【引用本文】 王忠强, 李超, 张定才, 等. 滇东南南秧田钨矿床白钨矿原位Sr同位素对成矿的指示[J]. 岩矿测试, 2020, 39(2): 285-299. doi: 10.15898/j.cnki.11-2131/td.201907310117
WANG Zhong-qiang, LI Chao, ZHANG Ding-cai, et al. Implication of in situ Sr Isotope of Scheelite for Tungsten Mineralization: A Case Study of the Nanyangtian Scheelite Deposit, Southeast Yunnan, China[J]. Rock and Mineral Analysis, 2020, 39(2): 285-299. doi: 10.15898/j.cnki.11-2131/td.201907310117

滇东南南秧田钨矿床白钨矿原位Sr同位素对成矿的指示

1. 

昆明理工大学国土资源工程学院, 云南 昆明 650093

2. 

国家地质实验测试中心, 北京 100037

3. 

中国地质科学院Re-Os同位素地球化学重点实验室, 北京 100037

4. 

文山麻栗坡紫金钨业集团有限公司, 云南 文山 663600

收稿日期: 2019-08-12  修回日期: 2019-09-17  接受日期: 2019-10-21

基金项目: 国家自然科学基金项目(41673060,41873065)

作者简介: 王忠强, 硕士研究生, 从事矿物学、地球化学研究。E-mail:kmustwzq@126.com

通信作者: 李超, 博士, 副研究员, 从事同位素地球化学研究。E-mail:Re-Os@163.com

Implication of in situ Sr Isotope of Scheelite for Tungsten Mineralization: A Case Study of the Nanyangtian Scheelite Deposit, Southeast Yunnan, China

1. 

Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China

2. 

National Research Center for Geoanalysis, Beijing 100037, China

3. 

Key Laboratory of Re-Os Isotope Geochemistry, Chinese Academy of Geological Sciences, Beijing 100037, China

4. 

Wenshan Malipo Zijin Tungsten Group Co., LTD. Wenshan 663600, China

Corresponding author: LI Chao, Re-Os@163.com

Received Date: 2019-08-12
Revised Date: 2019-09-17
Accepted Date: 2019-10-21

摘要:南秧田钨矿床位于滇东南老君山W-Sn矿集区,地处扬子地块和印支地块的结合部位,地质背景复杂并遭受了多期岩浆活动和区域变质事件,其成矿时代和成因一直存在争议。本文对矽卡岩型和长石-石英脉型白钨矿开展了年代学、原位微量元素、Sr同位素研究,分析了两类白钨矿年龄、成因以及物质来源的差异。结果表明,长石-石英脉内与白钨矿共生辉钼矿的Re-Os同位素等时线年龄为151.0±1.3Ma,明显晚于矽卡岩矿体年龄,属于后期成矿事件。矽卡岩型白钨矿的轻稀土富集、重稀土强烈亏损,Eu呈明显负异常(δEu=0.46),∑REE平均含量为65.60μg/g,Mo平均含量为240.16μg/g,Sr平均含量为883.43μg/g;长石-石英脉型白钨矿稀土呈Eu正异常(δEu=2.8)的平坦型,∑REE平均含量为194.40μg/g,Mo平均含量为16.01μg/g,Sr平均含量为129.26μg/g。以上两者微量、稀土元素含量的差别显示它们具有性质明显不同的流体来源,Eu异常指示矽卡岩型白钨矿形成于氧逸度较高的环境,长石-石英脉型白钨矿形成于还原性环境。矽卡岩白钨矿87Sr/86Sr值相对较低,并且比较均一,介于0.71319~0.71491之间,表明成矿流体主要来自岩浆热液;长石-石英脉型白钨矿87Sr/86Sr值较高且变化范围大,介于0.71537~0.72803之间,平均0.72079,呈现出变质流体特征。两种不同类型白钨矿Sr同位素都具有二元混合的特征,显示长石-石英脉型白钨矿对矽卡岩型白钨矿有叠加改造作用,成矿流体与围岩的强烈交代作用是白钨矿形成的关键。

