的研究[J]. 广州化工, 2019, 47(6): 103-105.

Tan F W, Huang F, Tang X L, et al. Determination of selenium and antimony in soil by water bath digestion-atomic fluorescencel[J]. Guangzhou Chemical Industry, 2019, 47(6): 103-105.

[6]

陈海英. 王水水浴消解-双道原子荧光光谱法(AFS)同时测定土壤中的汞和硒[J]. 农业科技与装备, 2013, 10(10): 13-15.

Chen H Y. Simultaneous determination of mercury and selenium in soil with aqua regia digestion in water bath and double channel atomic fluorescence spectrometry (AFS)[J]. Agricultural Science & Technology and Equipment, 2013, 10(10): 13-15.

[7]

林海兰, 朱日龙, 于磊, 等. 水浴消解-原子荧光光谱法测定土壤和沉积物中砷、汞、硒、锑和铋[J]. 光谱学与光谱分析, 2020, 40(5): 1528-1533.

Lin H L, Zhu R L, Yu L, et al. Determination of arsenic, mercury, selenium, antimony and bismuth in soil and sediments by water bath digestion-atomic fluorescence spectrometry[J]. Spectroscopy and Spectral Analysis, 2020, 40(5): 1528-1533.

[8]

黄薇, 符式锦, 王旭日, 等. 微波消解-ICP-MS测定土壤及植物中硒的含量[J]. 广州化工, 2014, 42(23): 146-148.

Huang W, Fu S J, Wang X R, et al. Determination of selenium in soil and plant by microwave digestion-ICP-MS[J]. Guangzhou Chemical Industry, 2014, 42(23): 146-148.

[9]

刘芸, 曹国松, 程佩, 等. 微波消解-ICP-MS法测定土壤中的硒含量[J]. 化学与生物工程, 2017, 34(11): 67-70.

Liu Y, Cao G S, Cheng P, et al. Determination of selenium content in soil by microwave digestion-ICP-MS[J]. Chemistry & Bioengineering, 2017, 34(11): 67-70.

[10]

田敏, 刘畅. 两种消解土壤中硒的方法对比分析[J]. 黑龙江环境通报, 2007, 31(3): 33-34.

Tian M, Liu C. Comparative analysis of two digestion method of selenium in soil[J]. Heilongjiang Environmental Journal, 2007, 31(3): 33-34.

[11]

屈明华, 陈雄弟, 倪张林, 等. DRC-ICP-MS法测定土壤硒前处理方法研究[J]. 土壤通报, 2019, 50(3): 698-703.

Qu M H, Chen X D, Ni Z L, et al. Pretreatment for determination of soil selenium by ICP-MS with dynamic reaction cell[J]. Chinese Journal of Soil Science, 2019, 50(3): 698-703.

[12]

严进. 双氧水氧化1-(2-吡啶偶氮)-2-萘酚动力学光度法测定痕量硒[J]. 广州化工, 2016, 44(21): 132-134.

Yan J. Determination of selenium by catalytic kinetic spectrophotometry in hydrogen peroxide-PAN system[J]. Guangzhou Chemical Industry, 2016, 44(21): 132-134.

[13]

韩亚, 郭伟, 汪洪, 等. 电感耦合等离子体质谱(ICP-MS)法与氢化物发生-原子吸收光谱(HG-AAS)法测定土壤中硒含量的对比研究[J]. 中国无机分析化学, 2020, 10(3): 28-32.

Han Y, Guo W, Wang H, et al. Method comparison for determination of selenium in soil by ICP-MS and HG-AAS[J]. Chinese Journal of Inorganic Analytical Chemistry, 2020, 10(3): 28-32.

[14]

冯永明, 邢应香, 刘洪青, 等. 微波消解-电感耦合等离子体质谱法测定生物样品中微量硒的方法研究[J]. 岩矿测试, 2014, 33(1): 34-39.

Feng Y M, Xing Y X, Liu H Q, et al. Determination of trace selenium in biological samples by inductively coupled plasma-mass spectrometry with microwave digestion[J]. Rock and Mineral Analysis, 2014, 33(1): 34-39.

[15]

程秀花, 王海蓉, 黎卫亮, 等. 电感耦合等离子体质谱法测定硒时多元素干扰的碰撞/反应研究及其在地质样品中的应用[J]. 冶金分析, 2015, 35(12): 5-9.

Cheng X H, Wang H R, Li W L, et al. Study on collision/reaction for multielement interference in determination of selenium by inductively coupled plasma mass spectrometry and its application to geological sample[J]. Metallurgical Analysis, 2015, 35(12): 5-9.

[16]

徐鹏, 孙亚莉. Carius管密封溶样-等离子体质谱法测定环境样品中镓、锗、砷、硒、镉、锡、锑、碲、汞、铅和铋[J]. 分析化学, 2010, 38(4): 581-584.

