【引用本文】 乔鑫, 周征宇, 农佩臻, 等. 贫碱结构水类型祖母绿红外光谱特征及其控制因素探究[J]. 岩矿测试, 2019, 38(2): 169-178. doi: 10.15898/j.cnki.11-2131/td.201804070039
QIAO Xin, ZHOU Zheng-yu, NONG Pei-zhen, et al. Study on the Infrared Spectral Characteristics of H2OⅠ-type Emerald and the Controlling Factors[J]. Rock and Mineral Analysis, 2019, 38(2): 169-178. doi: 10.15898/j.cnki.11-2131/td.201804070039

贫碱结构水类型祖母绿红外光谱特征及其控制因素探究

1. 

同济大学海洋与地球科学学院, 上海 200092

2. 

上海宝石及材料工艺工程技术研究中心, 上海 200070

3. 

同济大学宝石及工艺材料实验室, 上海 200092

收稿日期: 2018-04-07  修回日期: 2018-11-23  接受日期: 2019-01-04

基金项目: 国家自然科学基金项目(41272049);上海市科委科研计划项目(15DZ2283200,12DZ2251100)

作者简介: 乔鑫, 硕士研究生, 地质学专业宝石矿物方向。E-mail:1187507313@qq.com

通信作者: 周征宇, 副教授, 主要从事岩石矿物学及光谱学分析研究。E-mail:06058@tongji.edu.cn

Study on the Infrared Spectral Characteristics of H2OⅠ-type Emerald and the Controlling Factors

1. 

School of Ocean & Earth Science, Tongji University, Shanghai 200092, China

2. 

Shanghai Engineering Research Center of Gems & Technological Materials, Shanghai 200070, China

3. 

Laboratory of Gem and Technological Materials, Tongji University, Shanghai 200092, China

Corresponding author: ZHOU Zheng-yu, 06058@tongji.edu.cn

Received Date: 2018-04-07
Revised Date: 2018-11-23
Accepted Date: 2019-01-04

摘要:祖母绿红外吸收主要与其硅氧骨干、通道内结构水、相关碱性金属离子和大分子振动有关。国内外相关研究主要集中在峰位归属及谱峰特征对比方面,认为与分子振动和不同类型结构水相关,对更深层的成矿或化学控制因素的研究还较少。本文选取典型4个矿区样品,针对贫碱结构水(Ⅰ型)特征为主的祖母绿进行了近、中红外光谱测定,在此基础上初步探讨其主要控制因素。结果表明:同为Ⅰ型水主控的不同矿区祖母绿呈现一致特征,若干与结构水、碱性离子及大分子相关吸收具有稳定峰位、近似的相对峰强和峰形的特征。分析发现:祖母绿红外谱带特征直接受控于通道中结构水的占位方向和比例,进一步与祖母绿成矿元素Al3+的类质同象替换相关,主要受(Mg2++Fe2+)离子浓度影响,当其浓度较低时,类质同象替换程度较低,祖母绿结构水占位主要表现为Ⅰ型水特征,其相关元素特征表现为高Si、Al,低Mg、Fe,总体贫碱,对应相应的典型红外特征,指示化学离子浓度与红外谱学特征之间的关系。研究过程表明红外光谱可以辅助对Ⅰ型水祖母绿产地的鉴定和成矿环境的认知。

关键词: 祖母绿, 红外光谱, Ⅰ型水, 类质同象替换, (Mg2++Fe2+)离子浓度

要点

(1) 总结了贫碱Ⅰ型结构水为主矿区祖母绿的典型红外光谱特征。

(2) 揭示了Ⅰ型水祖母绿红外光谱特征与结构水占位的直接关系。

(3) 探讨了成矿流体低化学离子浓度对Ⅰ型水红外特征的间接控制作用。

Study on the Infrared Spectral Characteristics of H2OⅠ-type Emerald and the Controlling Factors

ABSTRACT

BACKGROUND:

The infrared absorption mechanism is mainly related to the Si-O lattice, channel structure water, other alkaline metal cations, and vibration of molecules. Relevant research at home and abroad focuses mainly on peak position attribution and spectral peak feature comparison. It is considered that molecular vibration is related to different types of structural water. However, there are few studies on deeper mineralization or chemical controlling factors.

OBJECTIVES:

To unravel the controlling factors of H2OⅠ-type infrared spectral characteristics.