关键词: 白钨矿, 原位Sr同位素, 成矿时代, 成矿流体来源, 南秧田

要点

(1) 南秧田长石-石英矿脉型矿体形成时间为151.0±1.3Ma,为晚期又一次成矿事件。

(2) 应用原位微量元素、原位Sr同位素技术区分出两类白钨矿属于不同成矿流体来源和不同成因。

(3) 早期矽卡岩型白钨矿为岩浆热液成因,成矿流体以岩浆热液为主。晚期长石-石英脉型白钨矿为变质热液成因,成矿流体以变质热液为主。

Implication of in situ Sr Isotope of Scheelite for Tungsten Mineralization: A Case Study of the Nanyangtian Scheelite Deposit, Southeast Yunnan, China

ABSTRACT

BACKGROUND:

The Nanyangtian scheelite deposit is an important skarn scheelite deposit in Yunnan Province, which is located in Laojunshan W-Sn deposit area, Southeast Yunnan. Due to its complex geological background and multi-stage metallogenic characteristics, its mineralization age and genesis remain controversial.

OBJECTIVES:

To explore the metallogenic age, genesis and material origins of two types of scheelite deposits in order to explore formation patterns.

METHODS:

Molybdenum Re-Os isotope dating was used to constrain the age, whereas in situ trace element and in situ Sr isotopes of scheelite were used to determine the composition of trace elements and Sr isotopes in scheelite.

RESULTS:

The Re-Os isochron age of molybdenite associated with scheelite in the feldspar-quartz mineral vein of Nanyantian was 151.0±1.3Ma, younger than the age of skarn mineralization, indicating a later mineralization event. The skarn-type scheelite was enriched in light rare earth elements with negative Eu anomaly (δEu=0.46). The average content of ∑REE, Mo and Sr in skarn scheelite were 65.60, 240.16 and 883.43μg/g, respectively. Feldspar-quartz vein-type scheelite showed a flat rare earth pattern with positive Eu anomaly (δEu=2.8) and average content of ∑REE, Mo and Sr were 194.40, 16.01 and 129.26μg/g, respectively. respectively. The skarn scheelite had a relatively low and uniform 87Sr/86Sr value of 0.71319 to 0.71491, indicating that the ore-forming fluids were mainly magmatic-hydrothermal in origin, whereas feldspar-quartz vein type scheelite had a wide 87Sr/86Sr range of 0.71537 to 0.72803, with an average of 0.72079, characteristic of metamorphic fluids.

CONCLUSIONS:

The differences in trace and rare earth element contents between two types of mineralization indicate that they have different fluid sources. The negative Eu anomaly of the skarn-type scheelite indicates a high oxygen fugacity environment, whereas the feldspar-quartz vein-type scheelite is formed in a reductive environment in terms of positive Eu anomaly. Sr isotopes of two different types of scheelite display a feature of binary mixing, indicating that feldspar-quartz vein-type scheelite has a superimposed transformation effect on skarn-type scheelite, and the strong metasomatism of ore-forming fluids and surrounding rocks is the key to the formation of scheelite.

KEY WORDS: scheelite, in situ Sr isotope, mineralization epoch, source of ore-forming fluid, Nanyangtian

HIGHLIGHTS

(1) The ore body of feldspar-quartz vein scheelite in Nanyangtian formed at 151.0±1.3Ma.

(2) in situ trace element and in situ Sr isotopes of scheelite led to the identification of two types of scheelite with different fluid sources and genesis.

(3) The formation of early skarn scheelite was related to magmatic-hydrothermal fluids, whereas metaphorical-hydrothermal fluids were responsible for the formation of later feldspar-quartz mineral veins.