Xu P, Sun Y L. Determination of Ga, Ge, As, Se, Cd, Sn, Sb, Te, Hg, Pb and Bi in environmental samples by inductively coupled plasma mass spectrometry combined with Carius tube digestion[J]. Chinese Journal of Analytical Chemistry, 2010, 38(4): 581-584.

[17]

D'Ilio S, Violante N, Majorani C, et al. Dynamic reaction cell ICP-MS for determination of total As, Cr, Se and Ⅴ in complex matrices:Still a challenge?A review[J]. Analytica Chimica Acta, 2011, 698(1): 6-13.

[18]

陈波, 刘洪青, 邢应香, 等. 电感耦合等离子体质谱法同时测定地质样品中锗硒碲[J]. 岩矿测试, 2014, 33(2): 192-196.

Chen B, Liu H Q, Xing Y X, et al. Simultaneous determination of Ge, Se and Te in geological samples by inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2014, 33(2): 192-196.

[19]

刘征宙, 曹丽丽, 陈浩云, 等. 电感耦合等离子体质谱法-碰撞反应池技术测定高纯度磷酸二氢钾中痕量金属元素[J]. 化学试剂, 2015, 37(9): 809-811, 842.

Liu Z Z, Cao L L, Chen H Y, et al. Detection of trace metal elements in potassium dihydrophate with ICP-MS(CCT) method[J]. Chemical Reagents, 2015, 37(9): 809-811, 842.

[20]

余兴. 电感耦合等离子体四极杆质谱碰撞/反应池技术现状与进展[J]. 冶金分析, 2013, 33(3): 14-23.

Yu X. The present situation and advance in collision/reaction cell technique of inductively coupled plasma quadrupole mass spectrometry[J]. Metallurgical Analysis, 2013, 33(3): 14-23.

[21]

章连香, 冯先进. 八极杆碰撞/反应池(ORS) -电感耦合等离子体质谱(ICP-MS)法测定复杂矿物中的稀土元素[J]. 中国无机分析化学, 2017, 7(2): 22-26.

Zhang L X, Feng X J. Determination of rare earth elements in complex minerals by octopole reaction system (ORS)-inductively coupled plasma mass spectrometry (ICP-MS)[J]. Chinese Journal of Inorganic Analytical Chemistry, 2017, 7(2): 22-26.

[22]

韩建华, 孙传强, 汪曣, 等. 电感耦合等离子体质谱中碰撞反应池的模拟探讨[J]. 冶金分析, 2014, 34(9): 1-7.

Han J H, Sun C Q, Wang Y, et al. Discussion on the simulation of collision reaction cell in inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2014, 34(9): 1-7.

[23]

陕红, 孙宝利, 黄金丽, 等. DRC-ICP-MS测定蜂王浆中硒的方法研究[J]. 分析测试学报, 2016, 35(9): 1191-1194.

Shan H, Sun B L, Huang J L, et al. Analysis of selenium in royal jelly by ICP-MS with dynamic reaction cell[J]. Journal of Instrumental Analysis, 2016, 35(9): 1191-1194.

[24]

杏朝刚, 袁京群, 李士敏, 等. 微波消解-动态反应池电感耦合等离子体质谱测定农产品中的痕量硒[J]. 浙江农业学报, 2018, 30(8): 1414-1419.

Xing C G, Yuan J Q, Li S M, et al. Determination of trace selenium in agricultural products with microwave digestion-dynamic reaction cell inductively coupled plasma mass spectrometry[J]. Acta Agriculturae Zhejianggensis, 2018, 30(8): 1414-1419.

[25]

徐进力, 邢夏, 唐瑞玲, 等. 动能歧视模式ICP-MS测定地球化学样品中14种痕量元素[J]. 岩矿测试, 2019, 38(4): 394-402.

Xu J L, Xing X, Tang R L, et al. Determination of 14 trace elements in geochemical samples by ICP-MS using kinetic energy discrimination mode[J]. Rock and Mineral Analysis, 2019, 38(4): 394-402.

[26]

黄子敬, 陈孟君, 邓华阳, 等. 微波消解-ICP-MS混合模式测定动植物源食品中11种金属元素[J]. 分析试验室, 2017, 36(1): 24-28.

Huang Z J, Chen M J, Deng H Y, et al. Determination of 11 trace elements in animal and plant origin food by microwave digestion with ICP-MS in mixed mode[J]. Chinese Journal of Analysis Laboratory, 2017, 36(1): 24-28.

[27]

林珍, 黄超冠, 卢燕平, 等. 沸水浴-氢化物发生原子荧光光谱法测定土壤中的硒[J]. 广州化学, 2017, 42(3): 34-37.

Lin Z, Huang C G, Lu Y P, et al. Boilingwater bath-determination of selenium in soil by hydride generation atomic fluorescence spectrometry[J]. Guangzhou Chemistry, 2017, 42(3): 34-37.

[28]

郑欣. X Series 2 ICP-MS CCTED在食品样品超痕量元素分析中的应用[J]. 环境化学, 2009, 28(3): 467-468.