METHODS:

The typical H2OⅠ-type natural emeralds were collected from 4 mining areas, including the Eastern Cordillera mountains in Colombia (EC), the Panjshir valley in Afghanistan(P), the Ural mountains in Russia(U), and the Kaduna/Plateau state in Nigeria (KP). The samples were analyzed by Fourier Transformed Infrared Spectrometer (FTIR). The typical H2OⅠ-type infrared (IR) spectral characteristics and their controlling factors were studied. The chemical composition data were obtained from the EMPA analyses.

RESULTS:

The results show that the spectral characteristics of H2O Ⅰ-type emeralds from different mining areas share a consistent pattern. Several absorptions related to structural water, basic ions and macromolecules had stable peak positions, approximately similar relative peak intensities and peak shapes. As the analysis proved, the H2OⅠIR spectra were first directly controlled by the mixed ratio of the two types of the structure water in the channel, and further related to the substitution of Al3+, chemically controlled by the (Mg2++Fe2+) concentration in the ore fluids. When the concentration of (Mg2++Fe2+) was low, the degree of isomorphic substitution was lower, and the emerald structure water was mainly characterized by Ⅰ-type water. The related elements were characterized by high Si and Al but low Mg and Fe, corresponding to the typical infrared characteristics, indicating the relationship between chemical ion concentration and infrared spectral characteristics.

CONCLUSIONS:

The research process showed that Infrared Spectroscopy could assist in the identification of Ⅰ-type water emerald production discrimination and the understanding of the metallogenic environment.

KEY WORDS: emerald, Infrared Spectrometry, H2OⅠ-type, isomorphic substitution, (Mg2++Fe2+) cations concentration

HIGHLIGHTS

(1) The typical infrared spectral characteristics of H2O Ⅰ-type natural emerald were summarized.

(2) The direct relationship between the infrared spectral characteristics of H2O Ⅰ-type emerald and the occupation of the structure water in the channel was demonstrated.

(3) Indirect control of low-chemical ion concentration of ore-forming fluids on infrared characteristics of H2O Ⅰ-type was discussed.

本文参考文献

[1]

郭燕.新疆南疆某地祖母绿(绿柱石)的EPMA、XRD、IR、LRM测试分析研究[D].乌鲁木齐: 新疆大学, 2012.

Guo Y.Study on EPMA, XRD, IR, LRM of Emerald(Beryl) from the South of Xinjiang[D].Urumqi: Xinjiang University, 2012.

[2]

徐錞.云南麻栗坡高钒祖母绿的宝石矿物学特征研究[D].北京: 中国地质大学(北京), 2016.

Xu C.Study on the Gemological and Mineralogical Characteristics of Vanadium Rich Emeralds from Malipo Yunnan[D].Beijing: China University of Geosciences (Beijing), 2016.

[3]

景辰.新疆达布达地区祖母绿的矿物学及光谱学特征研究[D].北京: 中国地质大学(北京), 2015.

Jing C.Characteristics of Mineralogy and Spectroscopy of the Emerald Deposit, Davadar, Xijiang[D].Beijing: China University of Geosciences (Beijing), 2015.

[4]

林默青.尼日利亚祖母绿的宝石学和矿物学研究[D].北京: 中国地质大学(北京), 2013.

Lin M Q.The Study on the Gemological and Mineralogical Characteristics of Nigerian Emerald[D].Beijing: China University of Geosciences (Beijing), 2013.

[5]

任伟, 汪立今, 李甲平, 等. 电子探针和X射线衍射仪测定新疆祖母绿宝石[J]. 岩矿测试, 2010, 29(2): 179-181. doi: 10.3969/j.issn.0254-5357.2010.02.018

Ren W, Wang L J, Li J P, et al. Detection of emerald from Xinjiang by electron probe micro-analyzer and X-ray diffractometer[J]. Rock and Mineral Analysis, 2010, 29(2): 179-181. doi: 10.3969/j.issn.0254-5357.2010.02.018

[6]

代鸿章, 王登红, 刘丽君, 等. 四川甲基卡稀有金属矿区祖母绿的矿物学特征[J]. 矿物学报, 2018, 38(2): 135-141.

Dai H Z, Wang D H, Liu L J, et al. A study on the emerald in the Jiajika rare metal mining area, Sichuan Province, China[J]. Acta Mineralogica Sinica, 2018, 38(2): 135-141.

[7]

邹妤, 孙婉洁, 赵旭刚, 等. 云南麻栗坡祖母绿生长环带特征[J]. 硅酸盐通报, 2017, 36(2): 419-424.