本文参考文献

[1]

Lecumberri-Sanchez P, Vieira R, Heinrich C A, et al. Fluid-rock interaction is decisive for the formation of tungsten deposits[J].Geology, 2017, 45(7): 579-582. doi: 10.1130/G38974.1

[2]

Wu D, Liu Y, Chen C, et al. In-situ trace element and Sr isotopic compositions of mantle xenoliths constrain two-stage metasomatism beneath the Northern North China Craton[J].Lithos, 2017, 288-289: 338-351. doi: 10.1016/j.lithos.2017.07.018

[3]

Christensen J N, Halliday A N, Lee D C, et al. In situ Sr isotopic analysis by laser ablation[J]. Earth & Planetary Science Letters, 1995, 136: 79-85.

[4]

Ramos F C, Wolff J A, Tollstrup D L, et al. Measuring 87Sr/86Sr variations in minerals and groundmass from basalts using LA-MC-ICPMS[J]. Chemical Geology, 2004, 211(1-2): 0-158.

[5]

Schmidberger S S, Simonetti A, Heaman L M, et al. Lu-Hf, in-situ Sr and Pb isotope and trace element systematics for mantle eclogites from the Diavik diamond mine:Evidence for Paleoproterozoic subduction beneath the Slave craton, Canada[J]. Earth & Planetary Science Letters, 2007, 254(1-2): 0-68.

[6]

杨岳衡, 吴福元, 谢烈文, 等. 地质样品Sr同位素激光原位等离子体质谱(LA-MC-ICP-MS)测定[J]. 岩石学报, 2009, 25(12): 331-341.

Yang Y H, Wu F Y, Xie L W, et al. In-situ Sr isotopic measurement of natural geological samples by LA-MC-ICP-MS[J]. Acta Petrologica Sinica, 2009, 25(12): 331-341.

[7]

Zhao X F, Zhou M F, Gao J F, et al. In situ Sr isotope analysis of apatite by LA-MC-ICPMS:Constraints on the evolution of ore fluids of the Yinachang Fe-Cu-REE deposit, Southwest China[J].Mineralium Deposita, 2015, 50(7): 871-884. doi: 10.1007/s00126-015-0578-z

[8]

谭洪旗, 刘玉平. 滇东南猛洞岩群构造环境:变质碎屑岩地球化学约束[J]. 地质学报, 2017, 91(7): 1416-1432. doi: 10.3969/j.issn.0001-5717.2017.07.002

Tan H Q, Liu Y P. Tectonic setting of the Mengdong Group Complex, Southeast Yunnan Province:Geochemical constraints from metasedimentary rocks[J].Acta Geologica Sinica, 2017, 91(7): 1416-1432. doi: 10.3969/j.issn.0001-5717.2017.07.002

[9]

张世涛, 冯明刚, 吕伟, 等. 滇东南南温河变质核杂岩解析[J]. 中国区域地质, 1998, 17(4): 390-397.

Zhang S T, Feng M G, Lü W, et al. Analysis of the Nanwenhe metamorphic core complex in Southeastern Yunnan[J]. Regional Geology of China, 1998, 17(4): 390-397.

[10]

谭洪旗, 刘玉平. 滇东南猛洞岩群变质-变形研究及构造意义[J]. 地质学报, 2017, 91(1): 15-42. doi: 10.3969/j.issn.0001-5717.2017.01.002

Tan H Q, Liu Y P. Metamorphism and deformation of the Mengdong group-complex in Southeastern Yunnan Province and their tectonic implications[J].Acta Geologica Sinica, 2017, 91(1): 15-42. doi: 10.3969/j.issn.0001-5717.2017.01.002

[11]

Xu B, Jiang S Y, Wang R, et al. Late Cretaceous granites from the giant Dulong Sn-polymetallic ore district in Yunnan Province, South China:Geochronology, geochemistry, mineral chemistry and Nd-Hf isotopic compositions[J].Lithos, 2015, 218-219: 54-72. doi: 10.1016/j.lithos.2015.01.004

[12]

Zhou X, Yu J H, O'Reilly S Y, et al. Sources of the Nanwenhe-Song Chay granitic complex (SW China-NE Vietnam) and its tectonic significance[J].Lithos, 2017, 290-291: 76-93. doi: 10.1016/j.lithos.2017.07.017

[13]

刘玉平, 李正祥, 李惠民, 等. 都龙锡锌矿床锡石和锆石U-Pb年代学:滇东南白垩纪大规模花岗岩成岩-成矿事件[J]. 岩石学报, 2007, 23(5): 967-976.