Zheng X. Application of X Series 2 ICP-MS CCTED in analysis of ultra-trace elements of food samples[J]. Environmental Chemistry, 2009, 28(3): 467-468.

相似文献(共20条)

[1]

方金梅. 福州市土壤硒形态分析及其迁移富集规律. 岩矿测试, 2008, 27(2): 103-107.

[2]

李刚, 苏文峰. 焙烧分离-氢化物发生-原子荧光光谱法测定土壤样品中微量硒. 岩矿测试, 2008, 27(2): 120-122.

[3]

黄园英, 吴淑琪, 佟玲, 张玲金. 土壤中持久性有机污染物分析的前处理方法. 岩矿测试, 2008, 27(2): 81-86.

[4]

徐进力, 邢夏, 唐瑞玲, 胡梦颖, 张鹏鹏, 白金峰, 张勤. 动能歧视模式ICP-MS测定地球化学样品中14种痕量元素. 岩矿测试, 2019, 38(4): 394-402. doi: 10.15898/j.cnki.11-2131/td.201812070131

[5]

江林, 刘晓端, 张静. 土壤中不同形态砷的分析方法. 岩矿测试, 2008, 27(3): 179-183.

[6]

齐璐璐, 赵会芹, 陈子学, 郑育锁, 孟凡辉, 肖波, 张颖. 连续光源原子吸收光谱法测定土壤水溶性盐中钙镁. 岩矿测试, 2008, 27(2): 95-98.

[7]

李冰, , 史世云. 电感耦合等离子体质谱法同时测定地质样品中痕量碘溴硒砷的研究:Ⅱ.土壤及沉积物标准物质分析. 岩矿测试, 2001, (4): 241-246.

[8]

赵宗生, 赵小学, 姜晓旭, 赵林林, 张霖琳. 原子荧光光谱测定土壤和水系沉积物中硒的干扰来源及消除方法. 岩矿测试, 2019, 38(3): 333-340. doi: 10.15898/j.cnki.11-2131/td.201809190106

[9]

刘广民, 尹莉莉, 董永亮, 肖宇芳. 土壤中五氯酚的快速测定. 岩矿测试, 2008, 27(2): 117-119.

[10]

张静梅, 张培新, 高孝礼, 黄光明, 窦银萍. 电感耦合等离子体质谱法同时测定地下水中硼溴碘. 岩矿测试, 2008, 27(1): 25-28.

[11]

尹周澜, 王薇惟, 覃祚明, 黄旭. 电感耦合等离子体质谱法测定高纯铟中铁. 岩矿测试, 2008, 27(3): 193-196.

[12]

李刚, 曹小燕. 电感耦合等离子体质谱法测定地质样品中锗和镉的干扰及校正. 岩矿测试, 2008, 27(3): 197-200.

[13]

王娜, 徐铁民, 魏双, 王家松, 曾江萍, 张楠. 微波消解-电感耦合等离子体质谱法测定超细粒度岩石和土壤样品中的稀土元素. 岩矿测试, 2020, 39(1): 68-76. doi: 10.15898/j.cnki.11-2131/td.201904010043

[14]

杨红霞, 何红蓼, 李冰, 倪哲明. 环境样品中痕量元素的化学形态分析Ⅱ.砷汞镉锡铅硒铬的形态分析. 岩矿测试, 2005, (2): 118-128.

[15]

陈志兵. 碱性模式氢化物发生—原子荧光光谱法测定土壤中的痕量硒. 岩矿测试, 2002, (4): 311-314.

[16]

吕彩芬, 马新荣, 温宏利, 史世云, 李冰, 何红蓼. 电感耦合等离子体质谱法同时测定地质样品中痕量碘溴硒砷的研究Ⅰ.不同介质及不同阴离子形态对测定信号的影响. 岩矿测试, 2001, (3): 161-166.

[17]

陈永欣, 黎香荣, 韦新红, 吕泽娥, 谢毓群, 蔡维专. 微波消解-电感耦合等离子体质谱法测定土壤和沉积物中痕量稀土元素. 岩矿测试, 2011, 30(5): 560-565.

[18]

谢薇, 杨耀栋, 菅桂芹, 李国成, 赵新华, 侯佳渝. 四种浸提剂对果园与菜地土壤有效硒浸提效果的对比研究. 岩矿测试, 2020, 39(3): 434-441. doi: 10.15898/j.cnki.11-2131/td.201905150063

[19]

王瑞敏. 泡沫塑料富集-电感耦合等离子体质谱法测定土壤中超痕量金铂钯. 岩矿测试, 2011, 30(3): 295-298.

[20]

佘小林. 离子色谱法快速测定土壤中碘量. 岩矿测试, 2005, (2): 145-147.

计量
  • PDF下载量(30)
  • 文章访问量(590)
  • HTML全文浏览量(164)
  • 被引次数(0)
目录

Figures And Tables

王水水浴消解-电感耦合等离子体质谱法测定土壤中的硒

薛静, 安帅, 汪寅夫, 高慧莉, 史佳铭