Zou Y, Sun W J, Zhao X G, et al. Characteristics of growth zone of emerald from Malipo, Yunnan Province[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(2): 419-424.

[8]

李晓静.常见宝石的近红外光谱研究[D].昆明: 昆明理工大学, 2016.

Li X J.NIR Study of Some General Gems[D].Kunming: Kunming University of Science and Technology, 2016.

[9]

李晓静, 祖恩东. 环状硅酸盐宝石矿物近红外光谱分析[J]. 硅酸盐通报, 2016, 35(4): 1318-1321.

Li X J, Zu E D. Near-infrared spectrum analysis of cyclosilicates gem minerals[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(4): 1318-1321.

[10]

代鸿章, 王登红, 刘丽君, 等. 电子探针和微区X射线衍射研究陕西镇安钨-铍多金属矿床中祖母绿级绿柱石[J]. 岩矿测试, 2018, 37(3): 336-345.

Dai H Z, Wang D H, Liu L J, et al. Study on emerald-level beryl from the Zhen'an W-Be polymetallic deposit in Shaanxi Province by electron probe micro analyzer and micro X-ray diffractometer[J]. Rock and Mineral Analysis, 2018, 37(3): 336-345.

[11]

尹作为, 李笑路, 包德清, 等. 莫桑比克摩根石的谱学特征研究[J]. 光谱学与光谱分析, 2014, 34(8): 2175-2179. doi: 10.3964/j.issn.1000-0593(2014)08-2175-05

Yin Z W, Li X L, Bao D Q, et al. Spectroscopic characteristics study of morganite from Mozambique[J].Spectroscopy and Spectral Analysis, 2014, 34(8): 2175-2179. doi: 10.3964/j.issn.1000-0593(2014)08-2175-05

[12]

那宝成, 孙瑞皎, 李增胜, 等. 浅粉红色-粉红色绿柱石的宝石学特征[J]. 宝石和宝石学杂志, 2014, 16(3): 32-37. doi: 10.3969/j.issn.1008-214X.2014.03.004

Na B C, Sun R J, Li Z S, et al. Gemmological characteristics of light pink to pink beryl[J].Journal of Gems & Gemmology, 2014, 16(3): 32-37. doi: 10.3969/j.issn.1008-214X.2014.03.004

[13]

曲梦.新疆阿尔泰可可托海海蓝宝石的宝石矿物学研究[D].北京: 中国地质大学(北京), 2014.

Qu M.Mineralogical and Gemological Study of Aquamarine from Keketuohai in Aletai of Xinjiang[D].Beijing: China University of Geosciences (Beijing), 2014.

[14]

何立言, 龙楚, 英萸, 等. 水热法合成绿柱石的特征[J]. 宝石和宝石学杂志, 2018, 20(3): 9-17.

He L Y, Long C, Ying Y, et al. Chracteristics of hydrothermal synthetic beryl[J]. Journal of Gems & Gemmology, 2018, 20(3): 9-17.

[15]

钟倩, 廖宗廷, 周征宇, 等. 水热法合成Paraíba色绿柱石的宝石学特征[J]. 宝石和宝石学杂志, 2016, 18(6): 1-7. doi: 10.3969/j.issn.1008-214X.2016.06.001

Zhong Q, Liao Z T, Zhou Z Y, et al. Gemmological characteristics of hydrothermal synthetic Paraíba-colour beryl[J].Journal of Gems & Gemmology, 2016, 18(6): 1-7. doi: 10.3969/j.issn.1008-214X.2016.06.001

[16]

曹盼, 康亚楠, 祖恩东, 等. 天然祖母绿和水热法合成祖母绿的拉曼光谱分析[J]. 光散射学报, 2016, 28(1): 42-44.

Cao P, Kang Y N, Zu E D, et al. Study on Roman spectrum of natural emerald and synthetic emerald by hydrothermal method[J]. The Journal of Light Scattering, 2016, 28(1): 42-44.

[17]

Bidny A S, Baksheev I A, Popov M P, et al. Beryl from deposits of the Ural emerald belt, Russia:ICP-MS-LA and infrared spectroscopy study[J].Moscow University Geology Bulletin, 2011, 66(2): 108-115. doi: 10.3103/S0145875211020037

[18]

Taran M N, Dyar M D, Khomenko V M, et al. Spectroscopic study of synthetic hydrothermal Fe3+-bearing beryl[J]. Physics & Chemistry of Minerals, 2017, (2): 1-8.