Liu Y P, Li Z X, Li H M, et al. U-Pb geochronology of cassiterite and zircon from the Dulong Sn-Zn deposit:Evidence for Cretaceous large-scale granitic magmatism and mineralization events in Southeastern Yunnan Province, China[J]. Acta Petrologica Sinica, 2007, 23(5): 967-976.

[14]

冯佳睿, 毛景文, 裴荣富, 等. 云南瓦渣钨矿区老君山花岗岩体的SHRIMP锆石U-Pb定年、地球化学特征及成因探讨[J]. 岩石学报, 2010, 26(3): 845-857.

Feng J R, Mao J W, Pei R F, et al. HRIMP zircon U-Pb dating and geochemical characteristics of Laojunshan granite intrusion from the Wazha tungsten deposit, Yunnan Province and their implications for petrogenesis[J]. Acta Petrologica Sinica, 2010, 26(3): 845-857.

[15]

刘艳宾, 莫宣学, 张达, 等. 滇东南老君山地区白垩世花岗岩的成因[J]. 岩石学报, 2014, 30(11): 3271-3286.

Liu Y B, Mo X X, Zhang D, et al. Petrogenesis of the Late Cretaceous granite discovered in the Laojunshan Region, Southeastern Yunnan Province[J]. Acta Petrologica Sinica, 2014, 30(11): 3271-3286.

[16]

冯佳睿, 毛景文, 裴荣富, 等. 滇东南老君山地区印支期成矿事件初探——以新寨锡矿床和南秧田钨矿床为例[J]. 矿床地质, 2011, 30(1): 57-73. doi: 10.3969/j.issn.0258-7106.2011.01.006

Feng J R, Mao J W, Pei R F, et al. A tentative discussion on Indosinian ore-forming events in Laojunshan area of Southeastern Yunnan:A case study of Xinzhai tin deposit and Nanyangtian tungsten deposit[J].Mineral Deposits, 2011, 30(1): 57-73. doi: 10.3969/j.issn.0258-7106.2011.01.006

[17]

李建康, 王登红, 李华芹, 等. 云南老君山矿集区的晚侏罗世-早白垩世成矿事件[J]. 地球科学, 2013, 38(5): 1023-1036.

Li J K, Wang D H, Li H Q, et al. Late Jurassic-Early Cretaceous mineralization in the Laojunshan ore concentration area, Yunnan Province[J]. Earth Science, 2013, 38(5): 1023-1036.

[18]

Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J].Science Bulletin, 2010, 55(15): 1535-1546. doi: 10.1007/s11434-010-3052-4

[19]

Li C, Zhou L, Zhao Z, et al. In-situ Sr isotopic measure-ment of scheelite using fs-LA-MC-ICPMS[J].Journal of Asian Earth Sciences, 2018, 160: 38-47. doi: 10.1016/j.jseaes.2018.03.025

[20]

李超, 杨雪, 赵鸿, 等. pg-ng级Os同位素热表面电离质谱高精度分析测试技术[J]. 岩矿测试, 2015, 34(4): 392-398.

Li C, Yang X, Zhao H, et al. High precise isotopic measurements of pg-ng Os by negative ion thermal ionization mass spectrometry[J]. Rock and Mineral Analysis, 2015, 34(4): 392-398.

[21]

冯佳睿, 毛景文, 裴荣富, 等. 滇东南老君山南秧田钨矿床的成矿流体和成矿作用[J]. 矿床地质, 2011, 30(3): 403-419. doi: 10.3969/j.issn.0258-7106.2011.03.003

Feng J R, Mao J W, Pei R F, et al. Ore-forming fluids and metallogenesis of Nanyangtian tungsten deposit in Laojunshan, Southeastern Yunnan Province[J].Mineral Deposits, 2011, 30(3): 403-419. doi: 10.3969/j.issn.0258-7106.2011.03.003

[22]

曾志刚, 李朝阳, 刘玉平, 等. 老君山成矿区变质成因夕卡岩的地质地球化学特征[J]. 矿物学报, 1999, 19(1): 48-55. doi: 10.3321/j.issn:1000-4734.1999.01.009

Zeng Z G, Li C Y, Liu Y P, et al. Geology and geochemistry of metamorphogenic skarn from Laojunshan metallogenic province[J].Acta Mineralogica Sinica, 1999, 19(1): 48-55. doi: 10.3321/j.issn:1000-4734.1999.01.009

[23]

刘玉平, 李正祥, 叶霖, 等. 滇东南老君山矿集区钨成矿作用Ar-Ar年代学[J]. 矿物学报, 2011, (Supplement 1): 617-618.

Liu Y P, Li Z X, Ye L, et al. Ar-Ar chronology of tungsten mineralization in Laojunshan ore concentration area in Southeast Yunnan[J]. Acta Mineralogica Sinica, 2011, (Supplement 1): 617-618.

[24]

谭洪旗, 刘玉平, 叶霖, 等. 滇东南南秧田钨锡矿床金云母40Ar-39Ar定年及意义[J]. 矿物学报, 2011, (Supplement 1): 639-640.

Tan H Q, Liu Y P, Ye L, et al. 40Ar-39Ar dating of metallomica and its significance from the South Yangtian tungsten-tin deposit in Southeast Yunnan[J]. Acta Mineralogica Sinica, 2011, (Supplement 1): 639-640.

[25]

曾志刚, 李朝阳, 刘玉平, 等. 滇东南南秧田两种不同成因类型白钨矿的稀土元素地球化学特征[J]. 地质地球化学, 1998, 26(2): 34-38.

Zeng Z G, Li C Y, Liu Y P, et al. REE geochemistry of scheelite of two genetic types from Nanyangtian, Southeastern Yunnan[J]. Geological Geochemistry, 1998, 26(2): 34-38.

[26]

谭筱虹, 李志均, 杜再飞, 等. 滇东南南温河地区深变质岩中似层状白钨矿[J]. 云南地质, 2010, 29(4): 382-387. doi: 10.3969/j.issn.1004-1885.2010.04.002

Tan Y H, Li Z J, Du Z F, et al. On the stratoid scheelite of Kata-Metamorphite in Nanwenhe area of SE Yunnan[J].Yunnan Geology, 2010, 29(4): 382-387. doi: 10.3969/j.issn.1004-1885.2010.04.002

[27]

Sun K K, Chen B. Trace elements and Sr-Nd isotopes of scheelite:Implications for the W-Cu-Mo polymetallic mineralization of the Shimensi Deposit, South China[J].American Mineralogist, 2017, 102: 1114-1128.

[28]

Zhao W, Zhou M, Williams-Jones A, et al. Constraints on the uptake of REE by scheelite in the Baoshan tungsten skarn deposit, South China[J].Chemical Geology, 2018, 477: 123-136. doi: 10.1016/j.chemgeo.2017.12.020

[29]

任云生, 赵华雷, 雷恩, 等. 延边杨金沟大型钨矿床白钨矿的微量和稀土元素地球化学特征与矿床成因[J]. 岩石学报, 2010, 26(12): 3720-3726.

Ren Y S, Zhao H L, Lei E, et al. Trace element and rare earth element geochemistry of the scheelite and ore genesis of the Yangjingou large scheelite deposit in Yanbian area, Northeastern China[J]. Acta Petrologica Sinica, 2010, 26(12): 3720-3726.