[19]

Ventura G D, Radica F, Bellatreccia F, et al. Speciation and diffusion profiles of H2O in water-poor beryl:Comparison with cordierite[J]. Physics & Chemistry of Minerals, 2015, 42(9): 1-11.

[20]

Fridrichová J, Bačík P, Bizovská V, et al. Spectroscopic and bond-topological investigation of interstitial volatiles in beryl from Slovakia[J]. Physics & Chemistry of Minerals, 2016, 43(6): 419-437.

[21]

Zhukova E S, Torgashev V I, Gorshunov B P, et al. Vibrational states of a water molecule in a nano-cavity of beryl crystal lattice[J].Journal of Chemical Physics, 2014, 140(22): 224317. doi: 10.1063/1.4882062

[22]

Mashkovtsev R I, Thomas V G, Fursenko D A, et al. FTIR spectroscopy of D2O and HDO molecules in the c-axis channels of synthetic beryl[J]. American Mineralogist, 2016, 101(1): 175-180.

[23]

Belyanchikov M A, Zhukova E S, Tretiak S, et al. Vibrational states of nano-confined water molecules in beryl investigated by first-principles calculations and optical experiments[J].Physical Chemistry Chemical Physics, 2017, 19(45): 30740-30748. doi: 10.1039/C7CP06472A

[24]

亓利剑, 招博文, 周征宇, 等. 新疆黄色绿柱石结构水辐照离解与F-NIR光谱解析[J]. 矿物学报, 2012, 32(Supplement): 103-105.

Qi L J, Zhao B W, Zhou Z Y, et al. Radiation dissociation and F-NIR spectra analysis of the structure water in yellow beryl in Xinjiang[J]. Acta Mineralogica Sinica, 2012, 32(Supplement): 103-105.

[25]

亓利剑, 叶松, 向长金, 等. 绿柱石通道中配合物的振动光谱和辐照裂解[J]. 地质科技情报, 2001, 20(3): 659-670.

Qi L J, Ye S, Xiang C J, et al. Vibration spectrum and irradiation splitting of mixture in beryl channels[J]. Geological Science and Technology Information, 2001, 20(3): 659-670.

[26]

申柯娅. 天然祖母绿与合成祖母绿的成分及红外吸收光谱研究[J]. 岩矿测试, 2011, 30(2): 233-237. doi: 10.3969/j.issn.0254-5357.2011.02.024

Shen K Y. Study on chemical compositions and infrared absorption spectra of natural and synthetic emeralds[J]. Rock and Mineral Analysis, 2011, 30(2): 233-237. doi: 10.3969/j.issn.0254-5357.2011.02.024

[27]

邵慧娟, 亓利剑, 钟倩, 等. 俄罗斯富铁型水热法合成祖母绿特征研究[J]. 宝石和宝石学杂志, 2014, 16(1): 26-34. doi: 10.3969/j.issn.1008-214X.2014.01.004

Shao H J, Qi L J, Zhong Q, et al. Study on characteristics of iron-rich hydrothermal synthetic emerald from Russia[J].Journal of Gems & Gemmology, 2014, 16(1): 26-34. doi: 10.3969/j.issn.1008-214X.2014.01.004

[28]

Erkoyun H. Occurrence of Cr-bearing beryl in stream sediment from Eskişehir, NW Turkey[J]. Earth Sciences Research Journal, 2016, 20(3): A1-A10.

[29]

亓利剑, 夏义本, 袁心强, 等. 合成红色绿柱石中通道水分子构型及1H和23Na核磁共振谱表征[J]. 宝石和宝石学杂志, 2002, 4(3): 8-15. doi: 10.3969/j.issn.1008-214X.2002.03.003

Qi L J, Xia Y B, Yuan X Q, et al. Channel-water molecular pattern and 1H, 23Na NMR spectra representation in synthetic red beryl[J].Journal of Gems & Gemmology, 2002, 4(3): 8-15. doi: 10.3969/j.issn.1008-214X.2002.03.003

[30]

Hummer G, Rasaiah J C, Noworyta J P, et al. Water conduction through the hydrophobic channel of a carbon nanotube[J].Nature, 2001, 414(6860): 188-190. doi: 10.1038/35102535

[31]

Gorshunov B P, Zhukova E S, Torgashev V I, et al. Quantum behavior of water molecules confined to nano cavities in gemstones[J].Journal of Physical Chemistry Letters, 2013, 4(12): 2015-2020. doi: 10.1021/jz400782j

相似文献(共19条)

[1]

李平, 马伟幸, 王蓓. 昌化芝麻地鸡血石物相鉴定. 岩矿测试, 2008, 27(1): 67-68.