[30]

刘善宝, 刘战庆, 王成辉, 等. 赣东北朱溪超大型钨矿床中白钨矿的稀土、微量元素地球化学特征及其Sm-Nd定年[J]. 地学前缘, 2017, 24(5): 17-30.

Liu S B, Liu Z Q, Wang C H, et al. Geochemical characteristics of REEs and trace elements and Sm-Nd dating of scheelite from the Zhuxi giant tungsten deposit in Northeast Jiangxi[J]. Earth Science Frontiers, 2017, 24(5): 17-30.

[31]

聂利青, 周涛发, 张千明, 等. 安徽东顾山钨矿床白钨矿主微量元素和Sr-Nd同位素特征及其对成矿作用的指示[J]. 岩石学报, 2017, 33(11): 3518-3530.

Nie L Q, Zhou T F, Zhang Q M, et al. Trace elements and Sr-Nd isotopes of scheelites:Implications for the skarn tungsten mineralization of the Donggushan deposit, Anhui Province, China[J]. Acta Petrologica Sinica, 2017, 33(11): 3518-3530.

[32]

丁腾, 马东升, 陆建军, 等. 湘南黄沙坪多金属矿床花岗斑岩的矿物化学及其对矽卡岩白钨矿成矿的指示意义[J]. 岩石学报, 2017, 33(3): 716-728.

Ding T, Ma D S, Lu J J, et al. Mineral geochemistry of granite porphyry in Huangshaping pollymetallic deposit, Southern Hunan Province, and its implications for metallogensis of skarn scheelite mineralization[J]. Acta Petrologica Sinica, 2017, 33(3): 716-728.

[33]

Ding T, Ma D, Lu J, et al. Garnet and scheelite as indica-tors of multi-stage tungsten mineralization in the Huangshaping deposit, Southern Hunan Province, China[J].Ore Geology Reviews, 2018, 94: 193-211. doi: 10.1016/j.oregeorev.2018.01.029

[34]

闫国强, 丁俊, 黄勇, 等. 西藏努日白钨矿床微量和稀土元素地球化学特征——对成矿流体与矿床成因的指示[J]. 矿物学报, 2015, 35(1): 87-94.

Yan G Q, Ding J, Huang Y, et al. Geochemical characteristics of rare earth elements and trace elements in the Nuri scheelite deposit, Tibet, China——Indications for ore-forming fluid and deposit genesis[J]. Acta Mineralogica Sinica, 2015, 35(1): 87-94.

[35]

Song G, Qin K, Li G, et al. Scheelite elemental and isotopic signatures:Implications for the genesis of skarn-type W-Mo deposits in the Chizhou area, Anhui Province, Eastern China[J].American Mineralogist, 2014, 99(2-3): 303-317. doi: 10.2138/am.2014.4431

[36]

洪为, 张作衡, 蒋宗胜, 等. 新疆西天山查岗诺尔铁矿床磁铁矿和石榴石微量元素特征及其对矿床成因的制约[J]. 岩石学报, 2012, 28(7): 2089-2102.

Hong W, Zhang Z H, Jiang Z S, et al. Magnetite and garnet trace element characteristics from the Chagangnuoer iron deposit in the Western Tianshan Mountains, Xinjiang, NW China:Constrain for ore genesis[J]. Ore Geology Reviews, 2012, 28(7): 2089-2102.

[37]

Brugger J, Lahaye Y, Costa S, et al. Inhomogeneous dis-tribution of REE in scheelite and dynamics of archaean hydrothermal systems (Mt.Charlotte and Drysdale gold deposits, Western Australia)[J].Contributions to Mineralogy and Petrology, 2000, 139(3): 251-264. doi: 10.1007/s004100000135

[38]

Brugger J, Maas R, Lahaye Y, et al. Origins of Nd-Sr-Pb isotopic variations in single scheelite grains from Archaean gold deposits, Western Australia[J]. Chemical Geology, 2002, 182(2): 203-225.

[39]

王冠, 杜谷, 刘书生, 等. 电感耦合等离子体质谱法对白钨矿中稀土元素的准确测定——以云南麻栗坡南秧田白钨矿床的成因探讨为例[J]. 岩矿测试, 2012, 31(6): 1050-1057. doi: 10.3969/j.issn.0254-5357.2012.06.025

Wang G, Du G, Liu S S, et al. Accurate determination of rare earth elements in scheelite using high resolution-inductively coupled plasma-mass spectrometry-An instance of Nanyangtian scheelite mining, Malipo, Yunnan[J]. Rock and Mineral Analysis, 2012, 31(6): 1050-1057. doi: 10.3969/j.issn.0254-5357.2012.06.025

[40]

Ghaderi M, Palin J M, Campbell I H, et al. Rare earth element systematics in scheelite from hydrothermal gold deposits in the Kalgoorlie-Norseman Region, Western Australia[J].Economy Geology, 1999, 94: 423-438. doi: 10.2113/gsecongeo.94.3.423

[41]

蔡倩茹, 燕永锋, 杨光树, 等. 滇东南南秧田矽卡岩型钨矿床成矿演化[J]. 矿床地质, 2018, 37(1): 116-136.

Cai Q R, Yan Y F, Yang G S, et al. Evolution of scheelite skarn mineralization at Nanyangtian deposit, Southeast Yunnan Province[J]. Mineral Deposits, 2018, 37(1): 116-136.

[42]

Yan D P, Zhou M F, Wang C Y, et al. Structural and geochronological constraints on the tectonic evolution of the Dulong-Song Chay tectonic dome in Yunnan Province, SW China[J].Journal of Asian Earth Sciences, 2006, 28(4-6): 332-353. doi: 10.1016/j.jseaes.2005.10.011

[43]

张斌辉, 丁俊, 任光明, 等. 云南马关老君山花岗岩的年代学、地球化学特征及地质意义[J]. 地质学报, 2012, 86(4): 587-601. doi: 10.3969/j.issn.0001-5717.2012.04.005

Zhang B H, Ding J, Ren G M, et al. Geochronology and geochemical characteristics of the Laojunshan granites in Maguan County, Yunnan Province, and its geological implications[J].Acta Geologica Sinica, 2012, 86(4): 587-601. doi: 10.3969/j.issn.0001-5717.2012.04.005

相似文献(共19条)

[1]

戴婕, 张林奎, 潘晓东, 石洪召, 陈敏华, 王鹏, 张斌辉, 张茜, 金斌, 任静. 滇东南南秧田白钨矿矿床矽卡岩矿物学特征及成因探讨. 岩矿测试, 2011, 30(3): 269-275.

[2]

付宇, 孙晓明, 熊德信. 激光剥蚀-电感耦合等离子体质谱法对白钨矿中稀土元素的原位测定. 岩矿测试, 2013, 32(6): 875-882.

[3]

张静. ICP—AES测定白钨矿中的十五种元素. 岩矿测试, 1991, (1): 41-43.

[4]

曾载淋, 张永忠, 朱祥培, 陈郑辉, 王成辉, 屈文俊. 赣南崇义地区茅坪钨锡矿床铼-锇同位素定年及其地质意义. 岩矿测试, 2009, 28(3): 209-214.

[5]

王登红, 陈振宇, 秦燕, 赵斌, 陈郑辉, 王成辉. 中条山地区八一铜矿床中白钨矿的发现及其找矿意义. 岩矿测试, 2012, 31(3): 513-517.

[6]

李文良, 夏锐, 卿敏, 李超, 张栋, 孙昊, 路英川, 刘鹏, 周奥博. 应用辉钼矿Re-Os定年技术研究青海什多龙矽卡岩型钼铅锌矿床的地球动力学背景. 岩矿测试, 2014, 33(6): 900-907.