[2]

代鸿章, 王登红, 刘丽君, 黄凡, 王成辉. 电子探针和微区X射线衍射研究陕西镇安钨-铍多金属矿床中祖母绿级绿柱石. 岩矿测试, 2018, 37(3): 336-345. doi: 10.15898/j.cnki.11-2131/td.201712140193

[3]

葛昌华, 梁华定, 潘富友. 2—(四氮唑偶氮)—5—二乙氨基苯甲酸的合成及光度法测定钒. 岩矿测试, 2003, (1): 40-43.

[4]

李天顺, 李莉萍. 红外光谱定量测定硅灰石矿中矿物含量. 岩矿测试, 1992, (3): 232-235.

[5]

佟柏龄, 徐维并. 反射红外光谱法研究改性超滤膜. 岩矿测试, 1999, (2): 113-116.

[6]

宋中华, 陆太进, 苏隽, 柯捷, 唐诗, 李键, 高博, 张钧. 利用吸收和发光光谱技术分析高温高压天然富氢钻石的鉴定特征. 岩矿测试, 2018, 37(1): 64-69. doi: 10.15898/j.cnki.11-2131/td.201705040072

[7]

邵红, 刘相龙, 王大卫, 徐微雪. 壳聚糖和PDMDAAC改性膨润土用于处理含油废水的研究. 岩矿测试, 2014, 33(3): 431-437.

[8]

申柯娅. 天然祖母绿与合成祖母绿的成分及红外吸收光谱研究. 岩矿测试, 2011, 30(2): 233-237.

[9]

宋中华, 陆太进, 苏隽, 高博, 唐诗, 胡宁, 柯捷, 张钧. 无色-近无色高温高压合成钻石的谱图特征及其鉴别方法. 岩矿测试, 2016, 35(5): 496-504. doi: 10.15898/j.cnki.11-2131/td.2016.05.008

[10]

邢莹莹, 亓利剑, 王海涛. 秘鲁蓝色蛋白石矿物学性质及致色机理初探. 岩矿测试, 2017, 36(6): 608-613. doi: 10.15898/j.cnki.11-2131/td.201707250121

[11]

梁述廷, 刘玉纯, 刘瑱, 林庆文, 刘志伟. X射线荧光光谱微区分析在铜矿物类质同象鉴定中的应用. 岩矿测试, 2015, 34(2): 201-206. doi: 10.15898/j.cnki.11-2131/td.2015.02.008

[12]

周丹怡, 陈华, 陆太进, 柯捷, 何明跃. 基于拉曼光谱-红外光谱-X射线衍射技术研究斜硅石的相对含量与石英质玉石结晶度的关系. 岩矿测试, 2015, 34(6): 652-658. doi: 10.15898/j.cnki.11-2131/td.2015.06.008

[13]

刘云, 钱汉东, 季寿元. 黑云母的红外光谱研究. 岩矿测试, 1985, (4): 307-313.

[14]

陈国能, 彭卓伦, 杨志军. 硬玉微区显微红外光谱分析. 岩矿测试, 2006, 25(3): 226-228.

[15]

杨重九. 日立150-20型分光光度计测定微量及高含量Fe_2O_3. 岩矿测试, 1988, (2): 149-150.

[16]

姚继军. 土壤、水、废水、血液、尿液的等离子体发射光谱/质谱快速分析方法. 岩矿测试, 2008, (5): -.

[17]

任伟, 汪立今, 李甲平. 电子探针和X射线衍射仪测定新疆祖母绿宝石. 岩矿测试, 2010, 29(2): 179-181.

[18]

郑学清, 张培萍. 红外光谱法测定尿石成分及其意义. 岩矿测试, 1996, (1): 73-76.

[19]

牛菲, 高志农. 傅立叶变换红外光谱联用技术在化石燃料分析中的应用. 岩矿测试, 1998, (1): 58-63.

计量
  • PDF下载量(17)
  • 文章访问量(176)
  • HTML全文浏览量(38)
  • 被引次数(0)
目录

Figures And Tables

贫碱结构水类型祖母绿红外光谱特征及其控制因素探究

乔鑫, 周征宇, 农佩臻, 赖萌, 李英搏, 郭恺鹏, 钟倩, 王含, 周彦