[7]

徐争启, 欧阳鑫东, 张成江, 姚建, 汤曼. 电子探针化学测年在攀枝花大田晶质铀矿中的应用及其意义. 岩矿测试, 2017, 36(6): 641-648. doi: 10.15898/j.cnki.11-2131/td.201704280071

[8]

松权衡, 邢树文, 张勇, 李超, 王岩, 于城. 吉林长安堡钼(铜)矿床成矿时代及物质来源:来自辉钼矿Re-Os同位素证据. 岩矿测试, 2016, 35(5): 550-557. doi: 10.15898/j.cnki.11-2131/td.2016.05.014

[9]

严清高, 李超, 江小均, 王忠强, 李云驹, 李伟. 滇中昆阳磷矿成矿时代及沉积环境Re-Os同位素示踪研究. 岩矿测试, 2018, 37(4): 462-474. doi: 10.15898/j.cnki.11-2131/td.201805040054

[10]

李宁, 杨富全, 李超, 张志欣, 杨成栋. 新疆东天山小白石头钨(钼)矿辉钼矿Re-Os同位素年龄及成矿时代. 岩矿测试, 2019, 38(1): 112-122. doi: 10.15898/j.cnki.11-2131/td.201805250064

[11]

王冠, 杜谷, 刘书生, 石洪召, 张林奎, 任静. 电感耦合等离子体质谱法对白钨矿中稀土元素的准确测定——以云南麻栗坡南秧田白钨矿床的成因探讨为例. 岩矿测试, 2012, 31(6): 1050-1057.

[12]

李建康, 陈振宇, 陈郑辉, 侯可军, 赵正. 江西赣县韩坊岩体的成岩时代及成矿条件分析. 岩矿测试, 2012, 31(4): 717-723.

[13]

李立兴, 李厚民, 王德忠, 刘明军, 杨秀清, 陈靖. 河北承德铁马哈叭沁超贫铁矿床的成因与成矿时代. 岩矿测试, 2012, 31(5): 898-905.

[14]

孙鼐. 国际花岗岩地质和成矿关系学术讨论会在南大召开. 岩矿测试, 1983, (2): 98-98.

[15]

刘善宝, 王成辉, 刘战庆, 刘建光, 万浩章, 陈国华, 张诚, 张树德, 张小林. 赣东北塔前—赋春成矿带岩浆岩时代限定与序列划分及其意义. 岩矿测试, 2014, 33(4): 598-611.

[16]

李立兴, 松权衡, 王登红, 王成辉, 屈文俊, 汪志刚, 毕守业, 于城. 吉林福安堡钼矿中辉钼矿铼-锇同位素定年及成矿作用探讨. 岩矿测试, 2009, 28(3): 283-287.

[17]

唐菊兴, 王成辉, 屈文俊, 杜安道, 应立娟, 高一鸣. 西藏玉龙斑岩铜钼矿辉钼矿铼-锇同位素定年及其成矿学意义. 岩矿测试, 2009, 28(3): 215-218.

[18]

王登红, 李华芹, 秦燕, 梅玉萍, 陈郑辉, 屈文俊, 王彦斌, 蔡红, 龚述清, 何晓平. 湖南瑶岗仙钨矿成岩成矿作用年代学研究. 岩矿测试, 2009, 28(3): 201-208.

[19]

李丽侠, 陈郑辉, 施光海, 张思明, 屈文俊, 应立娟, 秦燕, 丁琼. 江西岿美山钨矿矿床的成矿年龄及地质特征. 岩矿测试, 2014, 33(2): 287-295.

计量
  • PDF下载量(19)
  • 文章访问量(70)
  • HTML全文浏览量(7)
  • 被引次数(0)
目录

Figures And Tables

滇东南南秧田钨矿床白钨矿原位Sr同位素对成矿的指示

王忠强, 李超, 张定才, 江小均, 周利敏, 严清高